Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.4.291
Seong-Eun Lee, Ji Su Park, W. Oh, L. Hyung
The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.
{"title":"Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module","authors":"Seong-Eun Lee, Ji Su Park, W. Oh, L. Hyung","doi":"10.4313/JKEM.2020.33.4.291","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.4.291","url":null,"abstract":"The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78852410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.1.56
Seongho Jeon, I. Choi, Taeyong Kim, Youn-jung Lee, Ja-Bin Koo, Ju-Am Son, J. Yi
Porcelain insulators are typically exposed to surface discharge and lightning impulse in service. This study investigates the insulation characteristics of the external and internal discharges of a porcelain insulator with respect to its flashover for a 154 kV transmission line. The experiments are also conducted using a wet flashover test and an impulse test based on the external discharge and the internal penetration, to classify the flashover voltage-time curve of the porcelain insulator. When an impulse with a strength of 2,500 kV/μs was applied three times to 6.5 mm ceramic samples, electrical penetration of approximately 70% occurred. The impulse experiment confirmed that the electrical penetration inside the porcelain insulator coincided with the area where the electric field was concentrated. The wet flashover voltage test revealed that the flashover threshold voltage increases by approximately 7% after cleaning of the surface.
{"title":"Electrical Characteristic of a Suspended Porcelain Insulator with a 154 kV Transmission Line","authors":"Seongho Jeon, I. Choi, Taeyong Kim, Youn-jung Lee, Ja-Bin Koo, Ju-Am Son, J. Yi","doi":"10.4313/JKEM.2020.33.1.56","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.1.56","url":null,"abstract":"Porcelain insulators are typically exposed to surface discharge and lightning impulse in service. This study investigates the insulation characteristics of the external and internal discharges of a porcelain insulator with respect to its flashover for a 154 kV transmission line. The experiments are also conducted using a wet flashover test and an impulse test based on the external discharge and the internal penetration, to classify the flashover voltage-time curve of the porcelain insulator. When an impulse with a strength of 2,500 kV/μs was applied three times to 6.5 mm ceramic samples, electrical penetration of approximately 70% occurred. The impulse experiment confirmed that the electrical penetration inside the porcelain insulator coincided with the area where the electric field was concentrated. The wet flashover voltage test revealed that the flashover threshold voltage increases by approximately 7% after cleaning of the surface.","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77111232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.3.225
Y. Noh, Seung-Hyun Kim, Jong-Hun Cheong, Han-Goo Cho
{"title":"Methodology for Optimizing Permittivity Distribution of 145 kV Miniaturized Functional Graded Spacer Using Non-Dominated Sorting Genetic Algorithm-II","authors":"Y. Noh, Seung-Hyun Kim, Jong-Hun Cheong, Han-Goo Cho","doi":"10.4313/JKEM.2020.33.3.225","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.3.225","url":null,"abstract":"","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75448457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.6.515
C. Nou, Kim Byeong Geun, S. Bae, Soon-Mok Choi
{"title":"Process Parameter Control of Arc Melting Process for Ti 3 SiC 2 MAX Phase Synthesis","authors":"C. Nou, Kim Byeong Geun, S. Bae, Soon-Mok Choi","doi":"10.4313/JKEM.2020.33.6.515","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.6.515","url":null,"abstract":"","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74262842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.4.276
M. Park, Jong Man Park, C. Song
{"title":"Study on the Piezoelectric Bender Actuator for Small Walking Robots","authors":"M. Park, Jong Man Park, C. Song","doi":"10.4313/JKEM.2020.33.4.276","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.4.276","url":null,"abstract":"","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73262450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.6.500
Gyu-Che Choi, W. Oh
{"title":"Thermal Characteristics of Heating Films Including Conductive Graphite","authors":"Gyu-Che Choi, W. Oh","doi":"10.4313/JKEM.2020.33.6.500","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.6.500","url":null,"abstract":"","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84545184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.4.297
Taehyeon Kim, Seung‐Chul Lee, W. Park
{"title":"Optimal Design of Coverglass Pattern in Building-Integrated Photovoltaic for Improved Yearly Electrical Energy","authors":"Taehyeon Kim, Seung‐Chul Lee, W. Park","doi":"10.4313/JKEM.2020.33.4.297","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.4.297","url":null,"abstract":"","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89655454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.3.186
K-H Nam, Kim,Chung-Hyeok, W. Choi
{"title":"A Research on the Improvement of Visibility Using Low Deck Lighting in Bad Weather","authors":"K-H Nam, Kim,Chung-Hyeok, W. Choi","doi":"10.4313/JKEM.2020.33.3.186","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.3.186","url":null,"abstract":"","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74464959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.2.147
Sang-heon Lee
{"title":"Magnetic Properties of YBCO Superconductor Bulk Materials","authors":"Sang-heon Lee","doi":"10.4313/JKEM.2020.33.2.147","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.2.147","url":null,"abstract":"","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74739729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.4313/JKEM.2020.33.5.400
J. Han, Jungheum Yun, Soo Yeon Seong, G. Jeon, D. Park
In this paper, we study the correlation between the crystallinity of semiconductive compounds for eco-friendly power cables and the dispersive properties of carbon black. The crystal structure of the polymer material is advantageous for mechanical properties and heat-resistance. However, the polymer acts as an inhibitor to the dispersibility of carbon black. The purpose of this study is to develop a TPE semiconductive compound technology. The high heat resistance and ultra-smoothness characteristics which are required for high voltage and ultra-high voltage cables should be satisfied by designing and optimizing the structure of a non-crosslinking-type eco-friendly TPE semiconductive compound. The application of excess TPE resin was found to not only inhibit the processability in the compounding process, but also reduced the dispersion properties of carbon black due to higher crystallinity. After the crystallinity of the compound was identified through DSC analysis, it was compared with the related dispersion characteristics. Through this analysis and comparison, we designed the optimal structure of the eco-friendly TPE semiconductive compound.
{"title":"A Study on the Correlation Between Crystallinity and Dispersion Characteristics of Eco-Friendly Semiconductive for Power Cable","authors":"J. Han, Jungheum Yun, Soo Yeon Seong, G. Jeon, D. Park","doi":"10.4313/JKEM.2020.33.5.400","DOIUrl":"https://doi.org/10.4313/JKEM.2020.33.5.400","url":null,"abstract":"In this paper, we study the correlation between the crystallinity of semiconductive compounds for eco-friendly power cables and the dispersive properties of carbon black. The crystal structure of the polymer material is advantageous for mechanical properties and heat-resistance. However, the polymer acts as an inhibitor to the dispersibility of carbon black. The purpose of this study is to develop a TPE semiconductive compound technology. The high heat resistance and ultra-smoothness characteristics which are required for high voltage and ultra-high voltage cables should be satisfied by designing and optimizing the structure of a non-crosslinking-type eco-friendly TPE semiconductive compound. The application of excess TPE resin was found to not only inhibit the processability in the compounding process, but also reduced the dispersion properties of carbon black due to higher crystallinity. After the crystallinity of the compound was identified through DSC analysis, it was compared with the related dispersion characteristics. Through this analysis and comparison, we designed the optimal structure of the eco-friendly TPE semiconductive compound.","PeriodicalId":17325,"journal":{"name":"Journal of The Korean Institute of Electrical and Electronic Material Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79427125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}