Pub Date : 2023-01-01Epub Date: 2023-11-17DOI: 10.1159/000534614
Daniel Henrion, Philippe Bonnin, Emilie Vessieres, Anne-Laure Guihlot, Marc Iglarz, Bernard I Lévy
Introduction: Cerebral blood flow (CBF) is reduced in patients with Alzheimer's disease (AD). Flow-mediated dilation (FMD), which plays a key role in the regulation of blood flow, is attenuated by endothelin-1. We hypothesized that endothelin receptor blockade may improve CBF in AD.
Methods: We investigated cerebrovascular reactivity in a mouse model of AD (APP-PS1; 5-6-month-old male subjects). We assessed the in vivo response to normoxic hypercapnia and in vitro FMD in isolated cerebral and mesenteric resistance arteries before and after endothelin receptor blockade (bosentan).
Results: Normoxic hypercapnia increased basilar trunk blood flow velocity (+12.3 ± 2.4%; p = 0.006, n = 6) in wild-type (WT) mice but reduced blood flow in APP-PS1 mice (-11.4 ± 1.2%; p < 0.0001, n = 8). Bosentan (50 mg/kg, acute intraperitoneal injection) restored cerebrovascular reactivity in APP-PS1 mice (+10.2 ± 2.2%; p < 0.0001, n = 8) but had no effect in WT. FMD was reduced in the posterior cerebral artery of APP-PS1 compared to WT and was normalized by bosentan (1 μmol/L, 30 min, or 50 mg/kg/day for 28 days). FMD was similar in the mesenteric artery of APPS-PS1 and WT.
Conclusion: APP-PS1 mice exhibited cerebrovascular endothelial dysfunction. Acute and chronic blockade of endothelin receptors restored endothelial vasomotor function, suggesting a promising therapeutic approach to restoring cerebral vasoreactivity in AD.
阿尔茨海默病(AD)患者的脑血流量(CBF)减少。血流介导扩张(flow -mediated dilation, FMD)在血流调节中起关键作用,可被内皮素-1减弱。我们假设内皮素受体阻断可能改善AD患者的CBF。方法:研究AD小鼠模型的脑血管反应性(APP-PS1;5-6个月大的男性受试者)。我们评估了内皮素受体阻断(波生坦)前后离体脑和肠系膜抵抗动脉对常氧性高碳酸血症和体外FMD的体内反应。结果:常氧高碳酸血症使基底干血流速度增加(+12.3±2.4%);p = 0.006, n = 6),但APP-PS1小鼠血流量减少(-11.4±1.2%;p & lt;0.0001, n = 8)。波生坦(50 mg/kg,急性腹腔注射)恢复APP-PS1小鼠脑血管反应性(+10.2±2.2%;p & lt;0.0001, n = 8),但对WT没有影响。与WT相比,APP-PS1脑后动脉FMD减少,波生坦(1 μmol/L, 30 min,或50 mg/kg/天,连续28天)使FMD正常化。结论:APP-PS1小鼠出现了脑血管内皮功能障碍。急性和慢性阻断内皮素受体可恢复内皮血管舒缩功能,提示恢复AD患者脑血管反应性的有希望的治疗方法。
{"title":"Endothelin Receptor Blockade Improves Cerebral Blood Flow-Mediated Dilation in a Mouse Model of Alzheimer's Disease.","authors":"Daniel Henrion, Philippe Bonnin, Emilie Vessieres, Anne-Laure Guihlot, Marc Iglarz, Bernard I Lévy","doi":"10.1159/000534614","DOIUrl":"10.1159/000534614","url":null,"abstract":"<p><strong>Introduction: </strong>Cerebral blood flow (CBF) is reduced in patients with Alzheimer's disease (AD). Flow-mediated dilation (FMD), which plays a key role in the regulation of blood flow, is attenuated by endothelin-1. We hypothesized that endothelin receptor blockade may improve CBF in AD.</p><p><strong>Methods: </strong>We investigated cerebrovascular reactivity in a mouse model of AD (APP-PS1; 5-6-month-old male subjects). We assessed the in vivo response to normoxic hypercapnia and in vitro FMD in isolated cerebral and mesenteric resistance arteries before and after endothelin receptor blockade (bosentan).</p><p><strong>Results: </strong>Normoxic hypercapnia increased basilar trunk blood flow velocity (+12.3 ± 2.4%; p = 0.006, n = 6) in wild-type (WT) mice but reduced blood flow in APP-PS1 mice (-11.4 ± 1.2%; p < 0.0001, n = 8). Bosentan (50 mg/kg, acute intraperitoneal injection) restored cerebrovascular reactivity in APP-PS1 mice (+10.2 ± 2.2%; p < 0.0001, n = 8) but had no effect in WT. FMD was reduced in the posterior cerebral artery of APP-PS1 compared to WT and was normalized by bosentan (1 μmol/L, 30 min, or 50 mg/kg/day for 28 days). FMD was similar in the mesenteric artery of APPS-PS1 and WT.</p><p><strong>Conclusion: </strong>APP-PS1 mice exhibited cerebrovascular endothelial dysfunction. Acute and chronic blockade of endothelin receptors restored endothelial vasomotor function, suggesting a promising therapeutic approach to restoring cerebral vasoreactivity in AD.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"273-282"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-29DOI: 10.1159/000532032
Madison D Williams, Michael T Bullock, Sean C Johnson, Nathan A Holland, Danielle M Vuncannon, Joani Zary Oswald, Shaquria P Adderley, David A Tulis
Introduction: Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases.
Methods: Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 μm) with/without PKA (PKI; 10 μm), MEK1/2 (PD98059; 10 μm), and PI3K (LY294002; 1 μm) blockade.
Results: PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2.
Discussion: Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.
{"title":"Protease-Activated Receptor 2 Controls Vascular Smooth Muscle Cell Proliferation in Cyclic AMP-Dependent Protein Kinase/Mitogen-Activated Protein Kinase Kinase 1/2-Dependent Manner.","authors":"Madison D Williams, Michael T Bullock, Sean C Johnson, Nathan A Holland, Danielle M Vuncannon, Joani Zary Oswald, Shaquria P Adderley, David A Tulis","doi":"10.1159/000532032","DOIUrl":"10.1159/000532032","url":null,"abstract":"<p><strong>Introduction: </strong>Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases.</p><p><strong>Methods: </strong>Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 μ<sc>m</sc>) with/without PKA (PKI; 10 μ<sc>m</sc>), MEK1/2 (PD98059; 10 μ<sc>m</sc>), and PI3K (LY294002; 1 μ<sc>m</sc>) blockade.</p><p><strong>Results: </strong>PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2.</p><p><strong>Discussion: </strong>Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"213-226"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41099912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-06-16DOI: 10.1159/000531035
Mónica Márquez, Matías Muñoz, Alexandra Córdova, Mariela Puebla, Xavier F Figueroa
Vascular system is a complex network in which different cell types and vascular segments must work in concert to regulate blood flow distribution and arterial blood pressure. Although paracrine/autocrine signaling is involved in the regulation of vasomotor tone, direct intercellular communication via gap junctions plays a central role in the control and coordination of vascular function in the microvascular network. Gap junctions are made up by connexin (Cx) proteins, and among the four Cxs expressed in the cardiovascular system (Cx37, Cx40, Cx43, and Cx45), Cx40 has emerged as a critical signaling pathway in the vessel wall. This Cx is predominantly found in the endothelium, but it is involved in the development of the cardiovascular system and in the coordination of endothelial and smooth muscle cell function along the length of the vessels. In addition, Cx40 participates in the control of vasomotor tone through the transmission of electrical signals from the endothelium to the underlying smooth muscle and in the regulation of arterial blood pressure by renin-angiotensin system in afferent arterioles. In this review, we discuss the participation of Cx40-formed channels in the development of cardiovascular system, control and coordination of vascular function, and regulation of arterial blood pressure.
{"title":"Connexin 40-Mediated Regulation of Systemic Circulation and Arterial Blood Pressure.","authors":"Mónica Márquez, Matías Muñoz, Alexandra Córdova, Mariela Puebla, Xavier F Figueroa","doi":"10.1159/000531035","DOIUrl":"10.1159/000531035","url":null,"abstract":"<p><p>Vascular system is a complex network in which different cell types and vascular segments must work in concert to regulate blood flow distribution and arterial blood pressure. Although paracrine/autocrine signaling is involved in the regulation of vasomotor tone, direct intercellular communication via gap junctions plays a central role in the control and coordination of vascular function in the microvascular network. Gap junctions are made up by connexin (Cx) proteins, and among the four Cxs expressed in the cardiovascular system (Cx37, Cx40, Cx43, and Cx45), Cx40 has emerged as a critical signaling pathway in the vessel wall. This Cx is predominantly found in the endothelium, but it is involved in the development of the cardiovascular system and in the coordination of endothelial and smooth muscle cell function along the length of the vessels. In addition, Cx40 participates in the control of vasomotor tone through the transmission of electrical signals from the endothelium to the underlying smooth muscle and in the regulation of arterial blood pressure by renin-angiotensin system in afferent arterioles. In this review, we discuss the participation of Cx40-formed channels in the development of cardiovascular system, control and coordination of vascular function, and regulation of arterial blood pressure.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"60 2","pages":"87-100"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10151553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-01DOI: 10.1159/000533321
Fen Tang, Kongqian Huang, Biyan Peng, Wen Deng, Ning Su, Fan Xu, Mingyuan Zhang, Haibin Zhong
Objective: The aim of the study was to evaluate the effect of the RhoA/ROCK inhibitor Fasudil on retinal neovascularization (NV) in vivo and angiogenesis in vitro.
Methods: C57BL/6 was used to establish an OIR model. First, RhoA/ROCK expression was first examined and compared between OIR and healthy controls. Then, we evaluated the effect of Fasudil on pathological retinal NV. Whole-mount retinal staining was performed. The percentage of NV area, the number of neovascular tufts (NVT), and branch points (BP) were quantified. Finally, human umbilical vein endothelial cells (HUVECs) were used to investigate the effect of Fasudil on angiogenesis.
Results: Real-time PCR and Western blotting showed that ROCK expression in retinal tissue was statistically upregulated in OIR. Furthermore, we found that Fasudil attenuated the percentage of NV area, the number of NVT, and BP significantly. In addition, Fasudil could suppress the proliferation and migration of HUVECs induced by VEGF.
Conclusions: RhoA/ROCK might be involved in the pathogenesis of OIR. And its inhibitor Fasudil could suppress retinal NV in vivo and angiogenesis in vitro. Fasudil may be a potential treatment strategy for retinal vascular diseases.
{"title":"RhoA/ROCK Signaling Is Involved in Pathological Retinal Neovascularization.","authors":"Fen Tang, Kongqian Huang, Biyan Peng, Wen Deng, Ning Su, Fan Xu, Mingyuan Zhang, Haibin Zhong","doi":"10.1159/000533321","DOIUrl":"10.1159/000533321","url":null,"abstract":"<p><strong>Objective: </strong>The aim of the study was to evaluate the effect of the RhoA/ROCK inhibitor Fasudil on retinal neovascularization (NV) in vivo and angiogenesis in vitro.</p><p><strong>Methods: </strong>C57BL/6 was used to establish an OIR model. First, RhoA/ROCK expression was first examined and compared between OIR and healthy controls. Then, we evaluated the effect of Fasudil on pathological retinal NV. Whole-mount retinal staining was performed. The percentage of NV area, the number of neovascular tufts (NVT), and branch points (BP) were quantified. Finally, human umbilical vein endothelial cells (HUVECs) were used to investigate the effect of Fasudil on angiogenesis.</p><p><strong>Results: </strong>Real-time PCR and Western blotting showed that ROCK expression in retinal tissue was statistically upregulated in OIR. Furthermore, we found that Fasudil attenuated the percentage of NV area, the number of NVT, and BP significantly. In addition, Fasudil could suppress the proliferation and migration of HUVECs induced by VEGF.</p><p><strong>Conclusions: </strong>RhoA/ROCK might be involved in the pathogenesis of OIR. And its inhibitor Fasudil could suppress retinal NV in vivo and angiogenesis in vitro. Fasudil may be a potential treatment strategy for retinal vascular diseases.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"183-192"},"PeriodicalIF":1.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10499770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachariah G Schonberger, Sophie J Y Huang, Radhika N Thakkar, Amar A Mamone, Daniyal I Khan, Natalie L Y Chow, Moeiz Ahmed, Namashi Sivaram, Yuki Bao, Vihirthan Kesavan, Jordan Côté, Clara Sun, Jashnoor Chhina, Brayden D Halvorson, Gabrielle H Alimorad, Nithin J Menon, Daniel Goldman, Stephanie J Frisbee
Research involving human subjects in ambulatory settings is a critical link in the chain comprising translational research, spanning preclinical research to human subject and patient cohort studies. There are presently a wide array of techniques and approaches available to investigators wishing to study blood flow, perfusion, and vascular structure and function in human subjects. In this multi-sectioned review, we discuss capillaroscopy, carotid intima-media thickness, flow-mediated dilation, laser Doppler flowmetry, near-infrared spectroscopy, peripheral arterial tonometry, pulse wave velocity, retinal fundus imaging, and vascular plethysmography. Each section contains a general overview and the physical basis of the technique followed by a discussion of the procedures involved and the necessary equipment, with attention paid to specific requirements or limitations. Subsequently, we detail which aspects of vascular function can be studied with a given technique, the analytical approach to the collected data, and the appropriate application and limitation(s) to the interpretation of the data collected. Finally, a modified scoping review provides a summary of how each assessment technique has been applied in previous studies. It is anticipated that this review will provide an efficient source of information and insight for preclinical investigators seeking to add translational aspects to their research programs.
{"title":"Assessments of Perfusion, Blood Flow, and Vascular Structure in Ambulatory Subjects: Guidance for Translational Research Scientists.","authors":"Zachariah G Schonberger, Sophie J Y Huang, Radhika N Thakkar, Amar A Mamone, Daniyal I Khan, Natalie L Y Chow, Moeiz Ahmed, Namashi Sivaram, Yuki Bao, Vihirthan Kesavan, Jordan Côté, Clara Sun, Jashnoor Chhina, Brayden D Halvorson, Gabrielle H Alimorad, Nithin J Menon, Daniel Goldman, Stephanie J Frisbee","doi":"10.1159/000527765","DOIUrl":"https://doi.org/10.1159/000527765","url":null,"abstract":"<p><p>Research involving human subjects in ambulatory settings is a critical link in the chain comprising translational research, spanning preclinical research to human subject and patient cohort studies. There are presently a wide array of techniques and approaches available to investigators wishing to study blood flow, perfusion, and vascular structure and function in human subjects. In this multi-sectioned review, we discuss capillaroscopy, carotid intima-media thickness, flow-mediated dilation, laser Doppler flowmetry, near-infrared spectroscopy, peripheral arterial tonometry, pulse wave velocity, retinal fundus imaging, and vascular plethysmography. Each section contains a general overview and the physical basis of the technique followed by a discussion of the procedures involved and the necessary equipment, with attention paid to specific requirements or limitations. Subsequently, we detail which aspects of vascular function can be studied with a given technique, the analytical approach to the collected data, and the appropriate application and limitation(s) to the interpretation of the data collected. Finally, a modified scoping review provides a summary of how each assessment technique has been applied in previous studies. It is anticipated that this review will provide an efficient source of information and insight for preclinical investigators seeking to add translational aspects to their research programs.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"60 1","pages":"12-68"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-08-16DOI: 10.1159/000533281
Timothy M Sveeggen, Anna Kosmach, Pooneh Bagher
Signaling across membranes is vital for tissue and organ function throughout the body. This is achieved through careful regulation of transmembrane channels allowing for passage of ions and second messengers to and from the cytosol and intracellular compartments, which can generate electrical impulses and trigger signaling cascades. Connexins and pannexins are among the most versatile transmembrane channel proteins, which shape cell behavior and tissue function with extraordinary finesse. In this volume, pannexins and connexins 37, 40, and 43 are reviewed [1–4], with special consideration for tissue specificity of expression, cell type-specific functions, and their roles in development and disease.
{"title":"What Is Next for Connexin and Pannexin?","authors":"Timothy M Sveeggen, Anna Kosmach, Pooneh Bagher","doi":"10.1159/000533281","DOIUrl":"10.1159/000533281","url":null,"abstract":"Signaling across membranes is vital for tissue and organ function throughout the body. This is achieved through careful regulation of transmembrane channels allowing for passage of ions and second messengers to and from the cytosol and intracellular compartments, which can generate electrical impulses and trigger signaling cascades. Connexins and pannexins are among the most versatile transmembrane channel proteins, which shape cell behavior and tissue function with extraordinary finesse. In this volume, pannexins and connexins 37, 40, and 43 are reviewed [1–4], with special consideration for tissue specificity of expression, cell type-specific functions, and their roles in development and disease.","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"60 2","pages":"69-72"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10149218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-06-07DOI: 10.1159/000529916
Chun-Kai Hsu, Shang-Jen Chang, Li-Yi Lim, Hsi-Hsien Chang, Stephen Shei-Dei Yang
N-methyl-D-aspartate (NMDA) receptors were found to be dysfunctional in hypertensive rats. Methyl palmitate (MP) has been shown to diminish the nicotine-induced increase in blood flow in the brainstem. The aim of this study was to determine how MP modulated NMDA-induced increased regional cerebral blood flow (rCBF) in normotensive (WKY), spontaneously hypertensive (SHR), and renovascular hypertensive (RHR) rats. The increase in rCBF after the topical application of experimental drugs was measured using laser Doppler flowmetry. Topical NMDA application induced an MK-801-sensitive increase in rCBF in anesthetized WKY rats, which was inhibited by MP pretreatments. This inhibition was prevented by pretreatment with chelerythrine (a PKC inhibitor). The NMDA-induced increase in rCBF was also inhibited by the PKC activator in a concentration-dependent manner. Neither MP nor MK-801 affected the increase in rCBF induced by the topical application of acetylcholine or sodium nitroprusside. Topical application of MP to the parietal cortex of SHRs, on the other hand, increased basal rCBF slightly but significantly. MP enhanced the NMDA-induced increase in rCBF in SHRs and RHRs. These results suggested that MP had a dual effect on the modulation of rCBF. MP appears to play a significant physiological role in CBF regulation.
{"title":"Methyl Palmitate Modulated NMDA-Induced Cerebral Hyperemia in Hypertensive Rats.","authors":"Chun-Kai Hsu, Shang-Jen Chang, Li-Yi Lim, Hsi-Hsien Chang, Stephen Shei-Dei Yang","doi":"10.1159/000529916","DOIUrl":"10.1159/000529916","url":null,"abstract":"<p><p>N-methyl-D-aspartate (NMDA) receptors were found to be dysfunctional in hypertensive rats. Methyl palmitate (MP) has been shown to diminish the nicotine-induced increase in blood flow in the brainstem. The aim of this study was to determine how MP modulated NMDA-induced increased regional cerebral blood flow (rCBF) in normotensive (WKY), spontaneously hypertensive (SHR), and renovascular hypertensive (RHR) rats. The increase in rCBF after the topical application of experimental drugs was measured using laser Doppler flowmetry. Topical NMDA application induced an MK-801-sensitive increase in rCBF in anesthetized WKY rats, which was inhibited by MP pretreatments. This inhibition was prevented by pretreatment with chelerythrine (a PKC inhibitor). The NMDA-induced increase in rCBF was also inhibited by the PKC activator in a concentration-dependent manner. Neither MP nor MK-801 affected the increase in rCBF induced by the topical application of acetylcholine or sodium nitroprusside. Topical application of MP to the parietal cortex of SHRs, on the other hand, increased basal rCBF slightly but significantly. MP enhanced the NMDA-induced increase in rCBF in SHRs and RHRs. These results suggested that MP had a dual effect on the modulation of rCBF. MP appears to play a significant physiological role in CBF regulation.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"137-147"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-11-10DOI: 10.1159/000527240
Brent Wakefield, Silvia Penuela
Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.
{"title":"Potential Implications of Exercise Training on Pannexin Expression and Function.","authors":"Brent Wakefield, Silvia Penuela","doi":"10.1159/000527240","DOIUrl":"10.1159/000527240","url":null,"abstract":"<p><p>Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"60 2","pages":"114-124"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10138452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-08-03DOI: 10.1159/000531647
Melissa R Dennis, Paulo W Pires, Christopher T Banek
Polycystic kidney disease (PKD) is one of the most common hereditary kidney diseases, which is characterized by progressive cyst growth and secondary hypertension. In addition to cystogenesis and renal abnormalities, patients with PKD can develop vascular abnormalities and cardiovascular complications. Progressive cyst growth substantially alters renal structure and culminates into end-stage renal disease. There remains no cure beyond renal transplantation, and treatment options remain largely limited to chronic renal replacement therapy. In addition to end-stage renal disease, patients with PKD also present with hypertension and cardiovascular disease, yet the timing and interactions between the cardiovascular and renal effects of PKD progression are understudied. Here, we review the vascular dysfunction found in clinical and preclinical models of PKD, including the clinical manifestations and relationship to hypertension, stroke, and related cardiovascular diseases. Finally, our discussion also highlights the critical questions and emerging areas in vascular research in PKD.
{"title":"Vascular Dysfunction in Polycystic Kidney Disease: A Mini-Review.","authors":"Melissa R Dennis, Paulo W Pires, Christopher T Banek","doi":"10.1159/000531647","DOIUrl":"10.1159/000531647","url":null,"abstract":"<p><p>Polycystic kidney disease (PKD) is one of the most common hereditary kidney diseases, which is characterized by progressive cyst growth and secondary hypertension. In addition to cystogenesis and renal abnormalities, patients with PKD can develop vascular abnormalities and cardiovascular complications. Progressive cyst growth substantially alters renal structure and culminates into end-stage renal disease. There remains no cure beyond renal transplantation, and treatment options remain largely limited to chronic renal replacement therapy. In addition to end-stage renal disease, patients with PKD also present with hypertension and cardiovascular disease, yet the timing and interactions between the cardiovascular and renal effects of PKD progression are understudied. Here, we review the vascular dysfunction found in clinical and preclinical models of PKD, including the clinical manifestations and relationship to hypertension, stroke, and related cardiovascular diseases. Finally, our discussion also highlights the critical questions and emerging areas in vascular research in PKD.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"125-136"},"PeriodicalIF":1.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9936445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}