首页 > 最新文献

Journal of Vascular Research最新文献

英文 中文
The Microvascular-Lymphatic Interface and Tissue Homeostasis: Critical Questions That Challenge Current Understanding. 微血管淋巴界面和组织稳态:挑战当前理解的关键问题。
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 Epub Date: 2022-10-31 DOI: 10.1159/000525787
Arinola O Lampejo, Michiko Jo, Walter L Murfee, Jerome W Breslin

Lymphatic and blood microvascular networks play critical roles in the clearance of excess fluid from local tissue spaces. Given the importance of these dynamics in inflammation, tumor metastasis, and lymphedema, understanding the coordinated function and remodeling between lymphatic and blood vessels in adult tissues is necessary. Knowledge gaps exist because the functions of these two systems are typically considered separately. The objective of this review was to highlight the coordinated functional relationships between blood and lymphatic vessels in adult microvascular networks. Structural, functional, temporal, and spatial relationships will be framed in the context of maintaining tissue homeostasis, vessel permeability, and system remodeling. The integration across systems will emphasize the influence of the local environment on cellular and molecular dynamics involved in fluid flow from blood capillaries to initial lymphatic vessels in microvascular networks.

淋巴和血液微血管网络在清除局部组织间隙多余液体方面发挥着关键作用。鉴于这些动力学在炎症、肿瘤转移和淋巴水肿中的重要性,了解成人组织中淋巴管和血管之间的协调功能和重塑是必要的。知识差距的存在是因为这两个系统的功能通常是分开考虑的。这篇综述的目的是强调成人微血管网络中血液和淋巴管之间的协调功能关系。结构、功能、时间和空间关系将在维持组织稳态、血管通透性和系统重塑的背景下构建。跨系统的整合将强调局部环境对微血管网络中从毛细血管到初始淋巴管的流体流动所涉及的细胞和分子动力学的影响。
{"title":"The Microvascular-Lymphatic Interface and Tissue Homeostasis: Critical Questions That Challenge Current Understanding.","authors":"Arinola O Lampejo,&nbsp;Michiko Jo,&nbsp;Walter L Murfee,&nbsp;Jerome W Breslin","doi":"10.1159/000525787","DOIUrl":"10.1159/000525787","url":null,"abstract":"<p><p>Lymphatic and blood microvascular networks play critical roles in the clearance of excess fluid from local tissue spaces. Given the importance of these dynamics in inflammation, tumor metastasis, and lymphedema, understanding the coordinated function and remodeling between lymphatic and blood vessels in adult tissues is necessary. Knowledge gaps exist because the functions of these two systems are typically considered separately. The objective of this review was to highlight the coordinated functional relationships between blood and lymphatic vessels in adult microvascular networks. Structural, functional, temporal, and spatial relationships will be framed in the context of maintaining tissue homeostasis, vessel permeability, and system remodeling. The integration across systems will emphasize the influence of the local environment on cellular and molecular dynamics involved in fluid flow from blood capillaries to initial lymphatic vessels in microvascular networks.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"327-342"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10442722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
What Went Wrong with VEGF-A in Peripheral Arterial Disease? A Systematic Review and Biological Insights on Future Therapeutics. VEGF-A在外周动脉疾病中出了什么问题?对未来治疗方法的系统回顾和生物学见解。
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 DOI: 10.1159/000527079
Stavroula L Kastora, Jonathan Eley, Martin Gannon, Ross Melvin, Euan Munro, Sotirios A Makris

Background: Of the 200 million patients worldwide affected by peripheral arterial disease (PAD), 4% will inevitably require major limb amputation. Previous systematic reviews presented a conflicting body of evidence in terms of vascular endothelial growth factor (VEGF) family member effects upon PAD natural progression. Despite that, modulation of intrinsic angiogenesis mechanisms targeting the VEGF family members still confers an attractive therapeutic target. The aim of the present study was to evaluate current evidence of VEGF modulation in the context of PAD.

Methods: This is a systematic literature review conducted according to the PRISMA guidelines and registered under PROSPERO database [CRD42021285988]. Independent literature search was performed up to April 1, 2022, on six databases. A total of 22 eligible studies were identified [N: 3, interventional patient studies; N: 19, animal studies]. Animal studies were appraised by the SYRCLE risk of bias tool, while human participant studies were assessed by the Newcastle Ottawa scale. Overall, quality of evidence was deemed fair for both animal and human studies. Main study outcomes were percentage change of injured vessel lumen stenosis and neointimal area formation upon VEGF modulation (inhibition or activation) in comparison with control group.

Findings: Nineteen animal models and three human participant studies were included in the systematic review and assessed separately. Positive modulation of VEGF-A in animal models resulted in a median decrease of 65.58% [95% CI 45.2; 71.87] in lumen stenosis [14 studies]. Furthermore, positive modulation of VEGF-A was found to reduce neointimal area proliferation by a median decrease of 63.41% [95% CI 41.6; 79.59] [14 studies]. Median end of study duration was 28 days [range: 14-84 days]. Data were insufficient to assess these outcomes with respect to VEGF-B or VEGF-C modulation. The limited number of available human studies presented inadequate outcome assessment despite their overall fair NOS grading.

Interpretation: VEGF-A-positive modulation decreases lumen stenosis and neointimal hyperplasia in PAD simulation animal models. Previously identified variability among outcomes was found to strongly stem from the variability of experimental designs. Clinical applicability and safety profile of VEGF-A in the context of PAD remain to be defined by a robust and uniformly designed body of further animal model-based experiments.

背景:全球有2亿外周动脉疾病(PAD)患者,其中4%不可避免地需要截肢。先前的系统综述在血管内皮生长因子(VEGF)家族成员对PAD自然进展的影响方面提出了相互矛盾的证据。尽管如此,针对VEGF家族成员的内在血管生成机制的调节仍然是一个有吸引力的治疗靶点。本研究的目的是评估目前在PAD背景下VEGF调节的证据。方法:这是一项根据PRISMA指南进行的系统文献综述,注册在PROSPERO数据库[CRD42021285988]。截至2022年4月1日,对6个数据库进行独立文献检索。总共确定了22项符合条件的研究[N: 3,介入性患者研究;[19,动物研究]。动物研究采用sycle偏倚风险工具进行评估,而人类参与者研究采用纽卡斯尔渥太华量表进行评估。总的来说,动物和人类研究的证据质量被认为是公平的。主要研究结果为VEGF调节(抑制或激活)后损伤血管管腔狭窄和新生内膜面积形成的百分比变化。结果:19个动物模型和3个人类参与者研究被纳入系统评价并单独评估。动物模型中VEGF-A的阳性调节导致中位数下降65.58% [95% CI 45.2;[71.87]在管腔狭窄[14项研究]。此外,VEGF-A的阳性调节被发现可以减少新生内膜面积的增殖,中位数减少63.41% [95% CI 41.6;79.59][14项研究]。研究结束时中位持续时间为28天[范围:14-84天]。数据不足以评估VEGF-B或VEGF-C调节的这些结果。数量有限的现有人类研究尽管总体上公平的NOS评分,但结果评估不足。解释:在PAD模拟动物模型中,vegf - a阳性调节可减少管腔狭窄和新生内膜增生。先前确定的结果差异很大程度上源于实验设计的差异。VEGF-A在PAD背景下的临床适用性和安全性仍需通过进一步的基于动物模型的实验来确定。
{"title":"What Went Wrong with VEGF-A in Peripheral Arterial Disease? A Systematic Review and Biological Insights on Future Therapeutics.","authors":"Stavroula L Kastora,&nbsp;Jonathan Eley,&nbsp;Martin Gannon,&nbsp;Ross Melvin,&nbsp;Euan Munro,&nbsp;Sotirios A Makris","doi":"10.1159/000527079","DOIUrl":"https://doi.org/10.1159/000527079","url":null,"abstract":"<p><strong>Background: </strong>Of the 200 million patients worldwide affected by peripheral arterial disease (PAD), 4% will inevitably require major limb amputation. Previous systematic reviews presented a conflicting body of evidence in terms of vascular endothelial growth factor (VEGF) family member effects upon PAD natural progression. Despite that, modulation of intrinsic angiogenesis mechanisms targeting the VEGF family members still confers an attractive therapeutic target. The aim of the present study was to evaluate current evidence of VEGF modulation in the context of PAD.</p><p><strong>Methods: </strong>This is a systematic literature review conducted according to the PRISMA guidelines and registered under PROSPERO database [CRD42021285988]. Independent literature search was performed up to April 1, 2022, on six databases. A total of 22 eligible studies were identified [N: 3, interventional patient studies; N: 19, animal studies]. Animal studies were appraised by the SYRCLE risk of bias tool, while human participant studies were assessed by the Newcastle Ottawa scale. Overall, quality of evidence was deemed fair for both animal and human studies. Main study outcomes were percentage change of injured vessel lumen stenosis and neointimal area formation upon VEGF modulation (inhibition or activation) in comparison with control group.</p><p><strong>Findings: </strong>Nineteen animal models and three human participant studies were included in the systematic review and assessed separately. Positive modulation of VEGF-A in animal models resulted in a median decrease of 65.58% [95% CI 45.2; 71.87] in lumen stenosis [14 studies]. Furthermore, positive modulation of VEGF-A was found to reduce neointimal area proliferation by a median decrease of 63.41% [95% CI 41.6; 79.59] [14 studies]. Median end of study duration was 28 days [range: 14-84 days]. Data were insufficient to assess these outcomes with respect to VEGF-B or VEGF-C modulation. The limited number of available human studies presented inadequate outcome assessment despite their overall fair NOS grading.</p><p><strong>Interpretation: </strong>VEGF-A-positive modulation decreases lumen stenosis and neointimal hyperplasia in PAD simulation animal models. Previously identified variability among outcomes was found to strongly stem from the variability of experimental designs. Clinical applicability and safety profile of VEGF-A in the context of PAD remain to be defined by a robust and uniformly designed body of further animal model-based experiments.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"381-393"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10487219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Quantification of Lipid Area within Thermogenic Mouse Perivascular Adipose Tissue Using Standardized Image Analysis in FIJI. 在 FIJI 中使用标准化图像分析量化热源小鼠血管周围脂肪组织内的脂质面积。
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 Epub Date: 2021-11-04 DOI: 10.1159/000517178
Benjamin W Tero, Bethany Fortier, Ashley N Soucy, Ginger Paquette, Lucy Liaw

Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.

现有的图像分析软件可对白色脂肪组织的脂肪细胞大小和数量进行常规量化。然而,发热性脂肪组织具有多层脂肪细胞,因此很难用现有方法区分脂肪细胞边界和分析脂质比例。我们开发了一种简单、标准化的方法来量化小鼠发热脂肪组织的脂质含量。该方法使用 FIJI 分析苏木精/伊红染色的切片,客观性和可重复性都很高,评定者之间的可靠性高达 ∼ 99%。该方法与脂肪组织的直接脂质染色法进行了比较,结果相当。我们用我们的方法分析了以正常饲料喂养的 C57BL/6 小鼠的血管周围脂肪组织(PVAT),并与已知脂质储存表型的卡路里限制或高脂肪饮食进行了比较。结果表明,小鼠血管周围脂肪组织内的脂质含量能以定量和可重现的方式估算出来,并与之前研究的分子和生理指标显示出相关性。
{"title":"Quantification of Lipid Area within Thermogenic Mouse Perivascular Adipose Tissue Using Standardized Image Analysis in FIJI.","authors":"Benjamin W Tero, Bethany Fortier, Ashley N Soucy, Ginger Paquette, Lucy Liaw","doi":"10.1159/000517178","DOIUrl":"10.1159/000517178","url":null,"abstract":"<p><p>Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 1","pages":"43-49"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766879/pdf/nihms-1726193.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10514590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CIDEC: A Potential Factor in Diabetic Vascular Inflammation. 糖尿病血管炎症的一个潜在因素。
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 Epub Date: 2022-02-04 DOI: 10.1159/000520685
Fang-Qiang Song, Hui-Min Zhou, Wei-Xuan Ma, Yu-Lin Li, Bo-Ang Hu, Yuan-Yuan Shang, Zhi-Hao Wang, Ming Zhong, Wei Zhang, Yun Ti

Cell death-inducing DFF45-like effector C (CIDEC) is involved in diet-induced adipose inflammation. Whether CIDEC plays a role in diabetic vascular inflammation remains unclear. A type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated its characteristics by metabolic tests, Western blot analysis of CIDEC and C1q/tumor necrosis factor-related protein-3 (CTRP3) expression, and histopathological analysis of aortic tissues. The diabetic group exhibited elevated CIDEC expression, aortic inflammation, and remodeling. To further investigate the role of CIDEC in the pathogenesis of aortic inflammation, gene silencing was used. With CIDEC gene silencing, CTRP3 expression was restored, accompanied with amelioration of insulin resistance, aortic inflammation, and remodeling in diabetic rats. Thus, the silencing of CIDEC is potent in mediating the reversal of aortic inflammation and remodeling, indicating that CIDEC may be a potential therapeutic target for vascular complications in diabetes.

诱导细胞死亡的dff45样效应物C (CIDEC)参与饮食诱导的脂肪炎症。CIDEC是否在糖尿病血管炎症中起作用尚不清楚。采用高脂饮食和低剂量链脲佐菌素建立2型糖尿病大鼠模型。我们通过代谢试验、CIDEC和C1q/肿瘤坏死因子相关蛋白-3 (CTRP3)表达的Western blot分析以及主动脉组织的组织病理学分析来评估其特征。糖尿病组表现为CIDEC表达升高、主动脉炎症和重构。为了进一步研究CIDEC在主动脉炎症发病机制中的作用,我们采用了基因沉默的方法。CIDEC基因沉默后,糖尿病大鼠的CTRP3表达恢复,并伴有胰岛素抵抗、主动脉炎症和重塑的改善。因此,CIDEC的沉默在介导主动脉炎症和重构的逆转中是有效的,这表明CIDEC可能是糖尿病血管并发症的潜在治疗靶点。
{"title":"CIDEC: A Potential Factor in Diabetic Vascular Inflammation.","authors":"Fang-Qiang Song,&nbsp;Hui-Min Zhou,&nbsp;Wei-Xuan Ma,&nbsp;Yu-Lin Li,&nbsp;Bo-Ang Hu,&nbsp;Yuan-Yuan Shang,&nbsp;Zhi-Hao Wang,&nbsp;Ming Zhong,&nbsp;Wei Zhang,&nbsp;Yun Ti","doi":"10.1159/000520685","DOIUrl":"https://doi.org/10.1159/000520685","url":null,"abstract":"<p><p>Cell death-inducing DFF45-like effector C (CIDEC) is involved in diet-induced adipose inflammation. Whether CIDEC plays a role in diabetic vascular inflammation remains unclear. A type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated its characteristics by metabolic tests, Western blot analysis of CIDEC and C1q/tumor necrosis factor-related protein-3 (CTRP3) expression, and histopathological analysis of aortic tissues. The diabetic group exhibited elevated CIDEC expression, aortic inflammation, and remodeling. To further investigate the role of CIDEC in the pathogenesis of aortic inflammation, gene silencing was used. With CIDEC gene silencing, CTRP3 expression was restored, accompanied with amelioration of insulin resistance, aortic inflammation, and remodeling in diabetic rats. Thus, the silencing of CIDEC is potent in mediating the reversal of aortic inflammation and remodeling, indicating that CIDEC may be a potential therapeutic target for vascular complications in diabetes.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 2","pages":"114-123"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39590337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Contents, Vol. 59, 2022. 目录,第59卷,2022年。
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 DOI: 10.1159/000528269
Ramaroson Andriantsitohaina – Université d’Angers, Angers, France Zoltan Bagi – Augusta University, Augusta, GA, USA Erika M. Boerman – University of Missouri School of Medicine, Columbia, MO, USA Georg Breier – Technische Universität Dresden, Dresden, Germany Jerome W. Breslin – University of South Florida, Tampa, FL, USA Nicola J. Brown – University of Sheffield, Sheffield, UK Albert Busch – Technische Universität Dresden, Dresden, Germany Paul D. Chantler – West Virginia University School of Medicine, Morgantown, WV, USA John C. Chappell – Virginia Tech, Fralin Biomedical Research Institute, Roanoke, VA, USA Geraldine Clough – University of Southampton, Southampton, UK JVR Journal of Vascular Research
{"title":"Contents, Vol. 59, 2022.","authors":"","doi":"10.1159/000528269","DOIUrl":"https://doi.org/10.1159/000528269","url":null,"abstract":"Ramaroson Andriantsitohaina – Université d’Angers, Angers, France Zoltan Bagi – Augusta University, Augusta, GA, USA Erika M. Boerman – University of Missouri School of Medicine, Columbia, MO, USA Georg Breier – Technische Universität Dresden, Dresden, Germany Jerome W. Breslin – University of South Florida, Tampa, FL, USA Nicola J. Brown – University of Sheffield, Sheffield, UK Albert Busch – Technische Universität Dresden, Dresden, Germany Paul D. Chantler – West Virginia University School of Medicine, Morgantown, WV, USA John C. Chappell – Virginia Tech, Fralin Biomedical Research Institute, Roanoke, VA, USA Geraldine Clough – University of Southampton, Southampton, UK JVR Journal of Vascular Research","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"I-IV"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10417904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apolipoprotein A-I Inhibits Transendothelial Transport of Apolipoprotein B-Carrying Lipoproteins and Enhances Its Associated High-Density Lipoprotein Formation. 载脂蛋白 A-I 可抑制携带载脂蛋白 B 的脂蛋白的跨内皮转运,并增强与之相关的高密度脂蛋白的形成。
IF 1.8 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 Epub Date: 2022-06-27 DOI: 10.1159/000525259
Zhongmao Guo, Ningya Zhang, Hong Yang

Caveola-located scavenger receptor type B class I (SR-BI) and activin receptor-like kinase-1 (ALK1) are involved in transendothelial transport of apolipoprotein B-carrying lipoproteins (apoB-LPs). Transport of apoB-LPs though mouse aortic endothelial cells (MAECs) is associated with apoE-carrying high-density lipoprotein (HDL)-like particle formation and apoAI induces raft-located proteins to shift to non-raft membranes by upregulation of ATP-binding cassette transporter A1 (ABCA1). To investigate apoAI's effect on transendothelial transport of apoB-LPs, MAECs and human coronary artery endothelial cells (HCAECs) were treated with apoB-LPs ± apoAI. Our data demonstrated that apoAI neither altered SR-BI and ALK1 expression nor affected apoB-LP binding to MAECs. ApoAI inhibited MAEC uptake, transcellular transport, and intracellular accumulation of apoB-LPs and accelerated their resecretion in MAECs. ApoAI enhanced transendothelial apoB-LP transport-associated HDL-like particle formation, upregulated ABCA1 expression, shifted SR-BI and ALK1 to the non-raft membrane in MAECs, inhibited transcellular transport of apoB-LPs, and enhanced associated HDL-like particle formation in HCAECs. ABCA1 knockdown attenuated apoAI-induced membrane SR-BI and ALK1 relocation and diminished apoAI's effect on transendothelial apoB-LP transport and HDL-like particle formation in MAECs. This suggests that upregulation of ABCA1 expression is a mechanism, whereby apoAI provokes caveola-located receptor relocation, inhibits transendothelial apoB-LP transport, and promotes associated HDL-like particle formation.

位于腔隙的 B 型 I 类清道夫受体(SR-BI)和活化素受体样激酶-1(ALK1)参与了载脂蛋白 B 脂蛋白(载脂蛋白 B-LPs)的跨内皮转运。载脂蛋白B-LPs在小鼠主动脉内皮细胞(MAECs)中的转运与载脂蛋白E携带的高密度脂蛋白(HDL)样颗粒的形成有关,载脂蛋白AI通过上调ATP结合盒转运体A1(ABCA1)诱导筏定位蛋白转移到非移植膜。为了研究apoAI对apoB-LPs跨内皮转运的影响,我们用apoB-LPs和apoAI处理了MAECs和人冠状动脉内皮细胞(HCAECs)。我们的数据表明,apoAI既不会改变SR-BI和ALK1的表达,也不会影响apoB-LP与MAECs的结合。载脂蛋白AI抑制了MAEC对apoB-LPs的摄取、跨细胞转运和细胞内蓄积,并加速了它们在MAECs中的排泄。ApoAI 增强了跨内皮载脂蛋白-LP 转运相关高密度脂蛋白样颗粒的形成,上调了 ABCA1 的表达,将 SR-BI 和 ALK1 转移到 MAECs 的非移植膜上,抑制了 HCAECs 中载脂蛋白-LPs 的跨细胞转运,并增强了相关高密度脂蛋白样颗粒的形成。敲除 ABCA1 可减轻 apoAI 诱导的膜 SR-BI 和 ALK1 迁移,并降低 apoAI 对 MAECs 中apoB-LPs 跨内皮细胞转运和 HDL 样颗粒形成的影响。这表明,ABCA1 表达的上调是一种机制,通过这种机制,载脂蛋白AI 会引发位于洞穴的受体重定位,抑制跨内皮载脂蛋白B-LP 转运,并促进相关高密度脂蛋白样颗粒的形成。
{"title":"Apolipoprotein A-I Inhibits Transendothelial Transport of Apolipoprotein B-Carrying Lipoproteins and Enhances Its Associated High-Density Lipoprotein Formation.","authors":"Zhongmao Guo, Ningya Zhang, Hong Yang","doi":"10.1159/000525259","DOIUrl":"10.1159/000525259","url":null,"abstract":"<p><p>Caveola-located scavenger receptor type B class I (SR-BI) and activin receptor-like kinase-1 (ALK1) are involved in transendothelial transport of apolipoprotein B-carrying lipoproteins (apoB-LPs). Transport of apoB-LPs though mouse aortic endothelial cells (MAECs) is associated with apoE-carrying high-density lipoprotein (HDL)-like particle formation and apoAI induces raft-located proteins to shift to non-raft membranes by upregulation of ATP-binding cassette transporter A1 (ABCA1). To investigate apoAI's effect on transendothelial transport of apoB-LPs, MAECs and human coronary artery endothelial cells (HCAECs) were treated with apoB-LPs ± apoAI. Our data demonstrated that apoAI neither altered SR-BI and ALK1 expression nor affected apoB-LP binding to MAECs. ApoAI inhibited MAEC uptake, transcellular transport, and intracellular accumulation of apoB-LPs and accelerated their resecretion in MAECs. ApoAI enhanced transendothelial apoB-LP transport-associated HDL-like particle formation, upregulated ABCA1 expression, shifted SR-BI and ALK1 to the non-raft membrane in MAECs, inhibited transcellular transport of apoB-LPs, and enhanced associated HDL-like particle formation in HCAECs. ABCA1 knockdown attenuated apoAI-induced membrane SR-BI and ALK1 relocation and diminished apoAI's effect on transendothelial apoB-LP transport and HDL-like particle formation in MAECs. This suggests that upregulation of ABCA1 expression is a mechanism, whereby apoAI provokes caveola-located receptor relocation, inhibits transendothelial apoB-LP transport, and promotes associated HDL-like particle formation.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 5","pages":"275-287"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847247/pdf/nihms-1817007.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9756057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Fluid Therapy on Mesenteric Microcirculation Using New Probe-Based Confocal Laser Endomicroscopy (Cellvizio®) in a Porcine Model of Endotoxic Shock. 利用新型探针共聚焦激光内镜(Cellvizio®)观察猪内毒素休克模型,观察液体治疗对肠系膜微循环的影响。
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 Epub Date: 2021-12-17 DOI: 10.1159/000519693
Charlotte Daniere, Guillaume Louart, Benjamin Louart, Marylène Bacle, Florian Bazalgette, Antonia Perez Martin, Laurent Muller, Jean-Yves Lefrant, Claire Roger

Background: Microcirculatory alterations have been observed at the early phase of sepsis, although macrocirculation seems preserved. The aim of this study was to analyze the effect of crystalloid fluid therapy on mesenteric microcirculation, assessed by using the confocal laser endomicroscope Cellvizio®, in an endotoxic porcine model.

Methods: It is a prospective endotoxic shock (lipopolysaccharide infusion) experimental trial. Piglets were divided into 3 groups: 6 in the sham group (no LPS injection, no fluid), 9 in the control group (LPS infusion, no fluid), and 6 in the crystalloids group (LPS infusion and fluid resuscitation with crystalloids). Fluid resuscitation consisted in a fluid bolus of 20 mL/kg 0.9% saline over 30 min followed by a 10 mL/kg/h fluid rate over 4 h. Mesenteric microcirculation was assessed using a confocal laser endomicroscope (Cellvizio®). Blood flow within capillaries was visually assessed according to the point of care microcirculation (POEM) score.

Results: At baseline, the 3 groups were similar regarding hemodynamic, biological, and microcirculatory parameters. At T360, the POEM score significantly decreased in the control and crystalloids groups, whereas it remained unchanged in the sham group (respectively, 1.62 ± 1.06, 1.2 ± 0.45, and 5.0 ± 0, p = 0.011). There was no significant difference in cardiac output at T360 between the sham and crystalloids groups (3.1 ± 0.8 vs. 2.3 ± 0.6, p = 0.132) or between the control and crystalloids groups (2.0 ± 0.6 vs. 2.3 ± 0.6, p = 0.90).

Conclusion: There was no significant improvement of microcirculatory alterations after crystalloids resuscitation despite improvement in macrocirculatory parameters in early experimental sepsis.

背景:在脓毒症早期,微循环改变已被观察到,尽管大循环似乎保留。本研究的目的是分析晶体液体治疗对内毒素猪模型肠系膜微循环的影响,采用共聚焦激光内镜显微镜Cellvizio®进行评估。方法:采用前瞻性内毒素休克(脂多糖输注)实验。将仔猪分为3组:假手术组6头(不注射LPS,不补液),对照组9头(注射LPS,不补液),晶体液组6头(注射LPS,加晶体液复苏)。液体复苏包括在30分钟内注入20 mL/kg 0.9%生理盐水,然后在4小时内注入10 mL/kg/h的液体。使用共聚焦激光内镜(Cellvizio®)评估肠系膜微循环。根据护理点微循环(POEM)评分目测毛细血管内血流。结果:在基线时,三组在血液动力学、生物学和微循环参数方面相似。T360时,对照组和晶体药物组的POEM评分显著降低,而假手术组的POEM评分保持不变(分别为1.62±1.06、1.2±0.45和5.0±0,p = 0.011)。T360时心输出量在假手术组和晶体组之间无显著差异(3.1±0.8 vs. 2.3±0.6,p = 0.132),对照组和晶体组之间无显著差异(2.0±0.6 vs. 2.3±0.6,p = 0.90)。结论:晶体复苏对早期脓毒症患者的微循环改变无明显改善,但对早期脓毒症患者的大循环参数有改善。
{"title":"Effects of Fluid Therapy on Mesenteric Microcirculation Using New Probe-Based Confocal Laser Endomicroscopy (Cellvizio®) in a Porcine Model of Endotoxic Shock.","authors":"Charlotte Daniere,&nbsp;Guillaume Louart,&nbsp;Benjamin Louart,&nbsp;Marylène Bacle,&nbsp;Florian Bazalgette,&nbsp;Antonia Perez Martin,&nbsp;Laurent Muller,&nbsp;Jean-Yves Lefrant,&nbsp;Claire Roger","doi":"10.1159/000519693","DOIUrl":"https://doi.org/10.1159/000519693","url":null,"abstract":"<p><strong>Background: </strong>Microcirculatory alterations have been observed at the early phase of sepsis, although macrocirculation seems preserved. The aim of this study was to analyze the effect of crystalloid fluid therapy on mesenteric microcirculation, assessed by using the confocal laser endomicroscope Cellvizio®, in an endotoxic porcine model.</p><p><strong>Methods: </strong>It is a prospective endotoxic shock (lipopolysaccharide infusion) experimental trial. Piglets were divided into 3 groups: 6 in the sham group (no LPS injection, no fluid), 9 in the control group (LPS infusion, no fluid), and 6 in the crystalloids group (LPS infusion and fluid resuscitation with crystalloids). Fluid resuscitation consisted in a fluid bolus of 20 mL/kg 0.9% saline over 30 min followed by a 10 mL/kg/h fluid rate over 4 h. Mesenteric microcirculation was assessed using a confocal laser endomicroscope (Cellvizio®). Blood flow within capillaries was visually assessed according to the point of care microcirculation (POEM) score.</p><p><strong>Results: </strong>At baseline, the 3 groups were similar regarding hemodynamic, biological, and microcirculatory parameters. At T360, the POEM score significantly decreased in the control and crystalloids groups, whereas it remained unchanged in the sham group (respectively, 1.62 ± 1.06, 1.2 ± 0.45, and 5.0 ± 0, p = 0.011). There was no significant difference in cardiac output at T360 between the sham and crystalloids groups (3.1 ± 0.8 vs. 2.3 ± 0.6, p = 0.132) or between the control and crystalloids groups (2.0 ± 0.6 vs. 2.3 ± 0.6, p = 0.90).</p><p><strong>Conclusion: </strong>There was no significant improvement of microcirculatory alterations after crystalloids resuscitation despite improvement in macrocirculatory parameters in early experimental sepsis.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 2","pages":"124-134"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39614430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth Muscle Cell Relaxation Worsens Aortic Dilatation and Clinical Presentation in a BAPN/Angiotensin II-Induced Aortic Dissection Model in Rats. 在BAPN/血管紧张素ii诱导的大鼠主动脉夹层模型中,平滑肌细胞松弛恶化主动脉扩张和临床表现。
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2022-01-01 DOI: 10.1159/000526417
Quentin Pellenc, Sandy El Bitar, Arthur Darmon, Sébastien Dupont, Jean-Baptiste Michel, Guillaume Jondeau

Introduction: Beta-aminopropionitrile (BAPN) administration is a chemically induced model for preclinical aortic pathologies research. Angiotensin II (AngII) has been widely used to promotes aortic dissections in mice. Here, we provide insight on a modified aortic dissection model in rats. The effect of smooth muscle cell (SMC) relaxation with vasodilators is studied in this model.

Methods: Forty Sprague-Dawley rats were divided in 4 groups: control, isosorbide dinitrate (ISDN, 30 mg/kg/day) in the drinking water, BAPN (0.02%) in the food, BAPN + ISDN (same doses). Thoracic and abdominal aortic diameters were evaluated through transthoracic ultrasound echography. After 6 weeks, all rats were infused with AngII (1 mg/kg/day) subcutaneously. Survival and type of aortic events were numbered. Histological and histochemical analyses of aorta were performed.

Results: Initial telesystolic ascending aorta diameters were equal in all groups and became significantly larger in the BAPN + ISDN group compared to the BAPN group (control: 3.37 ± 0.17 mm, ISDN: 3.49 ± 0.16 mm, BAPN: 3.53 ± 0.13 mm, BAPN + ISDN: 3.61 ± 0.16 mm, analysis of variance p < 0.0001). BAPN followed by AngII infusion showed a significant lower survival rate (p = 0.029) and produced a large panel of aortic events. Association of ISDN and BAPN significantly reduces survival (p = 0.001) and provides more aortic events compared to BAPN alone (p = 0.031). In both BAPN-treated groups, orcein staining revealed split and dissected elastic fibers in the media, alcian blue staining showed mucoid degeneration of the aortic wall, and Perls-diaminobenzidine staining revealed an accumulation of Fe2+.

Conclusion: SMC relaxation with ISDN increases aortic dilatation, worsens aortic prognosis, and reproduces human histological findings in a low-dose BAPN/AngII-induced aortic dissection model in rats.

简介:β -氨基丙腈(BAPN)给药是临床前主动脉病理研究的化学诱导模型。血管紧张素II (AngII)已被广泛用于促进小鼠主动脉夹层。在这里,我们提供了一种改良的大鼠主动脉夹层模型。研究了血管扩张剂对平滑肌细胞舒张的影响。方法:将40只Sprague-Dawley大鼠分为4组:对照组,饮用水中给予硝酸异山梨酯(ISDN, 30 mg/kg/d),食物中给予BAPN (0.02%), BAPN + ISDN(相同剂量)。经胸超声检查胸腹主动脉直径。6周后,所有大鼠皮下注射AngII (1 mg/kg/天)。对生存期和主动脉事件类型进行编号。对主动脉进行组织学和组织化学分析。结果:各组升主动脉初始直径相等,且BAPN + ISDN组明显大于BAPN组(对照组:3.37±0.17 mm, ISDN: 3.49±0.16 mm, BAPN: 3.53±0.13 mm, BAPN + ISDN: 3.61±0.16 mm,方差分析p < 0.0001)。BAPN后AngII输注的存活率显著降低(p = 0.029),并产生大量主动脉事件。与单独应用BAPN相比,ISDN和BAPN联合应用显著降低生存率(p = 0.001),并提供更多的主动脉事件(p = 0.031)。在两个bapn处理组中,orcein染色显示介质中有断裂和剥离的弹性纤维,alcian blue染色显示主动脉壁的粘液变性,perls -二氨基联苯胺染色显示Fe2+的积累。结论:在低剂量BAPN/ angii诱导的大鼠主动脉夹层模型中,ISDN使SMC松弛增加主动脉扩张,使主动脉预后恶化,并再现了人类组织学特征。
{"title":"Smooth Muscle Cell Relaxation Worsens Aortic Dilatation and Clinical Presentation in a BAPN/Angiotensin II-Induced Aortic Dissection Model in Rats.","authors":"Quentin Pellenc,&nbsp;Sandy El Bitar,&nbsp;Arthur Darmon,&nbsp;Sébastien Dupont,&nbsp;Jean-Baptiste Michel,&nbsp;Guillaume Jondeau","doi":"10.1159/000526417","DOIUrl":"https://doi.org/10.1159/000526417","url":null,"abstract":"<p><strong>Introduction: </strong>Beta-aminopropionitrile (BAPN) administration is a chemically induced model for preclinical aortic pathologies research. Angiotensin II (AngII) has been widely used to promotes aortic dissections in mice. Here, we provide insight on a modified aortic dissection model in rats. The effect of smooth muscle cell (SMC) relaxation with vasodilators is studied in this model.</p><p><strong>Methods: </strong>Forty Sprague-Dawley rats were divided in 4 groups: control, isosorbide dinitrate (ISDN, 30 mg/kg/day) in the drinking water, BAPN (0.02%) in the food, BAPN + ISDN (same doses). Thoracic and abdominal aortic diameters were evaluated through transthoracic ultrasound echography. After 6 weeks, all rats were infused with AngII (1 mg/kg/day) subcutaneously. Survival and type of aortic events were numbered. Histological and histochemical analyses of aorta were performed.</p><p><strong>Results: </strong>Initial telesystolic ascending aorta diameters were equal in all groups and became significantly larger in the BAPN + ISDN group compared to the BAPN group (control: 3.37 ± 0.17 mm, ISDN: 3.49 ± 0.16 mm, BAPN: 3.53 ± 0.13 mm, BAPN + ISDN: 3.61 ± 0.16 mm, analysis of variance p < 0.0001). BAPN followed by AngII infusion showed a significant lower survival rate (p = 0.029) and produced a large panel of aortic events. Association of ISDN and BAPN significantly reduces survival (p = 0.001) and provides more aortic events compared to BAPN alone (p = 0.031). In both BAPN-treated groups, orcein staining revealed split and dissected elastic fibers in the media, alcian blue staining showed mucoid degeneration of the aortic wall, and Perls-diaminobenzidine staining revealed an accumulation of Fe2+.</p><p><strong>Conclusion: </strong>SMC relaxation with ISDN increases aortic dilatation, worsens aortic prognosis, and reproduces human histological findings in a low-dose BAPN/AngII-induced aortic dissection model in rats.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 6","pages":"369-380"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10450086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front & Back Matter 正面和背面事项
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2021-11-01 DOI: 10.1159/000521106
B. Fisslthaler, A. Heagerty
{"title":"Front & Back Matter","authors":"B. Fisslthaler, A. Heagerty","doi":"10.1159/000521106","DOIUrl":"https://doi.org/10.1159/000521106","url":null,"abstract":"","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47305670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents, Vol. 58, 2021 目录,2021年第58卷
IF 1.7 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Pub Date : 2021-11-01 DOI: 10.1159/000520689
B. Fisslthaler, A. Heagerty
s Online Meeting of the European Society for Microcirculation (ESM) May 27, 2021 Guest Editors: Christian Aalkjær (Aarhus); Cor de Wit (Lübeck); Jo De Mey (Maastricht); Ylva Hellsten (Aarhus); Ulf Simonsen (Aarhus); Henning Morawietz (Dresden); Nicola J. Brown (Sheffield) (available online only)
欧洲微循环学会(ESM)在线会议2021年5月27日客座编辑:Christian Aalkjær(奥胡斯);维特学院(吕贝克);Jo De Mey(马斯特里赫特);Ylva Hellsten(奥胡斯);乌尔夫·西蒙森(奥胡斯);Henning Morawietz(德累斯顿);Nicola J.Brown(谢菲尔德)(仅在线提供)
{"title":"Contents, Vol. 58, 2021","authors":"B. Fisslthaler, A. Heagerty","doi":"10.1159/000520689","DOIUrl":"https://doi.org/10.1159/000520689","url":null,"abstract":"s Online Meeting of the European Society for Microcirculation (ESM) May 27, 2021 Guest Editors: Christian Aalkjær (Aarhus); Cor de Wit (Lübeck); Jo De Mey (Maastricht); Ylva Hellsten (Aarhus); Ulf Simonsen (Aarhus); Henning Morawietz (Dresden); Nicola J. Brown (Sheffield) (available online only)","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"58 1","pages":"I - VI"},"PeriodicalIF":1.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41717391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Vascular Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1