Wenxin DU, Qingyang Zhu, Xiangting Jing, Weijie Hu, Yao Zhuang, Yijie Jiang, Chongwei Jin
The use of nitrification inhibitors has been suggested as a strategy to decrease cadmium (Cd) accumulation in crops. However, the most efficient nitrification inhibitor for mitigating crop Cd accumulation remains to be elucidated, and whether and how changes in soil microbial structure are involved in this process also remains unclear. To address these questions, this study applied three commercial nitrification inhibitors, namely, dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin (NP), to pakchoi. The results showed that both DCD and DMPP (but not NP) could efficiently decrease Cd concentrations in pakchoi in urea- and ammonium-fertilized soils. In addition, among the three tested nitrification inhibitors, DMPP was the most efficient in decreasing the Cd concentration in pakchoi. The nitrification inhibitors decreased pakchoi Cd concentrations by suppressing acidification-induced Cd availability and reshaping the soil microbial structure; the most effective nitrification inhibitor was DMPP. Ammonia oxidation generates the most protons during nitrification and is inhibited by nitrification inhibitors. Changes in environmental factors and predatory bacterial abundance caused by the nitrification inhibitors changed the soil microbial structure and increased the potential participants in plant Cd accumulation. In summary, our study identified DMPP as the most efficient nitrification inhibitor for mitigating crop Cd contamination and observed that the soil microbial structural changes caused by the nitrification inhibitors contributed to decreasing Cd concentration in pakchoi.
{"title":"Comparison of nitrification inhibitors for mitigating cadmium accumulation in pakchoi and their associated microbial mechanisms.","authors":"Wenxin DU, Qingyang Zhu, Xiangting Jing, Weijie Hu, Yao Zhuang, Yijie Jiang, Chongwei Jin","doi":"10.1631/jzus.B2300449","DOIUrl":"10.1631/jzus.B2300449","url":null,"abstract":"<p><p>The use of nitrification inhibitors has been suggested as a strategy to decrease cadmium (Cd) accumulation in crops. However, the most efficient nitrification inhibitor for mitigating crop Cd accumulation remains to be elucidated, and whether and how changes in soil microbial structure are involved in this process also remains unclear. To address these questions, this study applied three commercial nitrification inhibitors, namely, dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin (NP), to pakchoi. The results showed that both DCD and DMPP (but not NP) could efficiently decrease Cd concentrations in pakchoi in urea- and ammonium-fertilized soils. In addition, among the three tested nitrification inhibitors, DMPP was the most efficient in decreasing the Cd concentration in pakchoi. The nitrification inhibitors decreased pakchoi Cd concentrations by suppressing acidification-induced Cd availability and reshaping the soil microbial structure; the most effective nitrification inhibitor was DMPP. Ammonia oxidation generates the most protons during nitrification and is inhibited by nitrification inhibitors. Changes in environmental factors and predatory bacterial abundance caused by the nitrification inhibitors changed the soil microbial structure and increased the potential participants in plant Cd accumulation. In summary, our study identified DMPP as the most efficient nitrification inhibitor for mitigating crop Cd contamination and observed that the soil microbial structural changes caused by the nitrification inhibitors contributed to decreasing Cd concentration in pakchoi.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 9","pages":"773-788"},"PeriodicalIF":4.7,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), sirtuin 3 (SIRT3), and nuclear factor erythroid 2-related factor 2 (Nrf2). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.
{"title":"Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis.","authors":"Hai Zou, Mengyu Zhang, Xue Yang, Huafeng Shou, Zhenglin Chen, Quanfeng Zhu, Ting Luo, Xiaozhou Mou, Xiaoyi Chen","doi":"10.1631/jzus.B2300691","DOIUrl":"10.1631/jzus.B2300691","url":null,"abstract":"<p><p>Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (<i>NLRP3</i>), <i>caspase-1</i>, and gasdermin D (<i>GSDMD</i>). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (<i>AMPK</i>), peroxisome proliferator-activated receptor γ coactivator-1α (<i>PGC-1α</i>), sirtuin 3 (<i>SIRT3</i>), and nuclear factor erythroid 2-related factor 2 (<i>Nrf2</i>). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 9","pages":"756-772"},"PeriodicalIF":4.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei Liu, Haiyu Long, Shuai He, Han Cheng, Erdong Li, Siyu Cheng, Mengdi Liang, Zhengwei Liu, Zhen Guo, Hao Shi
Selenium nanoparticles (SeNPs) have garnered extensive research interest and shown promising applications across diverse fields owing to their distinctive properties, including antioxidant, anticancer, and antibacterial activity (Ojeda et al., 2020; Qu et al., 2023; Zambonino et al., 2021, 2023). Among the various approaches employed for SeNP synthesis, green synthesis has emerged as a noteworthy and eco-friendly methodology. Keshtmand et al. (2023) underscored the significance of green-synthesized SeNPs, presenting a compelling avenue in this domain. This innovative strategy harnesses the potential of natural resources, such as plant extracts or microorganisms, to facilitate the production of SeNPs.
{"title":"Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from <i>Bacillus paramycoides</i>.","authors":"Pei Liu, Haiyu Long, Shuai He, Han Cheng, Erdong Li, Siyu Cheng, Mengdi Liang, Zhengwei Liu, Zhen Guo, Hao Shi","doi":"10.1631/jzus.B2300738","DOIUrl":"10.1631/jzus.B2300738","url":null,"abstract":"<p><p>Selenium nanoparticles (SeNPs) have garnered extensive research interest and shown promising applications across diverse fields owing to their distinctive properties, including antioxidant, anticancer, and antibacterial activity (Ojeda et al., 2020; Qu et al., 2023; Zambonino et al., 2021, 2023). Among the various approaches employed for SeNP synthesis, green synthesis has emerged as a noteworthy and eco-friendly methodology. Keshtmand et al. (2023) underscored the significance of green-synthesized SeNPs, presenting a compelling avenue in this domain. This innovative strategy harnesses the potential of natural resources, such as plant extracts or microorganisms, to facilitate the production of SeNPs.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 9","pages":"789-795"},"PeriodicalIF":4.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liming Lin, Jingjing Tao, Ying Meng, Yichao Gan, Xin He, Shu Li, Jiawei Zhang, Feiqiong Gao, Dijia Xin, Luyao Wang, Yili Fan, Boxiao Chen, Zhimin Lu, Yang Xu
Although significant progress has been made in the development of novel targeted drugs for the treatment of acute myeloid leukemia (AML) in recent years, chemotherapy still remains the mainstay of treatment and the overall survival is poor in most patients. Here, we demonstrated the antileukemia activity of a novel small molecular compound NL101, which is formed through the modification on bendamustine with a suberanilohydroxamic acid (SAHA) radical. NL101 suppresses the proliferation of myeloid malignancy cells and primary AML cells. It induces DNA damage and caspase 3-mediated apoptosis. A genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) library screen revealed that phosphatase and tensin homologous (PTEN) gene is critical for the regulation of cell survival upon NL101 treatment. The knockout or inhibition of PTEN significantly reduced NL101-induced apoptosis in AML and myelodysplastic syndrome (MDS) cells, accompanied by the activation of protein kinase B (AKT) signaling pathway. The inhibition of mammalian target of rapamycin (mTOR) by rapamycin enhanced the sensitivity of AML cells to NL101-induced cell death. These findings uncover PTEN protein expression as a major determinant of chemosensitivity to NL101 and provide a novel strategy to treat AML with the combination of NL101 and rapamycin.
尽管近年来在开发治疗急性髓性白血病(AML)的新型靶向药物方面取得了重大进展,但化疗仍是治疗的主要手段,大多数患者的总生存率很低。在这里,我们证明了一种新型小分子化合物 NL101 的抗白血病活性,该化合物是通过用亚伯尼羟肟酸(SAHA)自由基修饰苯达莫司汀而形成的。NL101 能抑制髓系恶性肿瘤细胞和原发性急性髓系白血病细胞的增殖。它能诱导 DNA 损伤和 caspase 3 介导的细胞凋亡。一项全基因组范围的聚类有规则间隔短回文重复序列(CRISPR)文库筛选发现,磷酸酶和天丝同源(PTEN)基因对NL101处理后细胞存活的调控至关重要。敲除或抑制PTEN能显著减少NL101诱导的急性髓细胞白血病和骨髓增生异常综合征(MDS)细胞凋亡,同时激活蛋白激酶B(AKT)信号通路。雷帕霉素对哺乳动物雷帕霉素靶标(mTOR)的抑制增强了 AML 细胞对 NL101 诱导的细胞死亡的敏感性。这些发现揭示了PTEN蛋白表达是NL101化疗敏感性的主要决定因素,并为NL101和雷帕霉素联合治疗AML提供了一种新策略。
{"title":"Genome-wide CRISPR screening identifies critical role of phosphatase and tensin homologous (<i>PTEN</i>) in sensitivity of acute myeloid leukemia to chemotherapy.","authors":"Liming Lin, Jingjing Tao, Ying Meng, Yichao Gan, Xin He, Shu Li, Jiawei Zhang, Feiqiong Gao, Dijia Xin, Luyao Wang, Yili Fan, Boxiao Chen, Zhimin Lu, Yang Xu","doi":"10.1631/jzus.B2300555","DOIUrl":"10.1631/jzus.B2300555","url":null,"abstract":"<p><p>Although significant progress has been made in the development of novel targeted drugs for the treatment of acute myeloid leukemia (AML) in recent years, chemotherapy still remains the mainstay of treatment and the overall survival is poor in most patients. Here, we demonstrated the antileukemia activity of a novel small molecular compound NL101, which is formed through the modification on bendamustine with a suberanilohydroxamic acid (SAHA) radical. NL101 suppresses the proliferation of myeloid malignancy cells and primary AML cells. It induces DNA damage and caspase 3-mediated apoptosis. A genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) library screen revealed that phosphatase and tensin homologous (<i>PTEN</i>) gene is critical for the regulation of cell survival upon NL101 treatment. The knockout or inhibition of <i>PTEN</i> significantly reduced NL101-induced apoptosis in AML and myelodysplastic syndrome (MDS) cells, accompanied by the activation of protein kinase B (AKT) signaling pathway. The inhibition of mammalian target of rapamycin (mTOR) by rapamycin enhanced the sensitivity of AML cells to NL101-induced cell death. These findings uncover PTEN protein expression as a major determinant of chemosensitivity to NL101 and provide a novel strategy to treat AML with the combination of NL101 and rapamycin.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"700-710"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingjian Zhang, Fangfang Zhang, Zhiyuan Ma, Jie Jin
BACKGROUND: Hepatitis B virus (HBV) is one of the most widespread viruses worldwide and a major cause of hepatitis, cirrhosis, and hepatocellular carcinoma. Previous studies have revealed the impacts of HBV infection on fertility. An increasing number of infertile couples with chronic hepatitis B (CHB) virus infection choose assisted reproductive technology (ART) to meet their fertility needs. Despite the high prevalence of HBV, the effects of HBV infection on assisted reproduction treatment remain limited and contradictory. OBJECTIVE: The aim of this study was to provide a comprehensive overview of the effect of HBV infection on fertility and discuss its effects on pregnancy outcomes, vertical transmission, pregnancy complications, and viral activity during ART treatment. METHODS: We conducted a literature search in PubMed for studies on HBV infection and ART published from 1996 to 2022. RESULTS: HBV infection negatively affected fertility in both males and females. Existing research shows that HBV infection may increase the risk of pregnancy complications in couples undergoing assisted reproduction treatment. The impact of HBV infection on the pregnancy outcomes of ART is still controversial. Current evidence does not support that ART increases the risk of vertical transmission of HBV, while relevant studies are limited. With the development of ART, the risk of HBV reactivation (HBVr) is increasing, especially due to the wide application of immunosuppressive therapy. CONCLUSIONS: Regular HBV infection screening and HBVr risk stratification and management are essential to prevent HBVr during ART. The determination of optimal strategy and timing of prophylactic anti-HBV therapy during ART still needs further investigation.
{"title":"Hepatitis B virus infection, infertility, and assisted reproduction.","authors":"Lingjian Zhang, Fangfang Zhang, Zhiyuan Ma, Jie Jin","doi":"10.1631/jzus.B2300261","DOIUrl":"10.1631/jzus.B2300261","url":null,"abstract":"<p><p><b>BACKGROUND</b>: Hepatitis B virus (HBV) is one of the most widespread viruses worldwide and a major cause of hepatitis, cirrhosis, and hepatocellular carcinoma. Previous studies have revealed the impacts of HBV infection on fertility. An increasing number of infertile couples with chronic hepatitis B (CHB) virus infection choose assisted reproductive technology (ART) to meet their fertility needs. Despite the high prevalence of HBV, the effects of HBV infection on assisted reproduction treatment remain limited and contradictory. <b>OBJECTIVE</b>: The aim of this study was to provide a comprehensive overview of the effect of HBV infection on fertility and discuss its effects on pregnancy outcomes, vertical transmission, pregnancy complications, and viral activity during ART treatment. <b>METHODS</b>: We conducted a literature search in PubMed for studies on HBV infection and ART published from 1996 to 2022. <b>RESULTS</b>: HBV infection negatively affected fertility in both males and females. Existing research shows that HBV infection may increase the risk of pregnancy complications in couples undergoing assisted reproduction treatment. The impact of HBV infection on the pregnancy outcomes of ART is still controversial. Current evidence does not support that ART increases the risk of vertical transmission of HBV, while relevant studies are limited. With the development of ART, the risk of HBV reactivation (HBVr) is increasing, especially due to the wide application of immunosuppressive therapy. <b>CONCLUSIONS</b>: Regular HBV infection screening and HBVr risk stratification and management are essential to prevent HBVr during ART. The determination of optimal strategy and timing of prophylactic anti-HBV therapy during ART still needs further investigation.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"672-685"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Yang, Xiaolin Gu, Jingsong He, Yongxian Hu, Zhen Cai
Waldenström macroglobulinemia (WM) is characterized by lymphoplasmacytic lymphoma associated with large amounts of monoclonal immunoglobulin M (IgM) protein (Owen et al., 2003). Common signs and symptoms include fatigue due to anemia, lymph node enlargement, hepatosplenomegaly, thrombocytopenia, symptoms related to high viscosity, and peripheral neuropathy, among others. Despite significant advances in WM treatment, this type of indolent lymphoma remains incurable, with a wide array of patient outcomes (Ruan et al., 2020). In recent years, chimeric antigen receptor T (CAR-T) cell therapy targeting cluster of differentiation 19 (CD19) has shown unprecedented response rates and durability in the treatment of B-cell malignancies. In this report, we describe a challenging case of WM that involved multiple extramedullary sites, relapsed, and was refractory to chemotherapy, immunotherapy, and targeted therapy. After anti-CD19 CAR-T cell therapy, the tumor burden significantly decreased and the patient's condition remained stable at the writing of this report.
瓦尔登斯特伦巨球蛋白血症(WM)的特征是伴有大量单克隆免疫球蛋白 M(IgM)蛋白的淋巴浆细胞性淋巴瘤(Owen et al.)常见的体征和症状包括贫血引起的疲劳、淋巴结肿大、肝脾肿大、血小板减少、高粘度相关症状和周围神经病变等。尽管 WM 的治疗取得了重大进展,但这种类型的不显性淋巴瘤仍无法治愈,患者的预后各不相同(Ruan 等人,2020 年)。近年来,以分化簇 19(CD19)为靶点的嵌合抗原受体 T(CAR-T)细胞疗法在治疗 B 细胞恶性肿瘤方面显示出前所未有的反应率和持久性。在本报告中,我们描述了一个具有挑战性的 WM 病例,该病例累及多个髓外部位,病情复发,对化疗、免疫疗法和靶向疗法均难治。经过抗 CD19 CAR-T 细胞治疗后,肿瘤负荷明显减轻,截至本报告撰写时,患者的病情仍保持稳定。
{"title":"Waldenström macroglobulinemia: a challenging case treated with anti-CD19 CAR-T cell therapy.","authors":"Yang Yang, Xiaolin Gu, Jingsong He, Yongxian Hu, Zhen Cai","doi":"10.1631/jzus.B2300835","DOIUrl":"10.1631/jzus.B2300835","url":null,"abstract":"<p><p>Waldenström macroglobulinemia (WM) is characterized by lymphoplasmacytic lymphoma associated with large amounts of monoclonal immunoglobulin M (IgM) protein (Owen et al., 2003). Common signs and symptoms include fatigue due to anemia, lymph node enlargement, hepatosplenomegaly, thrombocytopenia, symptoms related to high viscosity, and peripheral neuropathy, among others. Despite significant advances in WM treatment, this type of indolent lymphoma remains incurable, with a wide array of patient outcomes (Ruan et al., 2020). In recent years, chimeric antigen receptor T (CAR-T) cell therapy targeting cluster of differentiation 19 (CD19) has shown unprecedented response rates and durability in the treatment of B-cell malignancies. In this report, we describe a challenging case of WM that involved multiple extramedullary sites, relapsed, and was refractory to chemotherapy, immunotherapy, and targeted therapy. After anti-CD19 CAR-T cell therapy, the tumor burden significantly decreased and the patient's condition remained stable at the writing of this report.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"719-722"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents a multi-center clinical data management platform that facilitates unified and structured management of real-world data and serves as an ideal tool to enhance the quality and progress of clinical research related to severe acute pancreatitis (SAP). The use of the platform enables clinical teams to obtain safe, accurate, structurally unified, traceable, scene-clear, and fully functional real-world medical data in the diagnosis, treatment, and research of acute pancreatitis (AP).
{"title":"A novel clinical data management platform for acute pancreatitis.","authors":"Shiyin Chen, Cheng Zhang, Zhi'en Wang, Jian Zhang, Wenqiao Yu, Yanshuai Wang, Weiwei Si, Tingbo Liang, Yun Zhang","doi":"10.1631/jzus.B2300539","DOIUrl":"10.1631/jzus.B2300539","url":null,"abstract":"<p><p>This study presents a multi-center clinical data management platform that facilitates unified and structured management of real-world data and serves as an ideal tool to enhance the quality and progress of clinical research related to severe acute pancreatitis (SAP). The use of the platform enables clinical teams to obtain safe, accurate, structurally unified, traceable, scene-clear, and fully functional real-world medical data in the diagnosis, treatment, and research of acute pancreatitis (AP).</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"711-718"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: The present study used single-cell RNA sequencing (scRNA-seq) to characterize the cellular composition of ovarian carcinosarcoma (OCS) and identify its molecular characteristics.
Methods: scRNA-seq was performed in resected primary OCS for an in-depth analysis of tumor cells and the tumor microenvironment. Immunohistochemistry staining was used for validation. The scRNA-seq data of OCS were compared with those of high-grade serous ovarian carcinoma (HGSOC) tumors and other OCS tumors.
Results: Both malignant epithelial and malignant mesenchymal cells were observed in the OCS patient of this study. We identified four epithelial cell subclusters with different biological roles. Among them, epithelial subcluster 4 presented high levels of breast cancer type 1 susceptibility protein homolog (BRCA1) and DNA topoisomerase 2-α (TOP2A) expression and was related to drug resistance and cell cycle. We analyzed the interaction between epithelial and mesenchymal cells and found that fibroblast growth factor (FGF) and pleiotrophin (PTN) signalings were the main pathways contributing to communication between these cells. Moreover, we compared the malignant epithelial and mesenchymal cells of this OCS tumor with our previous published HGSOC scRNA-seq data and OCS data. All the epithelial subclusters in the OCS tumor could be found in the HGSOC samples. Notably, the mesenchymal subcluster C14 exhibited specific expression patterns in the OCS tumor, characterized by elevated expression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1), collagen type XXIII α1 chain (COL23A1), cholecystokinin (CCK), bone morphogenetic protein 7 (BMP7), PTN, Wnt inhibitory factor 1 (WIF1), and insulin-like growth factor 2 (IGF2). Moreover, this subcluster showed distinct characteristics when compared with both another previously published OCS tumor and normal ovarian tissue.
Conclusions: This study provides the single-cell transcriptomics signature of human OCS, which constitutes a new resource for elucidating OCS diversity.
{"title":"Single-cell transcriptomics reveals tumor landscape in ovarian carcinosarcoma.","authors":"Junfen Xu, Mengyan Tu","doi":"10.1631/jzus.B2300407","DOIUrl":"10.1631/jzus.B2300407","url":null,"abstract":"<p><strong>Objectives: </strong>The present study used single-cell RNA sequencing (scRNA-seq) to characterize the cellular composition of ovarian carcinosarcoma (OCS) and identify its molecular characteristics.</p><p><strong>Methods: </strong>scRNA-seq was performed in resected primary OCS for an in-depth analysis of tumor cells and the tumor microenvironment. Immunohistochemistry staining was used for validation. The scRNA-seq data of OCS were compared with those of high-grade serous ovarian carcinoma (HGSOC) tumors and other OCS tumors.</p><p><strong>Results: </strong>Both malignant epithelial and malignant mesenchymal cells were observed in the OCS patient of this study. We identified four epithelial cell subclusters with different biological roles. Among them, epithelial subcluster 4 presented high levels of breast cancer type 1 susceptibility protein homolog (<i>BRCA1</i>) and DNA topoisomerase 2-α (<i>TOP2A</i>) expression and was related to drug resistance and cell cycle. We analyzed the interaction between epithelial and mesenchymal cells and found that fibroblast growth factor (FGF) and pleiotrophin (PTN) signalings were the main pathways contributing to communication between these cells. Moreover, we compared the malignant epithelial and mesenchymal cells of this OCS tumor with our previous published HGSOC scRNA-seq data and OCS data. All the epithelial subclusters in the OCS tumor could be found in the HGSOC samples. Notably, the mesenchymal subcluster C14 exhibited specific expression patterns in the OCS tumor, characterized by elevated expression of cytochrome P450 family 24 subfamily A member 1 (<i>CYP24A1</i>), collagen type XXIII α1 chain (<i>COL23A1</i>), cholecystokinin (<i>CCK</i>), bone morphogenetic protein 7 (<i>BMP7</i>), <i>PTN</i>, Wnt inhibitory factor 1 (<i>WIF1</i>), and insulin-like growth factor 2 (<i>IGF2</i>). Moreover, this subcluster showed distinct characteristics when compared with both another previously published OCS tumor and normal ovarian tissue.</p><p><strong>Conclusions: </strong>This study provides the single-cell transcriptomics signature of human OCS, which constitutes a new resource for elucidating OCS diversity.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"686-699"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huayuan Xiang, Chenxuan Bao, Qiaoqiao Chen, Qing Gao, Nan Wang, Qianqian Gao, Lingxiang Mao
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
细胞外囊泡(EVs)是一种纳米级双层囊泡,几乎所有细胞类型都会脱落或分泌这种囊泡。包括蛋白质、脂质、编码和非编码 RNA 以及线粒体 DNA 在内的多种生物大分子可被选择性地包裹到 EVs 中,并被输送到附近和远处的受体细胞,从而导致受体细胞发生改变,这表明 EVs 在细胞间通信中发挥着重要作用。EVs 在生理和病理过程中发挥着有效作用,可用作诊断和治疗工具。目前,虽然供体细胞中外泌体的生物生成和分泌机制已十分清楚,但受体细胞识别和吸收EV的分子机制仍不清楚。本综述总结了目前对EVs在受体细胞中从识别、摄取到货物释放的生物学过程的分子机制的理解。此外,我们还强调了EVs如何在摄取后逃避溶酶体内降解,从而释放货物,这对于将EVs用作药物靶向递送载体的研究至关重要。了解支配EV摄取的细胞过程对于揭示EV的功能以及相关的临床应用非常重要。
{"title":"Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release.","authors":"Huayuan Xiang, Chenxuan Bao, Qiaoqiao Chen, Qing Gao, Nan Wang, Qianqian Gao, Lingxiang Mao","doi":"10.1631/jzus.B2300566","DOIUrl":"10.1631/jzus.B2300566","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"633-655"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control, noninvasiveness, and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore, optogenetic techniques can provide new insights into oral biological processes at different levels, ranging from the subcellular and cellular levels to neural circuits and behavioral models. Here, we introduce the origins of optogenetics and highlight the recent progress of optogenetic approaches in oral and craniofacial research, focusing on the ability to apply optogenetics to the study of basic scientific neural mechanisms and to establish different oral behavioral test models in vivo (orofacial movement, licking, eating, and drinking), such as channelrhodopsin (ChR), archaerhodopsin (Arch), and halorhodopsin from Natronomonas pharaonis (NpHR). We also review the synergic and antagonistic effects of optogenetics in preclinical studies of trigeminal neuralgia and maxillofacial cellulitis. In addition, optogenetic tools have been used to control the neurogenic differentiation of dental pulp stem cells in translational studies. Although the scope of optogenetic tools is increasing, there are limited large animal experiments and clinical studies in dental research. Potential future directions include exploring therapeutic strategies for addressing loss of taste in patients with coronavirus disease 2019 (COVID-19), studying oral bacterial biofilms, enhancing craniomaxillofacial and periodontal tissue regeneration, and elucidating the possible pathogenesis of dry sockets, xerostomia, and burning mouth syndrome.
{"title":"Optogenetics in oral and craniofacial research.","authors":"Qinmeng Zhang, Luyao Song, Mengdie Fu, Jin He, Guoli Yang, Zhiwei Jiang","doi":"10.1631/jzus.B2300322","DOIUrl":"10.1631/jzus.B2300322","url":null,"abstract":"<p><p>Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control, noninvasiveness, and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore, optogenetic techniques can provide new insights into oral biological processes at different levels, ranging from the subcellular and cellular levels to neural circuits and behavioral models. Here, we introduce the origins of optogenetics and highlight the recent progress of optogenetic approaches in oral and craniofacial research, focusing on the ability to apply optogenetics to the study of basic scientific neural mechanisms and to establish different oral behavioral test models in vivo (orofacial movement, licking, eating, and drinking), such as channelrhodopsin (ChR), archaerhodopsin (Arch), and halorhodopsin from <i>Natronomonas pharaonis</i> (NpHR). We also review the synergic and antagonistic effects of optogenetics in preclinical studies of trigeminal neuralgia and maxillofacial cellulitis. In addition, optogenetic tools have been used to control the neurogenic differentiation of dental pulp stem cells in translational studies. Although the scope of optogenetic tools is increasing, there are limited large animal experiments and clinical studies in dental research. Potential future directions include exploring therapeutic strategies for addressing loss of taste in patients with coronavirus disease 2019 (COVID-19), studying oral bacterial biofilms, enhancing craniomaxillofacial and periodontal tissue regeneration, and elucidating the possible pathogenesis of dry sockets, xerostomia, and burning mouth syndrome.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 8","pages":"656-671"},"PeriodicalIF":4.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}