Amidst the global endeavor toward sustainable energy sources, photocatalysis appears as a promising gateway toward the production of solar fuels, in particular hydrogen. Hydrogen is currently a crucial reagent for vital industries such as petrol desulfurization, iron reduction and ammonia production, so the decarbonization of its production is a major challenge. CuMnO2 (CMO), a p-type semiconductor, has been shown to enhance the efficiency of catalysts such as TiO2 for the photoelectrocatalytic water splitting reaction. However, since pure CMO thin films have never been reported, its potential and limitations remain elusive. We used spray pyrolysis as a low-cost synthesis technique to simplify and accelerate the synthesis of CMO thin films directly on FTO substrates. CMO prepared in this manner exhibits activity toward photoeletrocatalytic water splitting and O2 reduction. The activity has been found to be highly dependent on synthesis conditions, especially on the ratio and volume of precursors.
{"title":"Spray-pyrolysis synthesis of CuMnO2 with the potential for photoelectrocatalysis","authors":"Benjamin Martinez, Chun-Hong Kuo, Ming-Hsi Chiang","doi":"10.1002/jccs.202400193","DOIUrl":"10.1002/jccs.202400193","url":null,"abstract":"<p>Amidst the global endeavor toward sustainable energy sources, photocatalysis appears as a promising gateway toward the production of solar fuels, in particular hydrogen. Hydrogen is currently a crucial reagent for vital industries such as petrol desulfurization, iron reduction and ammonia production, so the decarbonization of its production is a major challenge. CuMnO<sub>2</sub> (CMO), a p-type semiconductor, has been shown to enhance the efficiency of catalysts such as TiO<sub>2</sub> for the photoelectrocatalytic water splitting reaction. However, since pure CMO thin films have never been reported, its potential and limitations remain elusive. We used spray pyrolysis as a low-cost synthesis technique to simplify and accelerate the synthesis of CMO thin films directly on FTO substrates. CMO prepared in this manner exhibits activity toward photoeletrocatalytic water splitting and O<sub>2</sub> reduction. The activity has been found to be highly dependent on synthesis conditions, especially on the ratio and volume of precursors.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 10","pages":"1203-1210"},"PeriodicalIF":1.6,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bioactive peptides have been emerging as drug candidates with increasing importance in the last few decades. In this study, to evaluate the anticancer and antiviral properties of EER (Glu-Glu-Arg), EPR (Glu-Pro-Arg), and PRP (Pro-Arg-Pro) tripeptides, firstly their conformation preferences were searched, and the most stable optimized structure of each tripeptide was determined, using the molecular mechanics force field (MMFF) method and the Spartan06 program. Afterwards, each tripeptide was docked to SARS-CoV-2 spike protein receptor-binding domain (6M0J), SARS-CoV-2 main protease (6M03, 6LU7), spike glycoprotein (6VXX), DNA (1BNA), integrins (4WK0, 3ZDX, 1JV2) and epidermal growth factor receptor tyrosine kinase (4HJO). Moreover, molecular dynamics (MD) simulations were performed to validate the stability of the EER, EPR and PRP tripeptides docked to SARS-CoV-2 main protease, MPro (6M03) and epidermal growth factor receptor tyrosine kinase (4HJO) within 100 ns time scale and ligand-receptor interactions were evaluated. The metrics root-mean-square deviation, root-mean-square fluctuation, intermolecular hydrogen bonding, and radius of gyration revealed that the EER, EPR, and PRP tripeptides form energetically stable complexes with the target proteins. The binding free energies were calculated by the combination of Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods (MM/PB(GB)SA). Principal Component Analysis on MD data was performed to evaluate the energy and structural information of the tripeptide-protein complexes. Additionally, in-silico structure-based pharmacological predictions were made and the anticancer and antibacterial activities of the tripeptides were predicted.
{"title":"Molecular docking and molecular dynamics studies of Glu-Glu-Arg, Glu-Pro-Arg, and Pro-Arg-Pro tripeptides to reveal their anticancer and antiviral potentials","authors":"Gozde Yilmaz, Sefa Celik, Aysen Erbolukbas Ozel, Sevim Akyuz","doi":"10.1002/jccs.202400023","DOIUrl":"10.1002/jccs.202400023","url":null,"abstract":"<p>Bioactive peptides have been emerging as drug candidates with increasing importance in the last few decades. In this study, to evaluate the anticancer and antiviral properties of EER (Glu-Glu-Arg), EPR (Glu-Pro-Arg), and PRP (Pro-Arg-Pro) tripeptides, firstly their conformation preferences were searched, and the most stable optimized structure of each tripeptide was determined, using the molecular mechanics force field (MMFF) method and the Spartan06 program. Afterwards, each tripeptide was docked to SARS-CoV-2 spike protein receptor-binding domain (6M0J), SARS-CoV-2 main protease (6M03, 6LU7), spike glycoprotein (6VXX), DNA (1BNA), integrins (4WK0, 3ZDX, 1JV2) and epidermal growth factor receptor tyrosine kinase (4HJO). Moreover, molecular dynamics (MD) simulations were performed to validate the stability of the EER, EPR and PRP tripeptides docked to SARS-CoV-2 main protease, M<sup>Pro</sup> (6M03) and epidermal growth factor receptor tyrosine kinase (4HJO) within 100 ns time scale and ligand-receptor interactions were evaluated. The metrics root-mean-square deviation, root-mean-square fluctuation, intermolecular hydrogen bonding, and radius of gyration revealed that the EER, EPR, and PRP tripeptides form energetically stable complexes with the target proteins. The binding free energies were calculated by the combination of Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods (MM/PB(GB)SA). Principal Component Analysis on MD data was performed to evaluate the energy and structural information of the tripeptide-protein complexes. Additionally, in-silico structure-based pharmacological predictions were made and the anticancer and antibacterial activities of the tripeptides were predicted.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 9","pages":"1021-1035"},"PeriodicalIF":1.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hg2+ is one of the most toxic heavy metals, posing a serious threat to the human body and the environmental ecosystem. In order to detect Hg2+ rapidly, accurately, and sensitively, a kind of boron, nitrogen, and sulfur co-doped carbon dots (B,N,S-CDs) were synthesized by a simple, economical, and direct hydrothermal method. The average size of the prepared B,N,S-CDs is 2.7 ± 0.7 nm, and the high photoluminescence quantum yield is 67.6%. Furthermore, due to the efficient quenching effect of Hg2+, such B,N,S-CDs are considered to serve as an efficient fluorescence sensing platform for label-free and sensitive detection of Hg2+ with a detection limit of 72 nM. The selectivity experiments reveal that the B,N,S-CDs are selective and specific for Hg2+ even in the presence of other interfering substances. Most importantly, the Hg2+ sensing platform based on B,N,S-CDs can be successfully applied to the determination of Hg2+ in tap water and real lake water samples. This stable and inexpensive carbon material exhibits excellent sensitivity and selectivity, potentially suitable for Hg2+ monitoring in environmental applications.
{"title":"Boron, nitrogen, and sulfur co-doped carbon dots as a fluorescence probe for label-free analysis of Hg2+","authors":"Yu Ding, Yanyan Chen, Chaozhan Wang","doi":"10.1002/jccs.202400089","DOIUrl":"10.1002/jccs.202400089","url":null,"abstract":"<p>Hg<sup>2+</sup> is one of the most toxic heavy metals, posing a serious threat to the human body and the environmental ecosystem. In order to detect Hg<sup>2+</sup> rapidly, accurately, and sensitively, a kind of boron, nitrogen, and sulfur co-doped carbon dots (B,N,S-CDs) were synthesized by a simple, economical, and direct hydrothermal method. The average size of the prepared B,N,S-CDs is 2.7 ± 0.7 nm, and the high photoluminescence quantum yield is 67.6%. Furthermore, due to the efficient quenching effect of Hg<sup>2+</sup>, such B,N,S-CDs are considered to serve as an efficient fluorescence sensing platform for label-free and sensitive detection of Hg<sup>2+</sup> with a detection limit of 72 nM. The selectivity experiments reveal that the B,N,S-CDs are selective and specific for Hg<sup>2+</sup> even in the presence of other interfering substances. Most importantly, the Hg<sup>2+</sup> sensing platform based on B,N,S-CDs can be successfully applied to the determination of Hg<sup>2+</sup> in tap water and real lake water samples. This stable and inexpensive carbon material exhibits excellent sensitivity and selectivity, potentially suitable for Hg<sup>2+</sup> monitoring in environmental applications.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 9","pages":"1092-1102"},"PeriodicalIF":1.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motivated by the captivating allure of exquisitely regulated characteristics exhibited by 2-(2-hydroxyphenyl)-benzoxazole and its derivatives in the domains of photochemistry and photophysics, our current endeavor primarily focuses on delving into the intricacies of photo-induced excited state reactions for derivatives of 2,5-bis(benzoxazol-2-yl)-thiophene-3,4-diol (BTD). Given the profound impact of chalcogen element doping, our primary focus lies in investigating the excited state behaviors of BTD-O, BTD-S, and BTD-Se fluorophores. Through simulations encompassing variations in geometry and vertical excitation charge reorganization, we unveil atomic-electronegativity-dependent hydrogen bonding interactions and photoexcitation-induced charge recombination that can significantly augment the intramolecular double proton transfer (ESDPT) reaction in the excited state for BTD-O, BTD-S, and BTD-Se fluorophores. By constructing potential energy surfaces and identifying transition state forms, we elucidate the ultrafast stepwise ESDPT mechanism facilitated by the low potential barriers. Moreover, we rigorously validate the chalcogen atomic electronegativity-driven regulation of the stepwise ESDPT mechanism. We sincerely anticipate that manipulating solvent polarity will pave the way for groundbreaking advancements in luminescent materials.
{"title":"Effects of substituted chalcogen atoms on excited state proton transfer reaction for 2,5-bis(benzoxazole-2-yl)-thiophene-3,4-diol derivatives: A theoretical study","authors":"Jiahe Chen, Jinfeng Zhao","doi":"10.1002/jccs.202400174","DOIUrl":"10.1002/jccs.202400174","url":null,"abstract":"<p>Motivated by the captivating allure of exquisitely regulated characteristics exhibited by 2-(2-hydroxyphenyl)-benzoxazole and its derivatives in the domains of photochemistry and photophysics, our current endeavor primarily focuses on delving into the intricacies of photo-induced excited state reactions for derivatives of 2,5-bis(benzoxazol-2-yl)-thiophene-3,4-diol (BTD). Given the profound impact of chalcogen element doping, our primary focus lies in investigating the excited state behaviors of BTD-O, BTD-S, and BTD-Se fluorophores. Through simulations encompassing variations in geometry and vertical excitation charge reorganization, we unveil atomic-electronegativity-dependent hydrogen bonding interactions and photoexcitation-induced charge recombination that can significantly augment the intramolecular double proton transfer (ESDPT) reaction in the excited state for BTD-O, BTD-S, and BTD-Se fluorophores. By constructing potential energy surfaces and identifying transition state forms, we elucidate the ultrafast stepwise ESDPT mechanism facilitated by the low potential barriers. Moreover, we rigorously validate the chalcogen atomic electronegativity-driven regulation of the stepwise ESDPT mechanism. We sincerely anticipate that manipulating solvent polarity will pave the way for groundbreaking advancements in luminescent materials.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 9","pages":"1062-1070"},"PeriodicalIF":1.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}