Pub Date : 2024-03-20eCollection Date: 2024-01-01DOI: 10.1177/20417314241235527
Alla B Salmina, Olga P Alexandrova, Anton S Averchuk, Sofia A Korsakova, Mikis R Saridis, Sergey N Illarioshkin, Stanislav O Yurchenko
In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.
{"title":"Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro?","authors":"Alla B Salmina, Olga P Alexandrova, Anton S Averchuk, Sofia A Korsakova, Mikis R Saridis, Sergey N Illarioshkin, Stanislav O Yurchenko","doi":"10.1177/20417314241235527","DOIUrl":"10.1177/20417314241235527","url":null,"abstract":"<p><p>In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241235527"},"PeriodicalIF":6.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13eCollection Date: 2024-01-01DOI: 10.1177/20417314241237052
Shuang-Yin Lei, Yu-Qian Yang, Jia-Cheng Liu, Dian-Hui Zhang, Yang Qu, Ying-Ying Sun, Hong-Jing Zhu, Sheng-Yu Zhou, Yi Yang, Zhen-Ni Guo
The incidence of ischemic stroke (IS) is rising in tandem with the global aging population. There is an urgent need to delve deeper into the pathological mechanisms and develop new neuroprotective strategies. In the present review, we discuss the latest advancements and research on various nanodrug delivery systems (NDDSs) for targeting microglial polarization in IS treatment. Furthermore, we critically discuss the different strategies. NDDSs have demonstrated exceptional qualities to effectively permeate the blood-brain barrier, aggregate at the site of ischemic injury, and target specific cell types within the brain when appropriately modified. Consequently, NDDSs have considerable potential for reshaping the polarization phenotype of microglia and could be a prospective therapeutic strategy for IS. The treatment of IS remains a challenge. However, this review provides a new perspective on neuro-nanomedicine for IS therapies centered on microglial polarization, thereby inspiring new research ideas and directions.
随着全球人口老龄化的加剧,缺血性脑卒中(IS)的发病率也在不断上升。目前迫切需要深入研究其病理机制并开发新的神经保护策略。在本综述中,我们讨论了各种纳米给药系统(NDDSs)在针对小胶质细胞极化治疗 IS 方面的最新进展和研究。此外,我们还对不同的策略进行了批判性讨论。NDDSs 已显示出卓越的品质,能有效渗透血脑屏障,在缺血损伤部位聚集,并在适当修饰后靶向脑内特定细胞类型。因此,NDDSs 在重塑小胶质细胞的极化表型方面具有相当大的潜力,可作为治疗 IS 的一种前瞻性策略。治疗 IS 仍是一项挑战。然而,本综述为以小胶质细胞极化为中心的 IS 治疗提供了神经纳米医学的新视角,从而启发了新的研究思路和方向。
{"title":"Nanodrug delivery systems for regulating microglial polarization in ischemic stroke treatment: A review.","authors":"Shuang-Yin Lei, Yu-Qian Yang, Jia-Cheng Liu, Dian-Hui Zhang, Yang Qu, Ying-Ying Sun, Hong-Jing Zhu, Sheng-Yu Zhou, Yi Yang, Zhen-Ni Guo","doi":"10.1177/20417314241237052","DOIUrl":"10.1177/20417314241237052","url":null,"abstract":"<p><p>The incidence of ischemic stroke (IS) is rising in tandem with the global aging population. There is an urgent need to delve deeper into the pathological mechanisms and develop new neuroprotective strategies. In the present review, we discuss the latest advancements and research on various nanodrug delivery systems (NDDSs) for targeting microglial polarization in IS treatment. Furthermore, we critically discuss the different strategies. NDDSs have demonstrated exceptional qualities to effectively permeate the blood-brain barrier, aggregate at the site of ischemic injury, and target specific cell types within the brain when appropriately modified. Consequently, NDDSs have considerable potential for reshaping the polarization phenotype of microglia and could be a prospective therapeutic strategy for IS. The treatment of IS remains a challenge. However, this review provides a new perspective on neuro-nanomedicine for IS therapies centered on microglial polarization, thereby inspiring new research ideas and directions.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241237052"},"PeriodicalIF":8.2,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1177/20417314241228949
Christina Fey, Theresa Truschel, Kristina Nehlsen, Spyridon Damigos, Julia Horstmann, Theresia Stradal, Tobias May, Marco Metzger, Daniela Zdzieblo
Two-dimensional culture remains widely employed to determine the bioavailability of orally delivered drugs. To gain more knowledge about drug uptake mechanisms and risk assessment for the patient after oral drug admission, intestinal in vitro models demonstrating a closer similarity to the in vivo situation are needed. In particular, Caco-2 cell-based Transwell® models show advantages as they are reproducible, cost-efficient, and standardized. However, cellular complexity is impaired and cell function is strongly modified as important transporters in the apical membrane are missing. To overcome these limitations, primary organoid-based human small intestinal tissue models were developed recently but the application of these cultures in pre-clinical research still represents an enormous challenge, as culture setup is complex as well as time- and cost-intensive. To overcome these hurdles, we demonstrate the establishment of primary organoid-derived intestinal cell lines by immortalization. Besides exhibiting cellular diversity of the organoid, these immortalized cell lines enable a standardized and more cost-efficient culture. Further, our cell line-based Transwell®-like models display an organ-specific epithelial barrier integrity, ultrastructural features and representative transport functions. Altogether, our novel model systems are cost-efficient with close similarity to the in vivo situation, therefore favoring their use in bioavailability studies in the context of pre-clinical screenings.
{"title":"Enhancing pre-clinical research with simplified intestinal cell line models","authors":"Christina Fey, Theresa Truschel, Kristina Nehlsen, Spyridon Damigos, Julia Horstmann, Theresia Stradal, Tobias May, Marco Metzger, Daniela Zdzieblo","doi":"10.1177/20417314241228949","DOIUrl":"https://doi.org/10.1177/20417314241228949","url":null,"abstract":"Two-dimensional culture remains widely employed to determine the bioavailability of orally delivered drugs. To gain more knowledge about drug uptake mechanisms and risk assessment for the patient after oral drug admission, intestinal in vitro models demonstrating a closer similarity to the in vivo situation are needed. In particular, Caco-2 cell-based Transwell® models show advantages as they are reproducible, cost-efficient, and standardized. However, cellular complexity is impaired and cell function is strongly modified as important transporters in the apical membrane are missing. To overcome these limitations, primary organoid-based human small intestinal tissue models were developed recently but the application of these cultures in pre-clinical research still represents an enormous challenge, as culture setup is complex as well as time- and cost-intensive. To overcome these hurdles, we demonstrate the establishment of primary organoid-derived intestinal cell lines by immortalization. Besides exhibiting cellular diversity of the organoid, these immortalized cell lines enable a standardized and more cost-efficient culture. Further, our cell line-based Transwell®-like models display an organ-specific epithelial barrier integrity, ultrastructural features and representative transport functions. Altogether, our novel model systems are cost-efficient with close similarity to the in vivo situation, therefore favoring their use in bioavailability studies in the context of pre-clinical screenings.","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"32 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1177/20417314241232502
Hyebin Joo, Sungjin Min, Seung-Woo Cho
Amidst the recent coronavirus disease 2019 (COVID-19) pandemic, respiratory system research has made remarkable progress, particularly focusing on infectious diseases. Lung organoid, a miniaturized structure recapitulating lung tissue, has gained global attention because of its advantages over other conventional models such as two-dimensional (2D) cell models and animal models. Nevertheless, lung organoids still face limitations concerning heterogeneity, complexity, and maturity compared to the native lung tissue. To address these limitations, researchers have employed co-culture methods with various cell types including endothelial cells, mesenchymal cells, and immune cells, and incorporated bioengineering platforms such as air-liquid interfaces, microfluidic chips, and functional hydrogels. These advancements have facilitated applications of lung organoids to studies of pulmonary diseases, providing insights into disease mechanisms and potential treatments. This review introduces recent progress in the production methods of lung organoids, strategies for improving maturity, functionality, and complexity of organoids, and their application in disease modeling, including respiratory infection and pulmonary fibrosis.
{"title":"Advanced lung organoids for respiratory system and pulmonary disease modeling","authors":"Hyebin Joo, Sungjin Min, Seung-Woo Cho","doi":"10.1177/20417314241232502","DOIUrl":"https://doi.org/10.1177/20417314241232502","url":null,"abstract":"Amidst the recent coronavirus disease 2019 (COVID-19) pandemic, respiratory system research has made remarkable progress, particularly focusing on infectious diseases. Lung organoid, a miniaturized structure recapitulating lung tissue, has gained global attention because of its advantages over other conventional models such as two-dimensional (2D) cell models and animal models. Nevertheless, lung organoids still face limitations concerning heterogeneity, complexity, and maturity compared to the native lung tissue. To address these limitations, researchers have employed co-culture methods with various cell types including endothelial cells, mesenchymal cells, and immune cells, and incorporated bioengineering platforms such as air-liquid interfaces, microfluidic chips, and functional hydrogels. These advancements have facilitated applications of lung organoids to studies of pulmonary diseases, providing insights into disease mechanisms and potential treatments. This review introduces recent progress in the production methods of lung organoids, strategies for improving maturity, functionality, and complexity of organoids, and their application in disease modeling, including respiratory infection and pulmonary fibrosis.","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"30 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14eCollection Date: 2024-01-01DOI: 10.1177/20417314241230633
Joydeb Majumder, Elizabeth E Torr, Elizabeth A Aisenbrey, Connie S Lebakken, Peter F Favreau, William D Richards, Yanhong Yin, Qiang Chang, William L Murphy
The tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel. Further, our 3D human tissue assembly approach occurred in an open cell culture format and created a tissue that was sufficiently translucent to allow for continuous imaging. Planar neural organoids formed on PEG hydrogels also showed higher expression of neural, vascular, and neuroinflammatory genes when compared to traditional brain organoids grown in Matrigel suspensions. Further, planar neural organoids contained functional microglia that responded to pro-inflammatory stimuli, and were responsive to anti-inflammatory drugs. These results demonstrate that the PEG hydrogel neural organoids can be used as a physiologically relevant in vitro model of neuro-inflammation.
{"title":"Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels.","authors":"Joydeb Majumder, Elizabeth E Torr, Elizabeth A Aisenbrey, Connie S Lebakken, Peter F Favreau, William D Richards, Yanhong Yin, Qiang Chang, William L Murphy","doi":"10.1177/20417314241230633","DOIUrl":"10.1177/20417314241230633","url":null,"abstract":"<p><p>The tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel. Further, our 3D human tissue assembly approach occurred in an open cell culture format and created a tissue that was sufficiently translucent to allow for continuous imaging. Planar neural organoids formed on PEG hydrogels also showed higher expression of neural, vascular, and neuroinflammatory genes when compared to traditional brain organoids grown in Matrigel suspensions. Further, planar neural organoids contained functional microglia that responded to pro-inflammatory stimuli, and were responsive to anti-inflammatory drugs. These results demonstrate that the PEG hydrogel neural organoids can be used as a physiologically relevant <i>in vitro</i> model of neuro-inflammation.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241230633"},"PeriodicalIF":6.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14eCollection Date: 2024-01-01DOI: 10.1177/20417314241231452
Shijie Fan, Yadong Tan, Xiuchen Yuan, Chun Liu, Xiaoyu Wu, Ting Dai, Su Ni, Jiafeng Wang, Yiping Weng, Hongbin Zhao
Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid-glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid-glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres-which contain the drug PIO-are combined with ATP/PVA/GEL scaffolds.
骨生成是由多种因素造成的,在骨组织工程中必须考虑炎症反应、骨髓间充质干细胞(BMSCs)的成骨分化、血管再生等因素。要有效修复骨缺损,必须减少过度炎症反应,促进间充质干细胞向成骨细胞分化,并刺激血管生成。本文利用三维打印技术制作了纳米阿托品(ATP)、聚乙烯醇(PVA)和明胶(GEL)支架,并加入了含吡格列酮(PIO)的聚乳酸-乙醇酸(PLGA)纳米球。在体外和体内研究中,添加了 PIO 的聚乳酸-乙醇酸纳米球的材料支架可通过促进巨噬细胞从 M1 极化到 M2 来减轻炎症反应,并通过激活 BMP2/Smad/RUNX2 信号通路来促进 BMSCs 的成骨分化,从而修复骨缺损。此外,还能通过 PI3K/AKT/HIF1-/VEGF 通路促进人脐静脉内皮细胞(HUVEC)的血管化。使用含 PIO 的 PLGA 纳米球进行的体内研究显示,皮肤模型中存在大量胶原蛋白沉积。这些研究结果表明,当含有药物 PIO 的 PLGA 纳米球与 ATP/PVA/GEL 支架结合使用时,可为骨愈合提供有效的支架。
{"title":"Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration.","authors":"Shijie Fan, Yadong Tan, Xiuchen Yuan, Chun Liu, Xiaoyu Wu, Ting Dai, Su Ni, Jiafeng Wang, Yiping Weng, Hongbin Zhao","doi":"10.1177/20417314241231452","DOIUrl":"10.1177/20417314241231452","url":null,"abstract":"<p><p>Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid-glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid-glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres-which contain the drug PIO-are combined with ATP/PVA/GEL scaffolds.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241231452"},"PeriodicalIF":8.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09eCollection Date: 2024-01-01DOI: 10.1177/20417314241228118
Dolphee Khurana, Ankitha Suresh, Raghavendra Nayak, Manjunath Shetty, Rohit Kumar Sarda, Jonathan C Knowles, Hae-Won Kim, Rajendra K Singh, Bhisham Narayan Singh
The dura mater, as the crucial outermost protective layer of the meninges, plays a vital role in safeguarding the underlying brain tissue. Neurosurgeons face significant challenges in dealing with trauma or large defects in the dura mater, as they must address the potential complications, such as wound infections, pseudomeningocele formation, cerebrospinal fluid leakage, and cerebral herniation. Therefore, the development of dural substitutes for repairing or reconstructing the damaged dura mater holds clinical significance. In this review we highlight the progress in the development of dural substitutes, encompassing autologous, allogeneic, and xenogeneic replacements, as well as the polymeric-based dural substitutes fabricated through various scaffolding techniques. In particular, we explore the development of composite materials that exhibit improved physical and biological properties for advanced dural substitutes. Furthermore, we address the challenges and prospects associated with developing clinically relevant alternatives to the dura mater.
{"title":"Biosubstitutes for dural closure: Unveiling research, application, and future prospects of dura mater alternatives.","authors":"Dolphee Khurana, Ankitha Suresh, Raghavendra Nayak, Manjunath Shetty, Rohit Kumar Sarda, Jonathan C Knowles, Hae-Won Kim, Rajendra K Singh, Bhisham Narayan Singh","doi":"10.1177/20417314241228118","DOIUrl":"https://doi.org/10.1177/20417314241228118","url":null,"abstract":"<p><p>The dura mater, as the crucial outermost protective layer of the meninges, plays a vital role in safeguarding the underlying brain tissue. Neurosurgeons face significant challenges in dealing with trauma or large defects in the dura mater, as they must address the potential complications, such as wound infections, pseudomeningocele formation, cerebrospinal fluid leakage, and cerebral herniation. Therefore, the development of dural substitutes for repairing or reconstructing the damaged dura mater holds clinical significance. In this review we highlight the progress in the development of dural substitutes, encompassing autologous, allogeneic, and xenogeneic replacements, as well as the polymeric-based dural substitutes fabricated through various scaffolding techniques. In particular, we explore the development of composite materials that exhibit improved physical and biological properties for advanced dural substitutes. Furthermore, we address the challenges and prospects associated with developing clinically relevant alternatives to the dura mater.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314241228118"},"PeriodicalIF":8.2,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09eCollection Date: 2024-01-01DOI: 10.1177/20417314231226027
Rosa González-Sastre, Raquel Coronel, Adela Bernabeu-Zornoza, Patricia Mateos-Martínez, Andreea Rosca, Victoria López-Alonso, Isabel Liste
Human cerebral organoids (hCOs) offer the possibility of deepening the knowledge of human brain development, as well as the pathologies that affect it. The method developed here describes the efficient generation of hCOs by going directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures to three-dimensional (3D) neuroepithelial tissue, avoiding dissociation and aggregation steps. This has been achieved by subjecting 2D cultures, from the beginning of the neural induction step, to dual-SMAD inhibition in combination with CHIR99021. This is a simple and reproducible protocol in which the hCOs generated develop properly presenting proliferative ventricular zones (VZs) formed by neural precursor and radial glia (RG) that differentiate to give rise to mature neurons and glial cells. The hCOs present additional cell types such as oligodendrocyte precursors, astrocytes, microglia-like cells, and endothelial-like cells. This new approach could help to overcome some of the existing limitations in the field of organoid biotechnology, facilitating its execution in any laboratory setting.
{"title":"Efficient generation of human cerebral organoids directly from adherent cultures of pluripotent stem cells.","authors":"Rosa González-Sastre, Raquel Coronel, Adela Bernabeu-Zornoza, Patricia Mateos-Martínez, Andreea Rosca, Victoria López-Alonso, Isabel Liste","doi":"10.1177/20417314231226027","DOIUrl":"https://doi.org/10.1177/20417314231226027","url":null,"abstract":"<p><p>Human cerebral organoids (hCOs) offer the possibility of deepening the knowledge of human brain development, as well as the pathologies that affect it. The method developed here describes the efficient generation of hCOs by going directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures to three-dimensional (3D) neuroepithelial tissue, avoiding dissociation and aggregation steps. This has been achieved by subjecting 2D cultures, from the beginning of the neural induction step, to dual-SMAD inhibition in combination with CHIR99021. This is a simple and reproducible protocol in which the hCOs generated develop properly presenting proliferative ventricular zones (VZs) formed by neural precursor and radial glia (RG) that differentiate to give rise to mature neurons and glial cells. The hCOs present additional cell types such as oligodendrocyte precursors, astrocytes, microglia-like cells, and endothelial-like cells. This new approach could help to overcome some of the existing limitations in the field of organoid biotechnology, facilitating its execution in any laboratory setting.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314231226027"},"PeriodicalIF":8.2,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09eCollection Date: 2024-01-01DOI: 10.1177/20417314231203824
Rita C Assunção-Silva, Andreia Pinho, Jorge R Cibrão, Inês M Pereira, Susana Monteiro, Nuno A Silva, Jonas Campos, Ana L Rebelo, Gerhard Schlosser, Luisa Pinto, Abhay Pandit, António J Salgado
Mesenchymal stem cell-based therapies have been studied for spinal cord injury (SCI) treatment due to their paracrine action upon damaged tissues. MSCs neuroregenerative role may relate to the contents of their secretome in anti-inflammatory cytokines and growth-permissive factors. We propose using the secretome of MSCs isolated from the adipose tissue-adipose tissue-derived stem cells (ASCs) as a cell-free based therapy for SCI. In vivo studies were conducted in two SCI models, Xenopus laevis and mice, after complete spinal cord transection. Our results on both models demonstrated positive impacts of ASC secretome on their functional recovery which were correlated with histopathological markers of regeneration. Furthermore, in our mice study, secretome induced white matter preservation together with modulation of the local and peripheral inflammatory response. Altogether, these results demonstrate the neuroregenerative and potential for inflammatory modulation of ASC secretome suggesting it as a good candidate for cell-free therapeutic strategies for SCI.
{"title":"Adipose tissue derived stem cell secretome induces motor and histological gains after complete spinal cord injury in <i>Xenopus laevis</i> and mice.","authors":"Rita C Assunção-Silva, Andreia Pinho, Jorge R Cibrão, Inês M Pereira, Susana Monteiro, Nuno A Silva, Jonas Campos, Ana L Rebelo, Gerhard Schlosser, Luisa Pinto, Abhay Pandit, António J Salgado","doi":"10.1177/20417314231203824","DOIUrl":"https://doi.org/10.1177/20417314231203824","url":null,"abstract":"<p><p>Mesenchymal stem cell-based therapies have been studied for spinal cord injury (SCI) treatment due to their paracrine action upon damaged tissues. MSCs neuroregenerative role may relate to the contents of their secretome in anti-inflammatory cytokines and growth-permissive factors. We propose using the secretome of MSCs isolated from the adipose tissue-adipose tissue-derived stem cells (ASCs) as a cell-free based therapy for SCI. In vivo studies were conducted in two SCI models, <i>Xenopus laevis</i> and mice, after complete spinal cord transection. Our results on both models demonstrated positive impacts of ASC secretome on their functional recovery which were correlated with histopathological markers of regeneration. Furthermore, in our mice study, secretome induced white matter preservation together with modulation of the local and peripheral inflammatory response. Altogether, these results demonstrate the neuroregenerative and potential for inflammatory modulation of ASC secretome suggesting it as a good candidate for cell-free therapeutic strategies for SCI.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314231203824"},"PeriodicalIF":8.2,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07eCollection Date: 2024-01-01DOI: 10.1177/20417314231226105
So-Yeon Park, Joon Hyuk Jung, Da-Seul Kim, Jun-Kyu Lee, Byeong Gwan Song, Hae Eun Shin, Ji-Won Jung, Seung-Woon Baek, Seungkwon You, Inbo Han, Dong Keun Han
Neuropathic pain (NP) is a debilitating condition stemming from damage to the somatosensory system frequently caused by nerve injuries or lesions. While existing treatments are widely employed, they often lead to side effects and lack specificity. This study aimed to alleviate NP by developing an innovative sustained-release thermosensitive hydrogel system. The system incorporates hyaluronic acid (HA)/Pluronic F127 injectable hydrogel and bupivacaine (Bup, B) in combination with poly(lactic-co-glycolic acid; PLGA)/modified magnesium hydroxide (MH)/luteolin (Lut; PML) microspheres (PML@B/Gel). The PML@B/Gel was designed for localized and prolonged co-delivery of Bup and Lut as an anesthetic and anti-inflammatory agent, respectively. Our studies demonstrated that PML@B/Gel had exceptional biocompatibility, anti-inflammatory, and antioxidant properties. In addition, it exhibited efficient pain relief in in vitro cellular assays. Moreover, this functional hydrogel showed substantial sustained drug release while diminishing microglial activation. Consequently, it effectively mitigated mechanical allodynia and thermal hyperalgesia in in vivo rat models of chronic constriction injury (CCI). Based on our research findings, PML@B/Gel emerges as a promising therapeutic approach for the protracted treatment of NP.
{"title":"Therapeutic potential of luteolin-loaded poly(lactic-co-glycolic acid)/modified magnesium hydroxide microsphere in functional thermosensitive hydrogel for treating neuropathic pain.","authors":"So-Yeon Park, Joon Hyuk Jung, Da-Seul Kim, Jun-Kyu Lee, Byeong Gwan Song, Hae Eun Shin, Ji-Won Jung, Seung-Woon Baek, Seungkwon You, Inbo Han, Dong Keun Han","doi":"10.1177/20417314231226105","DOIUrl":"10.1177/20417314231226105","url":null,"abstract":"<p><p>Neuropathic pain (NP) is a debilitating condition stemming from damage to the somatosensory system frequently caused by nerve injuries or lesions. While existing treatments are widely employed, they often lead to side effects and lack specificity. This study aimed to alleviate NP by developing an innovative sustained-release thermosensitive hydrogel system. The system incorporates hyaluronic acid (HA)/Pluronic F127 injectable hydrogel and bupivacaine (Bup, B) in combination with poly(lactic-co-glycolic acid; PLGA)/modified magnesium hydroxide (MH)/luteolin (Lut; PML) microspheres (PML@B/Gel). The PML@B/Gel was designed for localized and prolonged co-delivery of Bup and Lut as an anesthetic and anti-inflammatory agent, respectively. Our studies demonstrated that PML@B/Gel had exceptional biocompatibility, anti-inflammatory, and antioxidant properties. In addition, it exhibited efficient pain relief in in vitro cellular assays. Moreover, this functional hydrogel showed substantial sustained drug release while diminishing microglial activation. Consequently, it effectively mitigated mechanical allodynia and thermal hyperalgesia in in vivo rat models of chronic constriction injury (CCI). Based on our research findings, PML@B/Gel emerges as a promising therapeutic approach for the protracted treatment of NP.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314231226105"},"PeriodicalIF":8.2,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}