Xiaofeng Ren, Huimin Wang, Xiaoman Lv, Yi Zhou, Yingyin Fan, Yanjun Yu, Christoph W Turck, Yuhui Chen, Longbao Lv, Yingzhou Hu, Hao Li, Wenchao Wang, Dongdong Qin, Xiaoli Feng, Xintian Hu
Complex brain diseases seriously endanger human health, and early diagnostic biomarkers and effective treatments are currently lacking. Due to ethical constraints on human research, establishing monkey models is crucial to address these issues. With the rapid development of technology, transgenic monkey models of a range of brain diseases, especially autism spectrum disorder (ASD), have been successfully established. However, to establish practical and effective brain disease models and subsequently apply them to disease mechanism and treatment studies, there is still a lack of a standard tool, i.e., a system for collecting and analyzing the daily behaviors of brain disease model monkeys. Therefore, with the goal of undertaking a comprehensive and quantitative study of behavioral phenotypes, we established a standard daily behavior collection and analysis system, including behavioral data collection protocols and a monkey daily behavior ethogram (MDBE) for rhesus and cynomolgus monkeys, which are the most commonly used non-human primates in model construction. Then, we used ASD as an application example after referring to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR), which is widely used in clinical disease diagnosis to obtain ASD core clinical symptoms. We then established a sub-ethogram (ASD monkey core behavior ethogram (MCBE-ASD)) specifically for quantitative assessment of the core clinical symptoms of an ASD monkey model based on MDBE. Subsequently, we demonstrated the high reproducibility of the system.
{"title":"Establishment of a standardized daily behavior collection and analysis system for brain disease models of rhesus and cynomolgus monkeys and its application in autism spectrum disorder.","authors":"Xiaofeng Ren, Huimin Wang, Xiaoman Lv, Yi Zhou, Yingyin Fan, Yanjun Yu, Christoph W Turck, Yuhui Chen, Longbao Lv, Yingzhou Hu, Hao Li, Wenchao Wang, Dongdong Qin, Xiaoli Feng, Xintian Hu","doi":"10.1631/jzus.B2400294","DOIUrl":"10.1631/jzus.B2400294","url":null,"abstract":"<p><p>Complex brain diseases seriously endanger human health, and early diagnostic biomarkers and effective treatments are currently lacking. Due to ethical constraints on human research, establishing monkey models is crucial to address these issues. With the rapid development of technology, transgenic monkey models of a range of brain diseases, especially autism spectrum disorder (ASD), have been successfully established. However, to establish practical and effective brain disease models and subsequently apply them to disease mechanism and treatment studies, there is still a lack of a standard tool, i.e., a system for collecting and analyzing the daily behaviors of brain disease model monkeys. Therefore, with the goal of undertaking a comprehensive and quantitative study of behavioral phenotypes, we established a standard daily behavior collection and analysis system, including behavioral data collection protocols and a monkey daily behavior ethogram (MDBE) for rhesus and cynomolgus monkeys, which are the most commonly used non-human primates in model construction. Then, we used ASD as an application example after referring to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR), which is widely used in clinical disease diagnosis to obtain ASD core clinical symptoms. We then established a sub-ethogram (ASD monkey core behavior ethogram (MCBE-ASD)) specifically for quantitative assessment of the core clinical symptoms of an ASD monkey model based on MDBE. Subsequently, we demonstrated the high reproducibility of the system.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 11","pages":"972-995"},"PeriodicalIF":4.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Lu, Siqi Bao, Hongke Luo, Qianming Chen, Misi Si
This systematic review and meta-analysis considered the results of randomized controlled clinical trials (RCTs) to evaluate the efficacy of systemic or local antibiotic therapy in peri-implantitis. Two independent authors screened publications from three electronic databases to include RCTs meeting all the inclusion and exclusion criteria. A meta-analysis was performed to evaluate the weighted mean differences in survival rate (SR) and changes in pocket probing depth (PPD), bone level (BL), and clinical attachment level (CAL). The study cohorts were defined as antibiotic and control groups with subgroups for analysis. Seven studies including 309 patients (390 implants) were considered. Within the limitations of this review, patients in the antibiotic groups exhibited significant improvements in PPD. Subgroup analysis indicated that the administration of systemic antibiotics or the use of antibiotics in non-surgical treatments did not result in a significant alteration in BL. It was established that the addition of antibiotics can ameliorate PPD and SR in the treatment of peri-implantitis, whether through surgical or non-surgical approaches, and also shows moderate performance regarding BL and CAL. Considering the lack of application of new technologies in the control group and the hardship of assessing the potential risks of antibiotics, careful clinical judgment is still necessary.
{"title":"Efficacy of adjunctive systemic or local antibiotic therapy in peri-implantitis: a systematic review and meta-analysis of randomized controlled clinical trials.","authors":"Yifan Lu, Siqi Bao, Hongke Luo, Qianming Chen, Misi Si","doi":"10.1631/jzus.B2300730","DOIUrl":"10.1631/jzus.B2300730","url":null,"abstract":"<p><p>This systematic review and meta-analysis considered the results of randomized controlled clinical trials (RCTs) to evaluate the efficacy of systemic or local antibiotic therapy in peri-implantitis. Two independent authors screened publications from three electronic databases to include RCTs meeting all the inclusion and exclusion criteria. A meta-analysis was performed to evaluate the weighted mean differences in survival rate (SR) and changes in pocket probing depth (PPD), bone level (BL), and clinical attachment level (CAL). The study cohorts were defined as antibiotic and control groups with subgroups for analysis. Seven studies including 309 patients (390 implants) were considered. Within the limitations of this review, patients in the antibiotic groups exhibited significant improvements in PPD. Subgroup analysis indicated that the administration of systemic antibiotics or the use of antibiotics in non-surgical treatments did not result in a significant alteration in BL. It was established that the addition of antibiotics can ameliorate PPD and SR in the treatment of peri-implantitis, whether through surgical or non-surgical approaches, and also shows moderate performance regarding BL and CAL. Considering the lack of application of new technologies in the control group and the hardship of assessing the potential risks of antibiotics, careful clinical judgment is still necessary.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 2","pages":"145-157"},"PeriodicalIF":4.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.
{"title":"ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis.","authors":"Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng","doi":"10.1631/jzus.B2300641","DOIUrl":"10.1631/jzus.B2300641","url":null,"abstract":"<p><p>Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-18"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li
Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)-associated esophageal cancer.
六价铬铬(VI)是一种公认的致癌物,可导致许多人类癌症,特别是呼吸道和消化道肿瘤的发生。然而,Cr(VI)在食管癌发生中的潜在功能和相关机制在很大程度上尚不清楚。在这里,永生化的人食管上皮细胞(HEECs)被诱导为恶性转化细胞,称为HEEC-Cr(VI)细胞,通过慢性暴露于Cr(VI),模拟食管肿瘤发生的过程。体外和体内实验表明,与亲代细胞HEECs相比,HEEC-Cr(VI)细胞在BALB/c裸鼠中获得了不依赖锚定生长的能力、更强的增殖能力、癌症干细胞特性以及形成皮下异种移植物的能力。此外,HEEC-Cr(VI)细胞表现出细胞运动性减弱和细胞粘附增强。有趣的是,急性暴露于Cr(VI)的HEECs未能表现出HEEC-Cr(VI)细胞的恶性表型,这表明Cr(VI)诱导的恶性转化,而不是Cr(VI)本身,是HEEC-Cr(VI)细胞肿瘤特征的原因。从机制上讲,慢性暴露于Cr(VI)诱导Notch信号的异常激活,这对于维持HEEC-Cr(VI)细胞的恶性增殖能力和干细胞性至关重要。正如预期的那样,N-[N-(3,5-二氟苯乙酰基)- l -alanyl]- s -苯甘氨酸t-丁基酯(DAPT),一种Notch通路抑制剂,显著降低HEEC-Cr(VI)细胞的癌变表型。总之,我们的研究阐明了Cr(VI)诱导食管癌发生的分子机制,为进一步开展Cr(VI)相关食管癌的基础研究和临床治疗策略提供了新的思路。
{"title":"Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway.","authors":"Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li","doi":"10.1631/jzus.B2300896","DOIUrl":"10.1631/jzus.B2300896","url":null,"abstract":"<p><p>Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, <i>N</i>-[<i>N</i>-(3,5-difluorophenacetyl)-L-alanyl]-<i>S</i>-phenylglycine <i>t</i>-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)-associated esophageal cancer.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 1","pages":"76-91"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.
{"title":"ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis.","authors":"Shu Sian How, Sheila Nathan, Su Datt Lam, Sylvia Chieng","doi":"10.1631/jzus.B2300641","DOIUrl":"10.1631/jzus.B2300641","url":null,"abstract":"<p><p>Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 1","pages":"58-75"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li
Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)-associated esophageal cancer.
{"title":"Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway.","authors":"Yilin Zhu, Fanrong Liu, Lei Liu, Jinfu Wang, Fengyuan Gao, Lan Ye, Honglei Wu, Chengjun Zhou, Guimei Lin, Xiaogang Zhao, Peichao Li","doi":"10.1631/jzus.B2300896","DOIUrl":"10.1631/jzus.B2300896","url":null,"abstract":"<p><p>Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, <i>N</i>-[<i>N</i>-(3,5-difluorophenacetyl)-L-alanyl]-<i>S</i>-phenylglycine <i>t</i>-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)-associated esophageal cancer.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-16"},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
{"title":"Artificial intelligence for brain disease diagnosis using electroencephalogram signals.","authors":"Shunuo Shang, Yingqian Shi, Yajie Zhang, Mengxue Liu, Hong Zhang, Ping Wang, Liujing Zhuang","doi":"10.1631/jzus.B2400103","DOIUrl":"10.1631/jzus.B2400103","url":null,"abstract":"<p><p>Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"914-940"},"PeriodicalIF":4.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyi Zheng, Xiaojie Chen, Yi Wang, Zhong Chen, Di Wu
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
{"title":"Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy.","authors":"Yuyi Zheng, Xiaojie Chen, Yi Wang, Zhong Chen, Di Wu","doi":"10.1631/jzus.B2300839","DOIUrl":"10.1631/jzus.B2300839","url":null,"abstract":"<p><p>Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"890-913"},"PeriodicalIF":4.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
嗅球(OB)是嗅觉系统的第一个中继站,起着关键枢纽的作用。它能在不断变化的环境中准确无误地表达气味信息。作为嗅球中唯一的输出神经元,二尖瓣/簇细胞编码气味特征和浓度等信息。最近,人们对 OB 中气味表征和编码的神经策略和机制进行了广泛研究。在此,我们回顾了这一课题的主要进展。我们首先回顾了参与气味表征的神经元和神经回路,包括外鼻孔中的不同细胞类型以及外鼻孔内外的神经回路。然后,我们将讨论两种不同的编码策略--空间编码和时间编码--是如何在啮齿动物的外显子中发挥作用的。最后,我们将讨论这一研究课题未来的潜在方向。总之,这篇综述全面描述了我们目前对气味信息如何通过 OB 中的二尖瓣/簇细胞表示和编码的理解。
{"title":"Odor representation and coding by the mitral/tufted cells in the olfactory bulb.","authors":"Panke Wang, Shan Li, An'an Li","doi":"10.1631/jzus.B2400051","DOIUrl":"10.1631/jzus.B2400051","url":null,"abstract":"<p><p>The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"824-840"},"PeriodicalIF":4.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cockayne syndrome (CS) group B (CSB), which results from mutations in the excision repair cross-complementation group 6 (ERCC6) genes, which produce CSB protein, is an autosomal recessive disease characterized by multiple progressive disorders including growth failure, microcephaly, skin photosensitivity, and premature aging. Clinical data show that brain atrophy, demyelination, and calcification are the main neurological manifestations of CS, which progress with time. Neuronal loss and calcification occur in various brain areas, particularly the cerebellum and basal ganglia, resulting in dyskinesia, ataxia, and limb tremors in CSB patients. However, the understanding of neurodevelopmental defects in CS has been constrained by the lack of significant neurodevelopmental and functional abnormalities observed in CSB-deficient mice. In this review, we focus on elucidating the protein structure and distribution of CSB and delve into the impact of CSB mutations on the development and function of the nervous system. In addition, we provide an overview of research models that have been instrumental in exploring CS disorders, with a forward-looking perspective on the substantial contributions that brain organoids are poised to further advance this field.
{"title":"Perspectives in the investigation of Cockayne syndrome group B neurological disease: the utility of patient-derived brain organoid models.","authors":"Xintai Wang, Rui Zheng, Marina Dukhinova, Luxi Wang, Ying Shen, Zhijie Lin","doi":"10.1631/jzus.B2300712","DOIUrl":"10.1631/jzus.B2300712","url":null,"abstract":"<p><p>Cockayne syndrome (CS) group B (CSB), which results from mutations in the excision repair cross-complementation group 6 (<i>ERCC6</i>) genes, which produce CSB protein, is an autosomal recessive disease characterized by multiple progressive disorders including growth failure, microcephaly, skin photosensitivity, and premature aging. Clinical data show that brain atrophy, demyelination, and calcification are the main neurological manifestations of CS, which progress with time. Neuronal loss and calcification occur in various brain areas, particularly the cerebellum and basal ganglia, resulting in dyskinesia, ataxia, and limb tremors in CSB patients. However, the understanding of neurodevelopmental defects in CS has been constrained by the lack of significant neurodevelopmental and functional abnormalities observed in CSB-deficient mice. In this review, we focus on elucidating the protein structure and distribution of CSB and delve into the impact of CSB mutations on the development and function of the nervous system. In addition, we provide an overview of research models that have been instrumental in exploring CS disorders, with a forward-looking perspective on the substantial contributions that brain organoids are poised to further advance this field.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 10","pages":"878-889"},"PeriodicalIF":4.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}