Recent modeling studies have suggested a potentially important role of cloud-radiative interactions in accelerating tropical cyclone (TC) development, but there has been only limited investigation of this in observations. Here, we investigate this by performing radiative transfer calculations based on cloud property retrievals from the CloudSat Tropical Cyclone (CSTC) dataset. We examine the radius-height structure of radiative heating anomalies, compute the resulting radiatively-driven circulations, and use the moist static energy variance budget to compute radiative feedbacks. We find that inner-core mid-level ice water content and anomalous specific humidity increase with TC intensification rate, resulting in enhanced inner-core deep-layer longwave warming anomalies and shortwave cooling anomalies in rapidly-intensifying TCs. This leads to a stronger radiatively-driven deep in-up-and-out overturning circulation and inner-core radiative feedback in rapidly-intensifying TCs. The longwave-driven circulation provides radially inward momentum fluxes and upward moisture fluxes which benefit TC development, while the shortwave-driven circulation suppresses TC development. The longwave anomalies, which dominate the inner-core positive radiative feedback, are mainly generated from cloud-radiative interactions, with ice particles dominating the deep-layer circulation and liquid droplets and water vapor contributing to the shallow circulation. Moreover, the variability in ice water content, as opposed to variability in liquid water content and the effective radii of ice particles and liquid droplets, dominates the uncertainty in TC-radiative interaction. These results provide observational evidence for the importance of cloud-radiative interactions in TC development and suggest that the amount and spatial structure of ice water content is critical for determining the strength of this interaction.
{"title":"Satellite-Based Estimation of the Role of Cloud-Radiative Interaction in Accelerating Tropical Cyclone Development","authors":"Tsung-Yung Lee, Allison A. Wing","doi":"10.1175/jas-d-23-0142.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0142.1","url":null,"abstract":"\u0000Recent modeling studies have suggested a potentially important role of cloud-radiative interactions in accelerating tropical cyclone (TC) development, but there has been only limited investigation of this in observations. Here, we investigate this by performing radiative transfer calculations based on cloud property retrievals from the CloudSat Tropical Cyclone (CSTC) dataset. We examine the radius-height structure of radiative heating anomalies, compute the resulting radiatively-driven circulations, and use the moist static energy variance budget to compute radiative feedbacks. We find that inner-core mid-level ice water content and anomalous specific humidity increase with TC intensification rate, resulting in enhanced inner-core deep-layer longwave warming anomalies and shortwave cooling anomalies in rapidly-intensifying TCs. This leads to a stronger radiatively-driven deep in-up-and-out overturning circulation and inner-core radiative feedback in rapidly-intensifying TCs. The longwave-driven circulation provides radially inward momentum fluxes and upward moisture fluxes which benefit TC development, while the shortwave-driven circulation suppresses TC development. The longwave anomalies, which dominate the inner-core positive radiative feedback, are mainly generated from cloud-radiative interactions, with ice particles dominating the deep-layer circulation and liquid droplets and water vapor contributing to the shallow circulation. Moreover, the variability in ice water content, as opposed to variability in liquid water content and the effective radii of ice particles and liquid droplets, dominates the uncertainty in TC-radiative interaction. These results provide observational evidence for the importance of cloud-radiative interactions in TC development and suggest that the amount and spatial structure of ice water content is critical for determining the strength of this interaction.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140744168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Salesky, Kendra Gillis, Jesse C. Anderson, Ian Helman, W. Cantrell, Raymond A. Shaw
The subgrid scale (SGS) scalar variance represents the “unmixedness” of the unresolved small scales in large eddy simulations (LES) of turbulent flows. Supersaturation variance can play an important role in the activation, growth, and evaporation of cloud droplets in a turbulent environment, and therefore efforts are being made to include SGS supersaturation fluctuations in microphysics models. We present results from a priori tests of SGS scalar variance models using data collected in turbulent Rayleigh-Bénard convection in the Michigan Tech Pi chamber for Rayleigh numbers Ra ∼ 108−109. Data from an array of ten thermistors was spatially filtered and used to calculate the true SGS scalar variance, a scale-similarity model, and a gradient model for dimensionless filter widths of h/Δ = 25, 14.3, and 10 (where h is the height of the chamber and Δ is the spatial filter width). The gradient model was found to have fairly low correlations (p ∼ 0.2), with the most probable values departing significantly from the one-to-one line in joint probability density functions (JPDFs). However, the scale-similarity model was found to have good behavior in JPDFs and was highly correlated (p ∼ 0.8) with the true SGS variance. Results of the a priori tests were robust across the parameter space considered, with little dependence on Ra and h/Δ. The similarity model, which only requires an additional test filtering operation, is therefore a promising approach for modeling the SGS scalar variance in LES of cloud turbulence and other related flows.
亚网格尺度(SGS)标量方差代表了湍流大涡模拟(LES)中未解决的小尺度的 "非混合性"。过饱和度方差在湍流环境中云滴的激活、生长和蒸发过程中起着重要作用,因此人们正努力将 SGS 过饱和度波动纳入微物理模型。我们介绍了利用密歇根理工学院 Pi 试验室收集的雷利数 Ra ∼ 108-109 时湍流雷利-贝纳德对流数据对 SGS 标量方差模型进行先验测试的结果。对来自十个热敏电阻阵列的数据进行了空间滤波,用于计算真实的 SGS 标度方差、标度相似性模型和无量纲滤波宽度为 h/Δ=25、14.3 和 10 的梯度模型(其中 h 为室的高度,Δ 为空间滤波宽度)。研究发现,梯度模型的相关性相当低(p ∼ 0.2),最可能的值明显偏离联合概率密度函数(JPDF)中的一一对应线。然而,尺度相似性模型在联合概率密度函数中表现良好,并且与真实的 SGS 方差高度相关(p ∼ 0.8)。在所考虑的参数空间中,先验检验的结果是稳健的,对 Ra 和 h/Δ 的依赖性很小。因此,相似性模型只需要额外的测试过滤操作,是云湍流和其他相关流体 LES 中 SGS 标量方差建模的一种很有前途的方法。
{"title":"Modeling the subgrid scale scalar variance: a priori tests and application to supersaturation in cloud turbulence","authors":"S. Salesky, Kendra Gillis, Jesse C. Anderson, Ian Helman, W. Cantrell, Raymond A. Shaw","doi":"10.1175/jas-d-23-0163.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0163.1","url":null,"abstract":"\u0000The subgrid scale (SGS) scalar variance represents the “unmixedness” of the unresolved small scales in large eddy simulations (LES) of turbulent flows. Supersaturation variance can play an important role in the activation, growth, and evaporation of cloud droplets in a turbulent environment, and therefore efforts are being made to include SGS supersaturation fluctuations in microphysics models. We present results from a priori tests of SGS scalar variance models using data collected in turbulent Rayleigh-Bénard convection in the Michigan Tech Pi chamber for Rayleigh numbers Ra ∼ 108−109. Data from an array of ten thermistors was spatially filtered and used to calculate the true SGS scalar variance, a scale-similarity model, and a gradient model for dimensionless filter widths of h/Δ = 25, 14.3, and 10 (where h is the height of the chamber and Δ is the spatial filter width). The gradient model was found to have fairly low correlations (p ∼ 0.2), with the most probable values departing significantly from the one-to-one line in joint probability density functions (JPDFs). However, the scale-similarity model was found to have good behavior in JPDFs and was highly correlated (p ∼ 0.8) with the true SGS variance. Results of the a priori tests were robust across the parameter space considered, with little dependence on Ra and h/Δ. The similarity model, which only requires an additional test filtering operation, is therefore a promising approach for modeling the SGS scalar variance in LES of cloud turbulence and other related flows.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140227487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Federer, L. Papritz, Michael Sprenger, Christian M. Grams, Marta Wenta
Extratropical cyclones convert available potential energy (APE) to kinetic energy. However, our current understanding of APE conversion on synoptic scales is limited, as the well-established Lorenz APE framework is only applicable in a global, volume-integrated sense. Here, we employ a recently developed local APE framework to investigate APE and its tendencies in a highly idealized, dispersive baroclinic wave, which leads to the formation of a primary and a downstream cyclone. By utilizing a Lagrangian approach, we demonstrate that locally the downstream cyclone not only consumes APE but also generates it. Initially, APE is transported from both poleward and equatorward reservoirs into the baroclinic zone, where it is then consumed by the vertical displacement of air parcels associated with the developing cyclone. To a lesser extent, APE is also created within the cyclone when air parcels overshoot their reference state, i.e. air colder than its reference state is lifted and air warmer than its reference state is lowered. The volume-integral of the APE tendency is dominated by slow vertical displacements of large air masses, whereas the dry intrusion (DI) and warm conveyor belt (WCB) of the cyclone are responsible for the largest local APE tendencies. Diabatic effects within the DI andWCB contribute to the generation of APE in regions where it is consumed adiabatically, thereby enhancing baroclinic conversion in situ. Our findings provide a comprehensive and mechanistic understanding of the local APE tendency on synoptic scales within an idealized setting and complement existing frameworks explaining the energetics of cyclone intensification.
热带气旋将可用势能(APE)转化为动能。然而,由于成熟的洛伦兹 APE 框架仅适用于全球范围内的体积整合,我们目前对同步尺度上 APE 转换的了解还很有限。在此,我们采用最近开发的局部 APE 框架来研究高度理想化、分散的气压波中的 APE 及其趋势,该气压波会导致初级气旋和下游气旋的形成。通过利用拉格朗日方法,我们证明下游气旋在局部不仅会消耗 APE,还会产生 APE。最初,APE 从向极和向赤道的储层被输送到气压带,然后被与发展中气旋相关的气团的垂直位移所消耗。在较小程度上,当气团超调其参考状态时,也会在气旋内部产生 APE,即冷于其参考状态的空气被抬升,而暖于其参考状态的空气被降低。大气团的缓慢垂直位移主导了 APE 趋势的体积积分,而气旋的干侵入(DI)和暖输送带(WCB)则造成了最大的局部 APE 趋势。干侵入和暖输送带内的绝热效应有助于在绝热消耗的区域产生 APE,从而增强了气压转换的原位。我们的研究结果提供了在理想化环境下对同步尺度上的局地 APE 趋势的全面和机理理解,并补充了解释气旋增强能量学的现有框架。
{"title":"On the Local Available Potential Energy Perspective of Baroclinic Wave Development","authors":"Marc Federer, L. Papritz, Michael Sprenger, Christian M. Grams, Marta Wenta","doi":"10.1175/jas-d-23-0138.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0138.1","url":null,"abstract":"\u0000Extratropical cyclones convert available potential energy (APE) to kinetic energy. However, our current understanding of APE conversion on synoptic scales is limited, as the well-established Lorenz APE framework is only applicable in a global, volume-integrated sense. Here, we employ a recently developed local APE framework to investigate APE and its tendencies in a highly idealized, dispersive baroclinic wave, which leads to the formation of a primary and a downstream cyclone. By utilizing a Lagrangian approach, we demonstrate that locally the downstream cyclone not only consumes APE but also generates it. Initially, APE is transported from both poleward and equatorward reservoirs into the baroclinic zone, where it is then consumed by the vertical displacement of air parcels associated with the developing cyclone. To a lesser extent, APE is also created within the cyclone when air parcels overshoot their reference state, i.e. air colder than its reference state is lifted and air warmer than its reference state is lowered. The volume-integral of the APE tendency is dominated by slow vertical displacements of large air masses, whereas the dry intrusion (DI) and warm conveyor belt (WCB) of the cyclone are responsible for the largest local APE tendencies. Diabatic effects within the DI andWCB contribute to the generation of APE in regions where it is consumed adiabatically, thereby enhancing baroclinic conversion in situ. Our findings provide a comprehensive and mechanistic understanding of the local APE tendency on synoptic scales within an idealized setting and complement existing frameworks explaining the energetics of cyclone intensification.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140233005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiple mechanisms have been proposed to explain secondary ice production (SIP), and SIP has been recognized to play a vital role in forming cloud ice crystals. However, most weather and climate models do not consider SIP in their cloud microphysical schemes. In this study, in addition to the default rime splintering process (RS), two SIP processes, namely shattering/fragmentation during freezing of supercooled rain/drizzle drops (DS) and breakup upon ice-ice collisions (BR), were implemented into a two-moment cloud microphysics scheme. Besides, two different parameterization schemes for BR were introduced. A series of sensitivity experiments were performed to investigate how SIP impacts cloud microphysics and cloud phase distributions in warm-based deep convective clouds developed in the central part of Europe. Simulation results revealed that cloud microphysical properties were significantly influenced by the SIP processes. Ice crystal number concentrations (ICNCs) increased up to more than 20 times and surface precipitation was reduced by up to 20% with the consideration of SIP processes. Interestingly, BR was found to dominate SIP, and the BR process rate was larger than the RS and DS process rates by 4 and 3 orders of magnitude, respectively. Liquid pixel number fractions inside clouds and at the cloud top decreased when implementing all three SIP processes, but the decrease depended on the BR scheme. Peak values of ice enhancement factors (IEFs) in the simulated deep convective clouds were 102 to 104 and located at −24 °C with the consideration of all three SIP processes, while the temperature dependency of IEF was sensitive to the BR scheme. However, if only RS or RS and DS processes were included, the IEFs were comparable, with peak values of about 6, located at −7 °C. Moreover, switching off the cascade effect led to a remarkable reduction in ICNCs and ice crystal mass mixing ratios.
{"title":"Secondary ice production in simulated deep convective clouds: A sensitivity study","authors":"Cunbo Han, C. Hoose, Viktoria Dürlich","doi":"10.1175/jas-d-23-0156.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0156.1","url":null,"abstract":"\u0000Multiple mechanisms have been proposed to explain secondary ice production (SIP), and SIP has been recognized to play a vital role in forming cloud ice crystals. However, most weather and climate models do not consider SIP in their cloud microphysical schemes. In this study, in addition to the default rime splintering process (RS), two SIP processes, namely shattering/fragmentation during freezing of supercooled rain/drizzle drops (DS) and breakup upon ice-ice collisions (BR), were implemented into a two-moment cloud microphysics scheme. Besides, two different parameterization schemes for BR were introduced. A series of sensitivity experiments were performed to investigate how SIP impacts cloud microphysics and cloud phase distributions in warm-based deep convective clouds developed in the central part of Europe. Simulation results revealed that cloud microphysical properties were significantly influenced by the SIP processes. Ice crystal number concentrations (ICNCs) increased up to more than 20 times and surface precipitation was reduced by up to 20% with the consideration of SIP processes. Interestingly, BR was found to dominate SIP, and the BR process rate was larger than the RS and DS process rates by 4 and 3 orders of magnitude, respectively. Liquid pixel number fractions inside clouds and at the cloud top decreased when implementing all three SIP processes, but the decrease depended on the BR scheme. Peak values of ice enhancement factors (IEFs) in the simulated deep convective clouds were 102 to 104 and located at −24 °C with the consideration of all three SIP processes, while the temperature dependency of IEF was sensitive to the BR scheme. However, if only RS or RS and DS processes were included, the IEFs were comparable, with peak values of about 6, located at −7 °C. Moreover, switching off the cascade effect led to a remarkable reduction in ICNCs and ice crystal mass mixing ratios.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140236865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Morris, J. Schwendike, Douglas J. Parker, Caroline Bain
Understanding how mesoscale convection interacts with synoptic-scale circulations over West Africa is crucial for improving regional weather forecasts and developing convection parameterisations to address biases in climate models. A 10-year pan-African convection-permitting simulation and a corresponding parameterised simulation for current-climate conditions are used to calculate the circulation budget around a synoptic region over the diurnal cycle, splitting processes involved in circulation tendency between diurnal mean and anomalous contributions, vorticity accumulation and vortex tilting. Dynamical fields are composited around precipitating grid cells during afternoon and overnight convection to understand how the mesoscale convection modulates these synoptic-scale processes, and these composites are compared to an observational case. The dominant process modulating circulation tendency was found to be synoptic-scale vorticity accumulation, which is similar in the two simulations. The greatest difference between the simulated budgets was the tilting term. We propose that the tilting term is affected by convective momentum transport associated with precipitating systems crossing the boundary of the region, while the stretching term relies on the convergence and divergence induced by storms within the region. The simulation with parameterised convection captures the heating profile similarly to the simulation with explicit convection, but there are marked differences in convective momentum transport. An accurate vertical convergence structure as well as momentum transport must be simulated in parameterisations to correctly represent the impacts of convection on circulation.
{"title":"How is synoptic-scale circulation influenced by the dynamics of mesoscale convection in convection-permitting simulations over West Africa?","authors":"Francesca Morris, J. Schwendike, Douglas J. Parker, Caroline Bain","doi":"10.1175/jas-d-22-0032.1","DOIUrl":"https://doi.org/10.1175/jas-d-22-0032.1","url":null,"abstract":"\u0000Understanding how mesoscale convection interacts with synoptic-scale circulations over West Africa is crucial for improving regional weather forecasts and developing convection parameterisations to address biases in climate models. A 10-year pan-African convection-permitting simulation and a corresponding parameterised simulation for current-climate conditions are used to calculate the circulation budget around a synoptic region over the diurnal cycle, splitting processes involved in circulation tendency between diurnal mean and anomalous contributions, vorticity accumulation and vortex tilting. Dynamical fields are composited around precipitating grid cells during afternoon and overnight convection to understand how the mesoscale convection modulates these synoptic-scale processes, and these composites are compared to an observational case. The dominant process modulating circulation tendency was found to be synoptic-scale vorticity accumulation, which is similar in the two simulations. The greatest difference between the simulated budgets was the tilting term. We propose that the tilting term is affected by convective momentum transport associated with precipitating systems crossing the boundary of the region, while the stretching term relies on the convergence and divergence induced by storms within the region. The simulation with parameterised convection captures the heating profile similarly to the simulation with explicit convection, but there are marked differences in convective momentum transport. An accurate vertical convergence structure as well as momentum transport must be simulated in parameterisations to correctly represent the impacts of convection on circulation.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140244822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Madden Julian oscillation (MJO) propagates eastward as a disturbance of mostly zonal wind and precipitation along the equator. The initial diagnosis of the MJO spectral peak at 40-50 day periods suggests a reduction in amplitude associated with slower MJO events that occur at lower frequencies. If events on the low frequency side of the spectral peak continued to grow in amplitude with reduced phase speed, the spectrum would just be red. Wavelet regression analysis of slow and fast eastward propagating MJO signals during northern winter assesses how associated moisture and wind patterns could explain why slow MJO events achieve lower amplitude in tracers of moist convection. Results suggest that slow MJO events favor a ridge anomaly over Europe, which drives cool dry air equatorward over Africa and Arabia as the active convection develops over the Indian Ocean. We hypothesize that dry air tracing back to this source, together with a longer duration of the events, leads to associated convection diminishing along the equator and instead concentrating in the Rossby gyres off the equator.
{"title":"Interaction with the Extratropics as a New Hypothesis for the Spectral Peak of the Madden Julian Oscillation","authors":"P. Roundy, Crizzia Mielle De Castro","doi":"10.1175/jas-d-23-0196.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0196.1","url":null,"abstract":"\u0000The Madden Julian oscillation (MJO) propagates eastward as a disturbance of mostly zonal wind and precipitation along the equator. The initial diagnosis of the MJO spectral peak at 40-50 day periods suggests a reduction in amplitude associated with slower MJO events that occur at lower frequencies. If events on the low frequency side of the spectral peak continued to grow in amplitude with reduced phase speed, the spectrum would just be red. Wavelet regression analysis of slow and fast eastward propagating MJO signals during northern winter assesses how associated moisture and wind patterns could explain why slow MJO events achieve lower amplitude in tracers of moist convection. Results suggest that slow MJO events favor a ridge anomaly over Europe, which drives cool dry air equatorward over Africa and Arabia as the active convection develops over the Indian Ocean. We hypothesize that dry air tracing back to this source, together with a longer duration of the events, leads to associated convection diminishing along the equator and instead concentrating in the Rossby gyres off the equator.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Zhang, Hongsheng Zhang, Xuhui Cai, Yu Song, Xiaoye Zhang
Taklimakan Desert is one of key climate regions in East Asia, both highly influencing and highly sensitive to local/regional climate change. Based on comprehensive observation experiment from 1 to 31 May 2022 in the hinterland of the Taklimakan Desert, the characteristics and mechanisms of turbulence intermittency are investigated in this study, with the purpose to correct turbulent fluxes. Using an improved algorithm to decompose turbulence and submeso motions, two intermittency regimes are recognized in the Taklimakan Desert, namely D&T intermittency and onD intermittency. The former occurs under strongly stable conditions, characterized by the coexistence of dynamic and thermodynamic turbulence intermittency. The latter occurs under strongly unstable conditions and represents only dynamic turbulence intermittency. Physically, the D&T intermittency regime is related to submeso waves, whereas the onD regime is caused by the horizontal convergence/divergence of convective circulations. With the influence of intermittency and submeso motions, the observed turbulent statistics deviate from reality, which would mask the similarity relationships. To overcome the problem, turbulent statistics are corrected by removing submeso components from original fluctuations. The effectiveness of this method is demonstrated based on the flux-gradient relationships. It is also suggested that, for a big dataset, the impact of onD intermittency can be simply corrected by a correction factor while that of D&T intermittency not. The results of this study are helpful to develop the parameterization of turbulent exchange processes in the Taklimakan Desert, which is significant to improve the accuracy of weather forecasting and climate prediction.
{"title":"Characteristics of Turbulence Intermittency, Fine Structures, and Flux Correction in the Taklimakan Desert","authors":"Lu Zhang, Hongsheng Zhang, Xuhui Cai, Yu Song, Xiaoye Zhang","doi":"10.1175/jas-d-23-0107.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0107.1","url":null,"abstract":"\u0000Taklimakan Desert is one of key climate regions in East Asia, both highly influencing and highly sensitive to local/regional climate change. Based on comprehensive observation experiment from 1 to 31 May 2022 in the hinterland of the Taklimakan Desert, the characteristics and mechanisms of turbulence intermittency are investigated in this study, with the purpose to correct turbulent fluxes. Using an improved algorithm to decompose turbulence and submeso motions, two intermittency regimes are recognized in the Taklimakan Desert, namely D&T intermittency and onD intermittency. The former occurs under strongly stable conditions, characterized by the coexistence of dynamic and thermodynamic turbulence intermittency. The latter occurs under strongly unstable conditions and represents only dynamic turbulence intermittency. Physically, the D&T intermittency regime is related to submeso waves, whereas the onD regime is caused by the horizontal convergence/divergence of convective circulations. With the influence of intermittency and submeso motions, the observed turbulent statistics deviate from reality, which would mask the similarity relationships. To overcome the problem, turbulent statistics are corrected by removing submeso components from original fluctuations. The effectiveness of this method is demonstrated based on the flux-gradient relationships. It is also suggested that, for a big dataset, the impact of onD intermittency can be simply corrected by a correction factor while that of D&T intermittency not. The results of this study are helpful to develop the parameterization of turbulent exchange processes in the Taklimakan Desert, which is significant to improve the accuracy of weather forecasting and climate prediction.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The vertical velocity distribution in the atmosphere is asymmetric with stronger upward than downward motion. This asymmetry has important implications for the distribution of precipitation and its extremes and for an effective static stability that has been used to represent the effects of latent heating on extratropical eddies. Idealized GCM simulations show that the asymmetry increases as the climate warms, but current moist dynamical theories based around small amplitude modes greatly overestimate the increase in asymmetry with warming found in the simulations. Here, we first analyze the changes in asymmetry with warming using numerical inversions of a moist quasigeostrophic omega equation applied to output from the idealized GCM. The inversions show that increases in the asymmetry with warming in the GCM simulations are primarily related to decreases in moist static stability on the left-hand side of the moist omega equation, whereas the dynamical forcing on the right-hand side of the omega equation is unskewed and contributes little to the asymmetry of the vertical velocity distribution. By contrast, increases in asymmetry with warming for small amplitude modes are related to changes in both moist static stability and dynamical forcing leading to enhanced asymmetry in warm climates. We distill these insights into a toy model of the moist omega equation that is solved for a given moist static stability and wavenumber of the dynamical forcing. In comparison to modal theory, the toy model better reproduces the slow increase of the asymmetry with climate warming in the idealized GCM simulations and over the seasonal cycle from winter to summer in reanalysis.
{"title":"Asymmetry of the Distribution of Vertical Velocities of the Extratropical Atmosphere in Theory, Models and Reanalysis","authors":"M. Kohl, P. O’Gorman","doi":"10.1175/jas-d-23-0128.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0128.1","url":null,"abstract":"\u0000The vertical velocity distribution in the atmosphere is asymmetric with stronger upward than downward motion. This asymmetry has important implications for the distribution of precipitation and its extremes and for an effective static stability that has been used to represent the effects of latent heating on extratropical eddies. Idealized GCM simulations show that the asymmetry increases as the climate warms, but current moist dynamical theories based around small amplitude modes greatly overestimate the increase in asymmetry with warming found in the simulations. Here, we first analyze the changes in asymmetry with warming using numerical inversions of a moist quasigeostrophic omega equation applied to output from the idealized GCM. The inversions show that increases in the asymmetry with warming in the GCM simulations are primarily related to decreases in moist static stability on the left-hand side of the moist omega equation, whereas the dynamical forcing on the right-hand side of the omega equation is unskewed and contributes little to the asymmetry of the vertical velocity distribution. By contrast, increases in asymmetry with warming for small amplitude modes are related to changes in both moist static stability and dynamical forcing leading to enhanced asymmetry in warm climates. We distill these insights into a toy model of the moist omega equation that is solved for a given moist static stability and wavenumber of the dynamical forcing. In comparison to modal theory, the toy model better reproduces the slow increase of the asymmetry with climate warming in the idealized GCM simulations and over the seasonal cycle from winter to summer in reanalysis.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The steady response of the stratosphere to tropospheric thermal forcing via an SST perturbation is considered in two separate theoretical models. It is first shown that an SST anomaly imposes a geopotential anomaly at the tropopause. Solutions to the linearized quasi-geostrophic potential vorticity equations are then used to show that the vertical length scale of a tropopause geopotential anomaly is initially shallow, but significantly increased by diabatic heating from radiative relaxation. This process is a quasi-balanced response of the stratosphere to tropospheric forcing. A previously developed, coupled troposphere-stratosphere model is then introduced and modified. Solutions under steady, zonally-symmetric SST forcing in the linear β-plane model show that the upwards stratospheric penetration of the corresponding tropopause geopotential anomaly is controlled by two non-dimensional parameters, (1) a dynamical aspect ratio, and (2) a ratio between tropospheric and stratospheric drag. The meridional scale of the SST anomaly, radiative relaxation rate, and wave-drag all significantly modulate these non-dimensional parameters. Under Earth-like estimates of the non-dimensional parameters, the theoretical model predicts stratospheric temperature anomalies 2-3 larger in magnitude than that in the boundary layer, approximately in line with observational data. Using reanalysis data, the spatial variability of temperature anomalies in the troposphere is shown to have remarkable coherence with that of the lower-stratosphere, which further supports the existence of a quasi-balanced response of the stratosphere to SST forcing. These findings suggest that besides mechanical and radiative forcing, there is a third way the stratosphere can be forced – through the tropopause via tropospheric thermal forcing.
{"title":"Tropospheric thermal forcing of the stratosphere through quasi-balanced dynamics","authors":"Jonathan Lin, Kerry Emanuel","doi":"10.1175/jas-d-23-0081.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0081.1","url":null,"abstract":"\u0000 The steady response of the stratosphere to tropospheric thermal forcing via an SST perturbation is considered in two separate theoretical models. It is first shown that an SST anomaly imposes a geopotential anomaly at the tropopause. Solutions to the linearized quasi-geostrophic potential vorticity equations are then used to show that the vertical length scale of a tropopause geopotential anomaly is initially shallow, but significantly increased by diabatic heating from radiative relaxation. This process is a quasi-balanced response of the stratosphere to tropospheric forcing. A previously developed, coupled troposphere-stratosphere model is then introduced and modified. Solutions under steady, zonally-symmetric SST forcing in the linear β-plane model show that the upwards stratospheric penetration of the corresponding tropopause geopotential anomaly is controlled by two non-dimensional parameters, (1) a dynamical aspect ratio, and (2) a ratio between tropospheric and stratospheric drag. The meridional scale of the SST anomaly, radiative relaxation rate, and wave-drag all significantly modulate these non-dimensional parameters. Under Earth-like estimates of the non-dimensional parameters, the theoretical model predicts stratospheric temperature anomalies 2-3 larger in magnitude than that in the boundary layer, approximately in line with observational data. Using reanalysis data, the spatial variability of temperature anomalies in the troposphere is shown to have remarkable coherence with that of the lower-stratosphere, which further supports the existence of a quasi-balanced response of the stratosphere to SST forcing. These findings suggest that besides mechanical and radiative forcing, there is a third way the stratosphere can be forced – through the tropopause via tropospheric thermal forcing.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139446941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A simulation of a supercell storm produced for a prior study on tornado predictability is reanalyzed for the purpose of examining the finescale details of tornadogenesis. It is found that the formation of a tornado-like vortex in the simulation differs from how such vortices have been understood to form in previous numerical simulations. The main difference between the present simulation and past ones is the inclusion of a turbulent boundary layer in the storm’s environment in the present case, whereas prior simulations have used a laminar boundary layer. The turbulent environment contains significant near-surface vertical vorticity (ζ > 0.03 s−1 at z = 7.5 m), organized in the form of longitudinal streaks aligned with the southerly ground-relative winds. The ζ streaks are associated with corrugations in the vertical plane in the predominantly horizontal, westward-pointing environmental vortex lines; the vortex-line corrugations are produced by the vertical drafts associated with coherent turbulent structures aligned with the aforementioned southerly ground-relative winds (longitudinal coherent structures in the surface layer such as these are well-known to the boundary layer and turbulence communities). The ζ streaks serve as focal points for tornadogenesis, and may actually facilitate tornadogenesis, given how near-surface ζ in the environment can rapidly amplify when subjected to the strong, persistent convergence beneath a supercell updraft.
{"title":"A new pathway for tornadogenesis exposed by numerical simulations of supercells in turbulent environments","authors":"P. Markowski","doi":"10.1175/jas-d-23-0161.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0161.1","url":null,"abstract":"\u0000A simulation of a supercell storm produced for a prior study on tornado predictability is reanalyzed for the purpose of examining the finescale details of tornadogenesis. It is found that the formation of a tornado-like vortex in the simulation differs from how such vortices have been understood to form in previous numerical simulations. The main difference between the present simulation and past ones is the inclusion of a turbulent boundary layer in the storm’s environment in the present case, whereas prior simulations have used a laminar boundary layer. The turbulent environment contains significant near-surface vertical vorticity (ζ > 0.03 s−1 at z = 7.5 m), organized in the form of longitudinal streaks aligned with the southerly ground-relative winds. The ζ streaks are associated with corrugations in the vertical plane in the predominantly horizontal, westward-pointing environmental vortex lines; the vortex-line corrugations are produced by the vertical drafts associated with coherent turbulent structures aligned with the aforementioned southerly ground-relative winds (longitudinal coherent structures in the surface layer such as these are well-known to the boundary layer and turbulence communities). The ζ streaks serve as focal points for tornadogenesis, and may actually facilitate tornadogenesis, given how near-surface ζ in the environment can rapidly amplify when subjected to the strong, persistent convergence beneath a supercell updraft.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}