Hypothesis: Biological response modifiers (immunotherapy) in combination to chemotherapy are superior to that of chemotherapy in treatment of breast cancer (triple-negative/HER-2 ( +)), multiple myeloma, and non-small-cell lung cancer.
Methods: This review article consists of a total of eighteen independent randomized controlled clinical trials ranging from phases one to three. Patients were randomly selected for immunomodulatory treatment or chemotherapy and assessed for a specific mutation expression that the immunomodulatory agent targets. Kaplan-Meier plots, swimmer plots, and bar graphs depict overall/progression-free survival, objective response, and clinical response rates. The data collected was assessed by using 95% confidence interval and a p value of 0.05. Patients were treated until disease progression.
Results: Biological response modifiers (immunotherapy) resulted in significantly longer median progression-free survival in PD-L1-positive breast cancer (7.5 months compared to 5.0 months in control group), multiple myeloma (60.7% compared to 26.9% in the daratumumab and placebo groups, respectively), and in non-small-cell lung cancer (median progression-free survival was 10.3 months in the pembrolizumab group compared to 6.0 months in the chemotherapy group): higher complete responses in multiple myeloma (79% and 66% in the elotuzumab and control groups, respectively) and lower disease progression in PD-L1-positive non-small-cell lung cancer (62.1% of pembrolizumab versus 50.3% of chemotherapy patients had no disease progression at 6 months).
Conclusion: Combination biological response modifiers (immunotherapy) and chemotherapy displayed benefit in overall/progression-free survival, response rate, duration of response, clinical benefit, and invasive disease-free survival in triple-negative/HER2-2( +) breast cancer, multiple myeloma, and non-small-cell lung cancer.