首页 > 最新文献

Glia最新文献

英文 中文
Building Immunocompetent Cerebral Organoids From a Developmental Perspective 从发育角度构建具有免疫能力的脑类器官。
IF 5.1 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-07-23 DOI: 10.1002/glia.70062
Xabier Cuesta-Puente, Marco Gonzalez-Dominguez, Marta Pereira-Iglesias, Nerea Perez-Arriazu, Patricia Villegas-Zafra, Paula Ramos-Gonzalez, Fabio Cavaliere, Nora Bengoa-Vergniory, Amanda Sierra

Cerebral organoids derived from human induced pluripotent stem cells (iPSCs) are increasingly becoming essential tools to study the human brain, from understanding pathological mechanisms in neurodevelopmental, neurodegenerative, and infectious diseases to identifying genetic risks and biomarkers. To resemble the brain environment, cerebral organoids must contain microglia, the resident macrophages of the brain parenchyma that are essential for its homeostasis. As microglia derive from the yolk sac, they are not present in conventional brain organoids, which are generated by reprogramming iPSCs towards the neuroectodermal lineage and must be exogenously incorporated through a variety of strategies. Once in the organoid parenchyma, microglia must recapitulate their developmental milestones to achieve full immunocompetence, reaching a mature transcriptional profile and morphology, a tessellated distribution, efficient phagocytosis, and controlled inflammatory responses. In this review, we will summarize recent protocols that have been developed to generate human microglial-containing cerebral organoids (MCCOs), focusing on the methods used to assess the level of microglial maturation compared to their in vivo counterparts. We provide a series of recommendations to assess microglial immunocompetence using stringent quantitative approaches that will promote developing standardized protocols to culture MCCOs.

从了解神经发育、神经退行性和感染性疾病的病理机制到识别遗传风险和生物标志物,人类诱导多能干细胞(iPSCs)衍生的脑类器官正日益成为研究人脑的重要工具。为了与大脑环境相似,脑类器官必须含有小胶质细胞,小胶质细胞是维持大脑稳态所必需的脑实质巨噬细胞。由于小胶质细胞来源于卵黄囊,它们不存在于传统的脑类器官中,后者是通过将iPSCs重编程为神经外胚层谱系而产生的,必须通过各种策略外源性整合。一旦进入类器官实质,小胶质细胞必须重现其发育里程碑,以获得完全的免疫能力,达到成熟的转录谱和形态,镶嵌分布,有效的吞噬和控制炎症反应。在这篇综述中,我们将总结最近开发的用于产生含有人类小胶质细胞的脑类器官(MCCOs)的方案,重点是用于评估小胶质细胞成熟水平的方法,将其与体内同类产品进行比较。我们提供了一系列建议,通过严格的定量方法来评估小胶质细胞的免疫能力,这将促进开发培养mcco的标准化方案。
{"title":"Building Immunocompetent Cerebral Organoids From a Developmental Perspective","authors":"Xabier Cuesta-Puente,&nbsp;Marco Gonzalez-Dominguez,&nbsp;Marta Pereira-Iglesias,&nbsp;Nerea Perez-Arriazu,&nbsp;Patricia Villegas-Zafra,&nbsp;Paula Ramos-Gonzalez,&nbsp;Fabio Cavaliere,&nbsp;Nora Bengoa-Vergniory,&nbsp;Amanda Sierra","doi":"10.1002/glia.70062","DOIUrl":"10.1002/glia.70062","url":null,"abstract":"<p>Cerebral organoids derived from human induced pluripotent stem cells (iPSCs) are increasingly becoming essential tools to study the human brain, from understanding pathological mechanisms in neurodevelopmental, neurodegenerative, and infectious diseases to identifying genetic risks and biomarkers. To resemble the brain environment, cerebral organoids must contain microglia, the resident macrophages of the brain parenchyma that are essential for its homeostasis. As microglia derive from the yolk sac, they are not present in conventional brain organoids, which are generated by reprogramming iPSCs towards the neuroectodermal lineage and must be exogenously incorporated through a variety of strategies. Once in the organoid parenchyma, microglia must recapitulate their developmental milestones to achieve full immunocompetence, reaching a mature transcriptional profile and morphology, a tessellated distribution, efficient phagocytosis, and controlled inflammatory responses. In this review, we will summarize recent protocols that have been developed to generate human microglial-containing cerebral organoids (MCCOs), focusing on the methods used to assess the level of microglial maturation compared to their in vivo counterparts. We provide a series of recommendations to assess microglial immunocompetence using stringent quantitative approaches that will promote developing standardized protocols to culture MCCOs.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 11","pages":"2154-2166"},"PeriodicalIF":5.1,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144697154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoplasmic Reticulum Stress Amplifies Cytokine Responses in Astrocytes via a PERK/eIF2α/JAK1 Signaling Axis 内质网应激通过PERK/eIF2α/JAK1信号轴放大星形胶质细胞的细胞因子反应
IF 5.1 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-07-20 DOI: 10.1002/glia.70067
Anirudhya Lahiri, Savannah G. Sims, Jessica A. Herstine, Alicia Meyer, Micah J. Marshall, Ishrat Jahan, Subhodip Adhicary, Allison M. Bradbury, Gordon P. Meares

Aberrant activation of multiple cellular processes and signaling pathways is a hallmark of many neurological disorders. Understanding how these processes interact is crucial for elucidating the neuropathogenesis of these diseases. Among these, endoplasmic reticulum (ER) stress, activation of the unfolded protein response (UPR), and neuroinflammation are frequently implicated. Previously, we demonstrated that ER stress synergizes with tumor necrosis factor (TNF)-α to amplify interleukin (IL)-6 and C-C motif chemokine ligand (CCL)20 production in astrocytes through a Janus kinase 1 (JAK1)-dependent mechanism. Here, we expand on this finding by defining the scope and underlying mechanisms of this phenomenon. We show that ER stress and TNF-α cooperatively enhance inflammatory gene expression in astrocytes via a signaling axis that requires both protein kinase R (PKR)-like ER kinase (PERK) and JAK1. PERK-mediated phosphorylation of eukaryotic translation initiation factor (eIF)2α suppresses protein translation, delaying the expression of negative regulators such as NF-κB inhibitor (IκB)α and suppressor of cytokine signaling (SOCS)3 following TNF-α or oncostatin M (OSM) stimulation, respectively. Pharmacological reversal of p-eIF2α-dependent translational suppression using the small molecule integrated stress response inhibitor (ISRIB) restored IκBα and SOCS3 expression and attenuated the ER stress-induced enhancement of TNF-α- or OSM-driven inflammatory responses. Notably, astrocytes harboring a vanishing white matter-associated EIF2B5 mutation revealed that translational attenuation alone is insufficient to amplify cytokine-induced gene expression. Together, these findings identify a PERK/eIF2α/JAK1 signaling axis that sensitizes astrocytes to inflammatory cytokines, providing new mechanistic insights into the interactions between ER stress and neuroinflammation.

多种细胞过程和信号通路的异常激活是许多神经系统疾病的标志。了解这些过程如何相互作用对于阐明这些疾病的神经发病机制至关重要。其中,内质网(ER)应激,未折叠蛋白反应(UPR)的激活和神经炎症经常涉及。先前,我们证明内质网应激与肿瘤坏死因子(TNF)-α协同作用,通过Janus激酶1 (JAK1)依赖机制,增加星形胶质细胞中白细胞介素(IL)-6和C-C基序趋化因子配体(CCL)20的产生。在这里,我们通过定义这一现象的范围和潜在机制来扩展这一发现。我们发现内质网应激和TNF-α通过需要蛋白激酶R (PKR)样内质网激酶(PERK)和JAK1的信号轴共同增强星形胶质细胞中的炎症基因表达。perk介导的真核翻译起始因子(eIF)2α磷酸化抑制蛋白翻译,延缓TNF-α或肿瘤抑制素M (OSM)刺激后NF-κB抑制剂(i -κB)α和细胞因子信号传导抑制因子(SOCS)3等负调节因子的表达。使用小分子综合应激反应抑制剂(ISRIB)逆转p- eif2 α依赖的翻译抑制,恢复i - b α和SOCS3的表达,并减弱内质网应激诱导的TNF-α-或osm驱动的炎症反应的增强。值得注意的是,星形胶质细胞携带消失的白质相关的EIF2B5突变,表明仅翻译衰减不足以放大细胞因子诱导的基因表达。总之,这些发现确定了PERK/eIF2α/JAK1信号轴,使星形胶质细胞对炎症细胞因子敏感,为内质网应激和神经炎症之间的相互作用提供了新的机制见解。
{"title":"Endoplasmic Reticulum Stress Amplifies Cytokine Responses in Astrocytes via a PERK/eIF2α/JAK1 Signaling Axis","authors":"Anirudhya Lahiri,&nbsp;Savannah G. Sims,&nbsp;Jessica A. Herstine,&nbsp;Alicia Meyer,&nbsp;Micah J. Marshall,&nbsp;Ishrat Jahan,&nbsp;Subhodip Adhicary,&nbsp;Allison M. Bradbury,&nbsp;Gordon P. Meares","doi":"10.1002/glia.70067","DOIUrl":"10.1002/glia.70067","url":null,"abstract":"<p>Aberrant activation of multiple cellular processes and signaling pathways is a hallmark of many neurological disorders. Understanding how these processes interact is crucial for elucidating the neuropathogenesis of these diseases. Among these, endoplasmic reticulum (ER) stress, activation of the unfolded protein response (UPR), and neuroinflammation are frequently implicated. Previously, we demonstrated that ER stress synergizes with tumor necrosis factor (TNF)-α to amplify interleukin (IL)-6 and C-C motif chemokine ligand (CCL)20 production in astrocytes through a Janus kinase 1 (JAK1)-dependent mechanism. Here, we expand on this finding by defining the scope and underlying mechanisms of this phenomenon. We show that ER stress and TNF-α cooperatively enhance inflammatory gene expression in astrocytes via a signaling axis that requires both protein kinase R (PKR)-like ER kinase (PERK) and JAK1. PERK-mediated phosphorylation of eukaryotic translation initiation factor (eIF)2α suppresses protein translation, delaying the expression of negative regulators such as NF-κB inhibitor (IκB)α and suppressor of cytokine signaling (SOCS)3 following TNF-α or oncostatin M (OSM) stimulation, respectively. Pharmacological reversal of p-eIF2α-dependent translational suppression using the small molecule integrated stress response inhibitor (ISRIB) restored IκBα and SOCS3 expression and attenuated the ER stress-induced enhancement of TNF-α- or OSM-driven inflammatory responses. Notably, astrocytes harboring a vanishing white matter-associated <i>EIF2B5</i> mutation revealed that translational attenuation alone is insufficient to amplify cytokine-induced gene expression. Together, these findings identify a PERK/eIF2α/JAK1 signaling axis that sensitizes astrocytes to inflammatory cytokines, providing new mechanistic insights into the interactions between ER stress and neuroinflammation.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 11","pages":"2273-2288"},"PeriodicalIF":5.1,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144673491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial Bmal1 Contributes to Diurnal Physiology and Retinal Homeostasis 小胶质细胞Bmal1参与昼夜生理和视网膜稳态。
IF 5.1 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-07-11 DOI: 10.1002/glia.70061
Charles W. Pfeifer, Andrea Santeford, Rajendra S. Apte

Circadian rhythms govern various physiological processes, including innate and adaptive immune responses. Microglia, the sentinels of the central nervous system (CNS), mediate synaptic remodeling and local immune responses that contribute to tissue homeostasis. Recent studies have uncovered that microglial surveillance behavior and cytokine production exhibit rhythmicity. Furthermore, disruption of clock gene expression in microglia impairs phagocytic capacity, metabolism, and inflammatory responses, suggesting that their dynamic functions are regulated in part by circadian rhythms. Given the growing recognition of circadian dysregulation in disease pathophysiology, elucidating molecular mechanisms of microglial chronobiology may reveal novel therapeutic strategies to resynchronize circadian rhythms with components of the immune system. Homeostatic rhythms and the implications of their disruption have yet to be explored in microglia that reside within the neurosensory retina, a tissue in the back of the eye that initiates visual transduction and relays photic information to the brain. In this study, we demonstrate that retinal microglia express rhythms in clock gene expression, morphology, and inflammatory markers that rely on the clock gene Bmal1. We also find that loss of Bmal1 in microglia is associated with a decline in retinal health and behavioral dysfunction in the mouse. Lastly, we demonstrate that Bmal1 deficiency also induces a senescent, disease-associated phenotype in microglia and transcriptomic reprogramming in the retinal parenchyma. These findings suggest that diurnal clock rhythms regulate microglia physiology within the retinal niche and contribute to homeostatic maintenance of the local tissue environment.

昼夜节律控制着各种生理过程,包括先天和适应性免疫反应。小胶质细胞是中枢神经系统(CNS)的哨兵,介导突触重塑和局部免疫反应,有助于组织稳态。最近的研究发现,小胶质细胞的监视行为和细胞因子的产生表现出节律性。此外,小胶质细胞中时钟基因表达的破坏会损害吞噬能力、代谢和炎症反应,这表明它们的动态功能部分受昼夜节律调节。鉴于疾病病理生理学中对昼夜节律失调的认识日益增加,阐明小胶质细胞时间生物学的分子机制可能会揭示新的治疗策略,使昼夜节律与免疫系统的成分重新同步。在神经感觉视网膜内的小胶质细胞中,稳态节律及其破坏的含义尚未被探索,神经感觉视网膜是眼睛后部的组织,它启动视觉转导并将光信息传递给大脑。在这项研究中,我们证明了视网膜小胶质细胞在时钟基因表达、形态和依赖于时钟基因Bmal1的炎症标志物中表达节律。我们还发现,小胶质细胞中Bmal1的缺失与小鼠视网膜健康和行为功能障碍的下降有关。最后,我们证明Bmal1缺乏也会在小胶质细胞和视网膜实质中诱导衰老,疾病相关表型和转录组重编程。这些发现表明,昼夜节律调节视网膜生态位内的小胶质细胞生理,并有助于局部组织环境的稳态维持。
{"title":"Microglial Bmal1 Contributes to Diurnal Physiology and Retinal Homeostasis","authors":"Charles W. Pfeifer,&nbsp;Andrea Santeford,&nbsp;Rajendra S. Apte","doi":"10.1002/glia.70061","DOIUrl":"10.1002/glia.70061","url":null,"abstract":"<div>\u0000 \u0000 <p>Circadian rhythms govern various physiological processes, including innate and adaptive immune responses. Microglia, the sentinels of the central nervous system (CNS), mediate synaptic remodeling and local immune responses that contribute to tissue homeostasis. Recent studies have uncovered that microglial surveillance behavior and cytokine production exhibit rhythmicity. Furthermore, disruption of clock gene expression in microglia impairs phagocytic capacity, metabolism, and inflammatory responses, suggesting that their dynamic functions are regulated in part by circadian rhythms. Given the growing recognition of circadian dysregulation in disease pathophysiology, elucidating molecular mechanisms of microglial chronobiology may reveal novel therapeutic strategies to resynchronize circadian rhythms with components of the immune system. Homeostatic rhythms and the implications of their disruption have yet to be explored in microglia that reside within the neurosensory retina, a tissue in the back of the eye that initiates visual transduction and relays photic information to the brain. In this study, we demonstrate that retinal microglia express rhythms in clock gene expression, morphology, and inflammatory markers that rely on the clock gene <i>Bmal1.</i> We also find that loss of <i>Bmal1</i> in microglia is associated with a decline in retinal health and behavioral dysfunction in the mouse. Lastly, we demonstrate that <i>Bmal1</i> deficiency also induces a senescent, disease-associated phenotype in microglia and transcriptomic reprogramming in the retinal parenchyma. These findings suggest that diurnal clock rhythms regulate microglia physiology within the retinal niche and contribute to homeostatic maintenance of the local tissue environment.</p>\u0000 </div>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 11","pages":"2206-2220"},"PeriodicalIF":5.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral Abstracts 口服抽象
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-06-26 DOI: 10.1002/glia.70039
{"title":"Oral Abstracts","authors":"","doi":"10.1002/glia.70039","DOIUrl":"https://doi.org/10.1002/glia.70039","url":null,"abstract":"","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 S1","pages":"E5-E232"},"PeriodicalIF":5.4,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chair Index 椅子指数
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-06-26 DOI: 10.1002/glia.70040
{"title":"Chair Index","authors":"","doi":"10.1002/glia.70040","DOIUrl":"https://doi.org/10.1002/glia.70040","url":null,"abstract":"","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 S1","pages":"E1412-E1414"},"PeriodicalIF":5.4,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poster Abstracts 海报摘要
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-06-26 DOI: 10.1002/glia.70038
{"title":"Poster Abstracts","authors":"","doi":"10.1002/glia.70038","DOIUrl":"https://doi.org/10.1002/glia.70038","url":null,"abstract":"","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 S1","pages":"E233-E1364"},"PeriodicalIF":5.4,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 73, Issue 8 封面图片,第73卷,第8期
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-06-23 DOI: 10.1002/glia.24558
Binri Sasaki, Momo Oishi, Tomoka Aoki, Mai Hyodo, Chinami Onchi, Nanako Yamada, Hitomi Misawa, Momona Yamada, Chikako Hayashi, Kiyotoshi Sekiguchi, Keisuke Hamada, Yuji Yamada, Yamato Kikkawa, Motoyoshi Nomizu, Nobuharu Suzuki

Cover Illustration: Oligodendrocyte binds to laminin on the perivascular basement membrane in the murine cortex at the age of postnatal day 16 (red: CC-1; green: laminin alpha-2; blue: DAPI). (See Sasaki, B., et al, https://doi.org/10.1002/glia.70027)

封面插图:出生后第16天,小鼠皮层中少突胶质细胞与血管周围基底膜上的层粘连蛋白结合(红色:CC-1;绿色:层粘连蛋白α -2;蓝色:DAPI)。(见Sasaki, B.等人,https://doi.org/10.1002/glia.70027)
{"title":"Cover Image, Volume 73, Issue 8","authors":"Binri Sasaki,&nbsp;Momo Oishi,&nbsp;Tomoka Aoki,&nbsp;Mai Hyodo,&nbsp;Chinami Onchi,&nbsp;Nanako Yamada,&nbsp;Hitomi Misawa,&nbsp;Momona Yamada,&nbsp;Chikako Hayashi,&nbsp;Kiyotoshi Sekiguchi,&nbsp;Keisuke Hamada,&nbsp;Yuji Yamada,&nbsp;Yamato Kikkawa,&nbsp;Motoyoshi Nomizu,&nbsp;Nobuharu Suzuki","doi":"10.1002/glia.24558","DOIUrl":"https://doi.org/10.1002/glia.24558","url":null,"abstract":"<p>Cover Illustration: Oligodendrocyte binds to laminin on the perivascular basement membrane in the murine cortex at the age of postnatal day 16 (red: CC-1; green: laminin alpha-2; blue: DAPI). (See Sasaki, B., et al, https://doi.org/10.1002/glia.70027)\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 8","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144367582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drebrin Upregulation Regulates Astrocyte Polarization and Supports Tissue Recovery After Spinal Cord Injury in Mice Drebrin上调调控小鼠脊髓损伤后星形细胞极化支持组织恢复。
IF 5.1 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-06-11 DOI: 10.1002/glia.70048
Barbora Smejkalová, Marta Ornaghi, Kateřina Štěpánková, Juliane Schiweck, Lucia Machová Urdzíková, Robert Huelse, Susanne Mueller, Philipp Boehm-Sturm, Jessica C. F. Kwok, James Fawcett, Kai Murk, Britta J. Eickholt, Pavla Jendelová

Spinal cord injury (SCI) results in significant disruption of nerve fibers responsible for transmitting signals between the brain and body, often leading to partial or complete motor, sensory, and autonomic dysfunction below the injury site. Astrocytes are an important component in scar formation, crucial for suppression of injury propagation, effective wound healing, and the regulation of neuronal plasticity. Here, we identify the role of the actin-binding protein Drebrin (DBN) in reactive astrogliosis following SCI. SCI induces the upregulation of DBN in astrocytes, which controls immediate injury containment but also the long-term preservation of tissue integrity and healing in the spinal cord. DBN knockout results in enlarged spinal cord lesions, increased immune cell infiltration, and neurodegeneration. Mechanistically, DBN loss disrupts the polarization of scar border-forming astrocytes, leading to impaired encapsulation of the injury. In summary, DBN serves as a pivotal regulator of SCI outcome by modulating astrocytic polarity, which is essential for establishing a protective barrier confining the lesion site.

脊髓损伤(SCI)导致负责在脑和身体之间传递信号的神经纤维的明显破坏,通常导致损伤部位以下部分或完全的运动、感觉和自主神经功能障碍。星形胶质细胞是瘢痕形成的重要组成部分,在抑制损伤传播、有效伤口愈合和调节神经元可塑性方面至关重要。在这里,我们确定了肌动蛋白结合蛋白Drebrin (DBN)在脊髓损伤后反应性星形胶质细胞形成中的作用。脊髓损伤诱导星形胶质细胞中DBN的上调,这不仅控制了损伤的即时遏制,也控制了脊髓组织完整性的长期保存和愈合。敲除DBN导致脊髓病变扩大、免疫细胞浸润增加和神经变性。从机制上讲,DBN的丢失破坏了疤痕边缘形成星形胶质细胞的极化,导致损伤的包封受损。综上所述,DBN通过调节星形细胞极性对脊髓损伤的预后起到关键调节作用,星形细胞极性对于建立限制病变部位的保护性屏障至关重要。
{"title":"Drebrin Upregulation Regulates Astrocyte Polarization and Supports Tissue Recovery After Spinal Cord Injury in Mice","authors":"Barbora Smejkalová,&nbsp;Marta Ornaghi,&nbsp;Kateřina Štěpánková,&nbsp;Juliane Schiweck,&nbsp;Lucia Machová Urdzíková,&nbsp;Robert Huelse,&nbsp;Susanne Mueller,&nbsp;Philipp Boehm-Sturm,&nbsp;Jessica C. F. Kwok,&nbsp;James Fawcett,&nbsp;Kai Murk,&nbsp;Britta J. Eickholt,&nbsp;Pavla Jendelová","doi":"10.1002/glia.70048","DOIUrl":"10.1002/glia.70048","url":null,"abstract":"<p>Spinal cord injury (SCI) results in significant disruption of nerve fibers responsible for transmitting signals between the brain and body, often leading to partial or complete motor, sensory, and autonomic dysfunction below the injury site. Astrocytes are an important component in scar formation, crucial for suppression of injury propagation, effective wound healing, and the regulation of neuronal plasticity. Here, we identify the role of the actin-binding protein Drebrin (DBN) in reactive astrogliosis following SCI. SCI induces the upregulation of DBN in astrocytes, which controls immediate injury containment but also the long-term preservation of tissue integrity and healing in the spinal cord. DBN knockout results in enlarged spinal cord lesions, increased immune cell infiltration, and neurodegeneration. Mechanistically, DBN loss disrupts the polarization of scar border-forming astrocytes, leading to impaired encapsulation of the injury. In summary, DBN serves as a pivotal regulator of SCI outcome by modulating astrocytic polarity, which is essential for establishing a protective barrier confining the lesion site.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 9","pages":"1910-1924"},"PeriodicalIF":5.1,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144264879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired Volume Regulation and Electrophysiology of Astrocytes In Situ in a Mouse Model for Megalencephalic Leukoencephalopathy With Subcortical Cysts 伴有皮质下囊肿的巨脑白质脑病小鼠模型中星形胶质细胞原位体积调节和电生理功能受损。
IF 5.1 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-05-30 DOI: 10.1002/glia.70047
Sven Kerst, Nina Meesters, Tim S. Heistek, Marjo S. van der Knaap, Huibert D. Mansvelder, Rogier Min

Electrical signaling, driven by ion fluxes between intra- and extracellular compartments, is central to brain functioning. Astrocytes provide crucial support by maintaining the homeostasis of water and ions in the brain. This is disrupted in the leukodystrophy Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC). Studies on cultured primary astrocytes and other isolated cell lines point to a central defect in astrocyte volume regulation in MLC. However, cell culture severely alters the properties and polarity of astrocytes. Therefore, whether astrocytes in the intact MLC brain exhibit aberrant physiology related to water and ion homeostasis remains unknown. To investigate astrocyte physiology in intact astrocytes, we performed experiments in acute brain slices from a validated MLC mouse model, the Glialcam-null mouse. We combined viral sensor delivery with two-photon microscopy to study astrocyte volume regulation and associated chloride dynamics. Cortical Glialcam-null astrocytes showed normal intracellular chloride dynamics but reduced volume recovery upon potassium-induced cell swelling. Whole-cell patch-clamp recordings revealed a modestly depolarized resting membrane potential and slower glutamate uptake in Glialcam-null astrocytes. Gap junction coupling of the astrocyte syncytium was modestly reduced, but it remained sufficient to preserve functional electrical isopotentiality. In conclusion, our findings confirm that the previously observed disturbance of astrocyte volume regulation observed in cultured cells is also observed in intact astrocytes in situ, and we uncover additional changes in astrocyte electrophysiological properties. These findings support the concept that dysfunctional astrocyte volume regulation is central to the MLC disease mechanism.

由细胞内和细胞外区室之间的离子通量驱动的电信号是大脑功能的核心。星形胶质细胞通过维持大脑中水和离子的稳态提供了至关重要的支持。这在脑白质营养不良伴皮层下囊肿(MLC)的巨脑白质脑病中被破坏。对培养的原代星形胶质细胞和其他分离细胞系的研究表明,MLC中星形胶质细胞体积调节存在中心缺陷。然而,细胞培养严重改变星形胶质细胞的性质和极性。因此,完整MLC脑中的星形胶质细胞是否表现出与水和离子稳态相关的异常生理尚不清楚。为了研究完整星形胶质细胞的星形胶质细胞生理学,我们在经过验证的MLC小鼠模型(Glialcam-null小鼠)的急性脑切片上进行了实验。我们结合病毒传感器传递和双光子显微镜来研究星形胶质细胞的体积调节和相关的氯动力学。皮质胶质细胞缺失的星形胶质细胞显示正常的细胞内氯动力学,但在钾诱导的细胞肿胀后体积恢复减少。全细胞膜片钳记录显示,在胶质细胞缺失的星形胶质细胞中,静息膜电位适度去极化,谷氨酸摄取减慢。星形胶质细胞合胞体的间隙连接偶联适度减少,但仍足以保持功能电等电位。总之,我们的研究结果证实了先前在培养细胞中观察到的星形胶质细胞体积调节紊乱在原位完整的星形胶质细胞中也可以观察到,并且我们发现了星形胶质细胞电生理特性的其他变化。这些发现支持了星形细胞体积调节功能失调是MLC疾病机制的核心这一概念。
{"title":"Impaired Volume Regulation and Electrophysiology of Astrocytes In Situ in a Mouse Model for Megalencephalic Leukoencephalopathy With Subcortical Cysts","authors":"Sven Kerst,&nbsp;Nina Meesters,&nbsp;Tim S. Heistek,&nbsp;Marjo S. van der Knaap,&nbsp;Huibert D. Mansvelder,&nbsp;Rogier Min","doi":"10.1002/glia.70047","DOIUrl":"10.1002/glia.70047","url":null,"abstract":"<p>Electrical signaling, driven by ion fluxes between intra- and extracellular compartments, is central to brain functioning. Astrocytes provide crucial support by maintaining the homeostasis of water and ions in the brain. This is disrupted in the leukodystrophy Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC). Studies on cultured primary astrocytes and other isolated cell lines point to a central defect in astrocyte volume regulation in MLC. However, cell culture severely alters the properties and polarity of astrocytes. Therefore, whether astrocytes in the intact MLC brain exhibit aberrant physiology related to water and ion homeostasis remains unknown. To investigate astrocyte physiology in intact astrocytes, we performed experiments in acute brain slices from a validated MLC mouse model, the <i>Glialcam</i>-null mouse. We combined viral sensor delivery with two-photon microscopy to study astrocyte volume regulation and associated chloride dynamics. Cortical <i>Glialcam</i>-null astrocytes showed normal intracellular chloride dynamics but reduced volume recovery upon potassium-induced cell swelling. Whole-cell patch-clamp recordings revealed a modestly depolarized resting membrane potential and slower glutamate uptake in <i>Glialcam</i>-null astrocytes. Gap junction coupling of the astrocyte syncytium was modestly reduced, but it remained sufficient to preserve functional electrical isopotentiality. In conclusion, our findings confirm that the previously observed disturbance of astrocyte volume regulation observed in cultured cells is also observed in intact astrocytes in situ, and we uncover additional changes in astrocyte electrophysiological properties. These findings support the concept that dysfunctional astrocyte volume regulation is central to the MLC disease mechanism.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 9","pages":"1899-1909"},"PeriodicalIF":5.1,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144179818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 73, Issue 7 封面图片,第73卷,第7期
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-05-29 DOI: 10.1002/glia.24556
Joseph Matthew Holden, Andrew M. Boal, Lauren Katie Wareham, David John Calkins

Cover Illustration: Stochastically labeled astrocytes (cyan) and Müller glia (magenta) contacting blood vessels (orange) and neural cell bodies and axons bundles (green) in a mouse retina. (See Holden, JM, et al, https://doi.org/10.1002/glia.70022)

封面插图:随机标记的星形胶质细胞(青色)和突触胶质细胞(洋红色)接触血管(橙色)和神经细胞体和轴突束(绿色)。(参见Holden, JM等,https://doi.org/10.1002/glia.70022)
{"title":"Cover Image, Volume 73, Issue 7","authors":"Joseph Matthew Holden,&nbsp;Andrew M. Boal,&nbsp;Lauren Katie Wareham,&nbsp;David John Calkins","doi":"10.1002/glia.24556","DOIUrl":"https://doi.org/10.1002/glia.24556","url":null,"abstract":"<p>Cover Illustration: Stochastically labeled astrocytes (cyan) and Müller glia (magenta) contacting blood vessels (orange) and neural cell bodies and axons bundles (green) in a mouse retina. (See Holden, JM, et al, https://doi.org/10.1002/glia.70022)\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 7","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Glia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1