首页 > 最新文献

Journal of Zhejiang University SCIENCE B最新文献

英文 中文
Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides. 利用巴氏芽孢杆菌胞内蛋白伸长因子 Tu 揭示硒纳米粒子的创新绿色合成机制
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-13 DOI: 10.1631/jzus.B2300738
Pei Liu, Haiyu Long, Shuai He, Han Cheng, Erdong Li, Siyu Cheng, Mengdi Liang, Zhengwei Liu, Zhen Guo, Hao Shi

Selenium nanoparticles (SeNPs) have garnered extensive research interest and shown promising applications across diverse fields owing to their distinctive properties, including antioxidant, anticancer, and antibacterial activity (Ojeda et al., 2020; Qu et al., 2023; Zambonino et al., 2021, 2023). Among the various approaches employed for SeNP synthesis, green synthesis has emerged as a noteworthy and eco-friendly methodology. Keshtmand et al. (2023) underscored the significance of green-synthesized SeNPs, presenting a compelling avenue in this domain. This innovative strategy harnesses the potential of natural resources, such as plant extracts or microorganisms, to facilitate the production of SeNPs.

硒纳米粒子(SeNPs)因其独特的性能,包括抗氧化、抗癌和抗菌活性,在不同领域获得了广泛的研究兴趣和良好的应用前景(Ojeda 等人,2020 年;Qu 等人,2023 年;Zambonino 等人,2021 年和 2023 年)。在合成 SeNP 的各种方法中,绿色合成是一种值得注意的环保方法。Keshtmand 等人(2023 年)强调了绿色合成 SeNPs 的重要性,为这一领域提供了一条引人注目的途径。这种创新战略利用植物提取物或微生物等自然资源的潜力,促进 SeNPs 的生产。
{"title":"Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from <i>Bacillus paramycoides</i>.","authors":"Pei Liu, Haiyu Long, Shuai He, Han Cheng, Erdong Li, Siyu Cheng, Mengdi Liang, Zhengwei Liu, Zhen Guo, Hao Shi","doi":"10.1631/jzus.B2300738","DOIUrl":"10.1631/jzus.B2300738","url":null,"abstract":"<p><p>Selenium nanoparticles (SeNPs) have garnered extensive research interest and shown promising applications across diverse fields owing to their distinctive properties, including antioxidant, anticancer, and antibacterial activity (Ojeda et al., 2020; Qu et al., 2023; Zambonino et al., 2021, 2023). Among the various approaches employed for SeNP synthesis, green synthesis has emerged as a noteworthy and eco-friendly methodology. Keshtmand et al. (2023) underscored the significance of green-synthesized SeNPs, presenting a compelling avenue in this domain. This innovative strategy harnesses the potential of natural resources, such as plant extracts or microorganisms, to facilitate the production of SeNPs.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-7"},"PeriodicalIF":4.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repetitive transcranial magnetic stimulation combined with imaginal exposure therapy for adolescents with acute stress disorder: case report. 反复经颅磁刺激联合影像暴露治疗青少年急性应激障碍1例。
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1631/jzus.B2300765
Miaomiao Zhao, Ying Li, Haoyang Zhao, Chaonan Jiang, Manli Huang

Acute stress disorder (ASD) is a transient psychiatric disorder that may arise subsequent to abrupt, extreme trauma exposure, and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder (PTSD) (Bryant, 2011; Battle, 2013). It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks (not exceeding one month), manifesting symptoms of dissociation, re-experiencing, avoidance, and hyperarousal (Bielas et al., 2018). In the absence of efficacious and prompt intervention, ASD is linked to substantial morbidity and functional impairment (McLean et al., 2022). However, there is a deficiency in terms of providing sensitive diagnosis and effective treatment for adolescents diagnosed with ASD, with the majority of current approaches being derived from PTSD treatment. The prevailing strategies for addressing PTSD in children and young individuals primarily involve psychological intervention and pharmaceuticals, including selective serotonin reuptake inhibitors (SSRIs) (Smith et al., 2013). Nevertheless, the efficacy of SSRIs in adolescents with ASD remains suboptimal (Robb et al., 2010; Locher et al., 2017; Boaden et al., 2020).

急性应激障碍(Acute stress disorder, ASD)是一种短暂性精神障碍,可能在突然的、极端的创伤暴露后出现,是创伤后应激障碍(PTSD)后续发展的可靠指标(Bryant, 2011;战斗,2013)。它在创伤后表现出快速进展,持续数天或数周(不超过一个月),表现出分离、重新体验、回避和过度觉醒的症状(Bielas et al., 2018)。在缺乏有效和及时干预的情况下,ASD与大量发病率和功能障碍有关(McLean et al., 2022)。然而,在为被诊断为ASD的青少年提供敏感的诊断和有效的治疗方面存在不足,目前的大多数方法都来自PTSD治疗。目前治疗儿童和青少年创伤后应激障碍的主要策略包括心理干预和药物治疗,包括选择性血清素再摄取抑制剂(SSRIs) (Smith等,2013)。然而,ssri类药物对青少年ASD的疗效仍不理想(Robb et al., 2010;Locher et al., 2017;Boaden等人,2020)。
{"title":"Repetitive transcranial magnetic stimulation combined with imaginal exposure therapy for adolescents with acute stress disorder: case report.","authors":"Miaomiao Zhao, Ying Li, Haoyang Zhao, Chaonan Jiang, Manli Huang","doi":"10.1631/jzus.B2300765","DOIUrl":"https://doi.org/10.1631/jzus.B2300765","url":null,"abstract":"<p><p>Acute stress disorder (ASD) is a transient psychiatric disorder that may arise subsequent to abrupt, extreme trauma exposure, and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder (PTSD) (Bryant, 2011; Battle, 2013). It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks (not exceeding one month), manifesting symptoms of dissociation, re-experiencing, avoidance, and hyperarousal (Bielas et al., 2018). In the absence of efficacious and prompt intervention, ASD is linked to substantial morbidity and functional impairment (McLean et al., 2022). However, there is a deficiency in terms of providing sensitive diagnosis and effective treatment for adolescents diagnosed with ASD, with the majority of current approaches being derived from PTSD treatment. The prevailing strategies for addressing PTSD in children and young individuals primarily involve psychological intervention and pharmaceuticals, including selective serotonin reuptake inhibitors (SSRIs) (Smith et al., 2013). Nevertheless, the efficacy of SSRIs in adolescents with ASD remains suboptimal (Robb et al., 2010; Locher et al., 2017; Boaden et al., 2020).</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 1","pages":"52-57"},"PeriodicalIF":4.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repetitive transcranial magnetic stimulation combined with imaginal exposure therapy for adolescents with acute stress disorder: case report. 重复经颅磁刺激结合意象暴露疗法治疗急性应激障碍青少年:病例报告。
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-16 DOI: 10.1631/jzus.B2300765
Miaomiao Zhao, Ying Li, Haoyang Zhao, Chaonan Jiang, Manli Huang

(ASD), 。ASD(PTSD)。, 。ASD, 、、。(rTMS), 。, 1, 。, rTMSASD, 。.

(ASD (PTSD).ASD,.(rTMS),。, 1,.,rTMSASD,。
{"title":"Repetitive transcranial magnetic stimulation combined with imaginal exposure therapy for adolescents with acute stress disorder: case report.","authors":"Miaomiao Zhao, Ying Li, Haoyang Zhao, Chaonan Jiang, Manli Huang","doi":"10.1631/jzus.B2300765","DOIUrl":"10.1631/jzus.B2300765","url":null,"abstract":"<p><p>(ASD), 。ASD(PTSD)。, 。ASD, 、、。(rTMS), 。, 1, 。, rTMSASD, 。.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-6"},"PeriodicalIF":4.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of THEM4 in the Akt pathway: a double-edged sword. THEM4在Akt通路中的作用:一把双刃剑
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-15 DOI: 10.1631/jzus.B2300457
Wen Xie, Weidong Liu, Lei Wang, Bin Zhu, Cong Zhao, Ziling Liao, Yihan Li, Xingjun Jiang, Jie Liu, Caiping Ren

The protein kinase B (Akt) pathway can regulate the growth, proliferation, and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes, thus affecting the development and treatment of a range of diseases. Thioesterase superfamily member 4 (THEM4), a member of the thioesterase superfamily, is one of the Akt kinase-binding proteins. Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation. Initially, THEM4 was considered an endogenous inhibitor of Akt, which can inhibit the phosphorylation of Akt in diseases such as lung cancer, pancreatic cancer, and liver cancer, but subsequently, THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma, which contradicts previous findings. Considering these two distinct views, this review summarizes the important roles of THEM4 in the Akt pathway, focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases, especially cancer. This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.

蛋白激酶 B(Akt)通路可通过激活多个下游靶基因来调节肿瘤细胞和干细胞的生长、增殖和新陈代谢,从而影响一系列疾病的发生和治疗。硫酯酶超家族成员 4(THEM4)是 Akt 激酶结合蛋白之一。一些关于癌症和其他疾病机理的研究表明,THEM4 与 Akt 结合以调节其磷酸化。最初,THEM4 被认为是 Akt 的内源性抑制剂,可抑制肺癌、胰腺癌和肝癌等疾病中 Akt 的磷酸化,但后来在乳腺癌和鼻咽癌中,THEM4 被证明可通过正向调节 Akt 活性来促进肿瘤细胞的增殖,这与之前的研究结果相矛盾。考虑到这两种截然不同的观点,本综述总结了 THEM4 在 Akt 通路中的重要作用,重点探讨了 THEM4 作为一种 Akt 结合蛋白及其在各种疾病尤其是癌症中与 Akt 磷酸化的调控关系。这项工作让人们更好地了解 THEM4 与 Akt 结合在疾病治疗中的作用。
{"title":"Roles of THEM4 in the Akt pathway: a double-edged sword.","authors":"Wen Xie, Weidong Liu, Lei Wang, Bin Zhu, Cong Zhao, Ziling Liao, Yihan Li, Xingjun Jiang, Jie Liu, Caiping Ren","doi":"10.1631/jzus.B2300457","DOIUrl":"10.1631/jzus.B2300457","url":null,"abstract":"<p><p>The protein kinase B (Akt) pathway can regulate the growth, proliferation, and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes, thus affecting the development and treatment of a range of diseases. Thioesterase superfamily member 4 (THEM4), a member of the thioesterase superfamily, is one of the Akt kinase-binding proteins. Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation. Initially, THEM4 was considered an endogenous inhibitor of Akt, which can inhibit the phosphorylation of Akt in diseases such as lung cancer, pancreatic cancer, and liver cancer, but subsequently, THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma, which contradicts previous findings. Considering these two distinct views, this review summarizes the important roles of THEM4 in the Akt pathway, focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases, especially cancer. This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 7","pages":"541-556"},"PeriodicalIF":4.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential effects of aerosol generation and transmission during bedside endoscope cleaning. 床旁内窥镜清洁过程中气溶胶产生和传播的潜在影响。
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-15 DOI: 10.1631/jzus.B2300552
Tingting Sheng, Xin Wu, Li Cen, Ye Lu, Chenying Zhou, Qing Gu

Airborne transmission is among the most frequent types of nosocomial infection. Recent years have witnessed frequent outbreaks of airborne diseases, such as severe acute respiratory syndrome (SARS) in 2002, Middle East respiratory syndrome (MERS) in 2012, and coronavirus disease 2019 (COVID-19), with the latter being on the rampage since the end of 2019 and bringing the effect of aerosols on health back to the fore (Gralton et al., 2011; Wang et al., 2021). An increasing number of studies have shown that certain highly transmissible pathogens can maintain long-term stability and efficiently spread through aerosols (Leung, 2021; Lv et al., 2021). As reported previously, influenza viruses that can spread efficiently through aerosols remain stable for a longer period compared to those that cannot. The World Health Organization (WHO) has stated that aerosol-generating procedures (AGPs) play an important role in aerosol transmission in hospitals (Calderwood et al., 2021). AGPs, referring to medical procedures that produce aerosols, including dental procedures, endotracheal intubation, sputum aspiration, and laparoscopic surgeries, have been reported to be significantly associated with an increased risk of nosocomial infection among medical personnel (Hamilton, 2021).

空气传播是最常见的院内感染类型之一。近年来,空气传播疾病频频爆发,如 2002 年的严重急性呼吸系统综合征(SARS)、2012 年的中东呼吸系统综合征(MERS)和 2019 年冠状病毒病(COVID-19),后者自 2019 年底开始肆虐,使气溶胶对健康的影响再次成为人们关注的焦点(Gralton 等人,2011 年;Wang 等人,2021 年)。越来越多的研究表明,某些传染性极强的病原体可以保持长期稳定,并通过气溶胶有效传播(Leung,2021;Lv 等人,2021)。如前所述,与不能通过气溶胶有效传播的病毒相比,能通过气溶胶有效传播的流感病毒能保持更长时间的稳定。世界卫生组织(WHO)指出,气溶胶产生程序(AGPs)在医院气溶胶传播中扮演着重要角色(Calderwood 等人,2021 年)。AGP 指的是产生气溶胶的医疗程序,包括牙科程序、气管插管、吸痰和腹腔镜手术,据报道,AGP 与医务人员的鼻腔感染风险增加密切相关(Hamilton,2021 年)。
{"title":"Potential effects of aerosol generation and transmission during bedside endoscope cleaning.","authors":"Tingting Sheng, Xin Wu, Li Cen, Ye Lu, Chenying Zhou, Qing Gu","doi":"10.1631/jzus.B2300552","DOIUrl":"10.1631/jzus.B2300552","url":null,"abstract":"<p><p>Airborne transmission is among the most frequent types of nosocomial infection. Recent years have witnessed frequent outbreaks of airborne diseases, such as severe acute respiratory syndrome (SARS) in 2002, Middle East respiratory syndrome (MERS) in 2012, and coronavirus disease 2019 (COVID-19), with the latter being on the rampage since the end of 2019 and bringing the effect of aerosols on health back to the fore (Gralton et al., 2011; Wang et al., 2021). An increasing number of studies have shown that certain highly transmissible pathogens can maintain long-term stability and efficiently spread through aerosols (Leung, 2021; Lv et al., 2021). As reported previously, influenza viruses that can spread efficiently through aerosols remain stable for a longer period compared to those that cannot. The World Health Organization (WHO) has stated that aerosol-generating procedures (AGPs) play an important role in aerosol transmission in hospitals (Calderwood et al., 2021). AGPs, referring to medical procedures that produce aerosols, including dental procedures, endotracheal intubation, sputum aspiration, and laparoscopic surgeries, have been reported to be significantly associated with an increased risk of nosocomial infection among medical personnel (Hamilton, 2021).</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 7","pages":"628-632"},"PeriodicalIF":4.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAD51B-AS1 promotes the malignant biological behavior of ovarian cancer through upregulation of RAD51B. RAD51B-AS1 通过上调 RAD51B 促进卵巢癌的恶性生物学行为。
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-15 DOI: 10.1631/jzus.B2300154
Xinyi Wei, Conghui Wang, Sangsang Tang, Qian Yang, Zhangjin Shen, Jiawei Zhu, Xiaodong Cheng, Xinyu Wang, Xing Xie, Junfen Xu, Weiguo Lu

Long non-coding RNAs (lncRNAs) play an indispensable role in the occurrence and development of ovarian cancer (OC). However, the potential involvement of lncRNAs in the progression of OC is largely unknown. To investigate the detailed roles and mechanisms ofRAD51 homolog B-antisense 1 (RAD51B-AS1), a novel lncRNA in OC, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of RAD51B-AS1. Cellular proliferation, metastasis, and apoptosis were detected using the cell counting kit-8 (CCK-8), colony-formation, transwell, and flow cytometry assays. Mouse xenograft models were established for the detection of tumorigenesis. The results revealed that RAD51B-AS1 was significantly upregulated in a highly metastatic human OC cell line and OC tissues. RAD51B-AS1 significantly increased the proliferation and metastasis of OC cells and enhanced their resistance to anoikis. Biogenetics prediction analysis revealed that the only target gene of RAD51B-AS1 was RAD51B. Subsequent gene function experiments revealed that RAD51B exerts the same biological effects as RAD51B-AS1. Rescue experiments demonstrated that the malignant biological behaviors promoted by RAD51B-AS1 overexpression were partially or completely reversed by RAD51B silencing in vitro and in vivo. Thus, RAD51B-AS1 promotes the malignant biological behaviors of OC and activates the protein kinase B (Akt)/B cell lymphoma protein-2 (Bcl-2) signaling pathway, and these effects may be associated with the positive regulation of RAD51B expression. RAD51B-AS1 is expected to serve as a novel molecular biomarker for the diagnosis and prediction of poor prognosis in OC, and as a potential therapeutic target for disease management.

长非编码 RNA(lncRNA)在卵巢癌(OC)的发生和发展中扮演着不可或缺的角色。然而,lncRNAs 在卵巢癌进展过程中的潜在参与作用却在很大程度上不为人知。为了研究新型lncRNA--RAD51同源物B-反义1(RAD51B-AS1)在OC中的作用和机制,研究人员采用反转录定量聚合酶链反应(RT-qPCR)来验证RAD51B-AS1的表达。使用细胞计数试剂盒-8(CCK-8)、集落形成、transwell 和流式细胞术检测细胞增殖、转移和凋亡。建立了小鼠异种移植模型以检测肿瘤发生。结果发现,RAD51B-AS1在高度转移的人类OC细胞系和OC组织中明显上调。RAD51B-AS1能明显增加OC细胞的增殖和转移,并增强其对anoikis的抵抗力。生物遗传学预测分析表明,RAD51B-AS1 的唯一靶基因是 RAD51B。随后的基因功能实验显示,RAD51B 与 RAD51B-AS1 具有相同的生物效应。拯救实验表明,在体外和体内,RAD51B沉默可部分或完全逆转RAD51B-AS1过表达所促进的恶性生物学行为。因此,RAD51B-AS1促进了OC的恶性生物学行为,并激活了蛋白激酶B(Akt)/B细胞淋巴瘤蛋白-2(Bcl-2)信号通路,而这些效应可能与RAD51B表达的正调控有关。RAD51B-AS1有望成为诊断和预测OC不良预后的新型分子生物标记物,并成为治疗疾病的潜在靶点。
{"title":"RAD51B-AS1 promotes the malignant biological behavior of ovarian cancer through upregulation of RAD51B.","authors":"Xinyi Wei, Conghui Wang, Sangsang Tang, Qian Yang, Zhangjin Shen, Jiawei Zhu, Xiaodong Cheng, Xinyu Wang, Xing Xie, Junfen Xu, Weiguo Lu","doi":"10.1631/jzus.B2300154","DOIUrl":"10.1631/jzus.B2300154","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) play an indispensable role in the occurrence and development of ovarian cancer (OC). However, the potential involvement of lncRNAs in the progression of OC is largely unknown. To investigate the detailed roles and mechanisms ofRAD51 homolog B-antisense 1 (<i>RAD51B-AS1</i>), a novel lncRNA in OC, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of <i>RAD51B-AS1</i>. Cellular proliferation, metastasis, and apoptosis were detected using the cell counting kit-8 (CCK-8), colony-formation, transwell, and flow cytometry assays. Mouse xenograft models were established for the detection of tumorigenesis. The results revealed that <i>RAD51B-AS1</i> was significantly upregulated in a highly metastatic human OC cell line and OC tissues. <i>RAD51B-AS1</i> significantly increased the proliferation and metastasis of OC cells and enhanced their resistance to anoikis. Biogenetics prediction analysis revealed that the only target gene of <i>RAD51B-AS1</i> was <i>RAD51B</i>. Subsequent gene function experiments revealed that <i>RAD51B</i> exerts the same biological effects as <i>RAD51B-AS1</i>. Rescue experiments demonstrated that the malignant biological behaviors promoted by <i>RAD51B-AS1</i> overexpression were partially or completely reversed by <i>RAD51B</i> silencing in vitro and in vivo. Thus, <i>RAD51B-AS1</i> promotes the malignant biological behaviors of OC and activates the protein kinase B (Akt)/B cell lymphoma protein-2 (Bcl-2) signaling pathway, and these effects may be associated with the positive regulation of <i>RAD51B</i> expression. <i>RAD51B-AS1</i> is expected to serve as a novel molecular biomarker for the diagnosis and prediction of poor prognosis in OC, and as a potential therapeutic target for disease management.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 7","pages":"581-593"},"PeriodicalIF":4.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment. 用于改善膀胱癌治疗的纳米卡介苗免疫疗法。
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-11 DOI: 10.1631/jzus.B2300392
Sheng Zeng, Shaoqiang Xing, Yifei Zhang, Haifeng Wang, Qian Liu

Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.

癌症免疫疗法已迅速成为继手术、放疗和化疗之后的第四种主流治疗方法,并取得了一些可喜的成果。其目的是通过动员或刺激细胞毒性免疫细胞来杀死肿瘤细胞。然而,由于缺乏适当的给药途径和高毒性,肿瘤免疫疗法的临床应用受到限制。最近,纳米材料和基因工程通过保护抗原递送、激活靶向 T 细胞、调节免疫抑制肿瘤微环境和提高疗效,在克服这些限制方面显示出巨大潜力。卡介苗(Bacillus Calmette-Guérin,BCG)是一种用于预防结核病的牛分枝杆菌减毒活疫苗,1927 年首次被报道具有抗肿瘤活性。卡介苗疗法可通过诱导各种细胞因子和趋化因子激活免疫系统,其特异性免疫和炎症反应可发挥抗肿瘤作用。卡介苗在 20 世纪 70 年代首次被用作膀胱癌的膀胱内治疗剂,可有效提高免疫抗肿瘤活性,防止肿瘤复发。最近,纳米卡介苗和基因工程卡介苗因能诱导更强、更稳定的免疫反应而被提出作为膀胱癌的替代治疗药物。在本研究中,我们概述了用于膀胱癌免疫疗法的纳米卡介苗和基因工程卡介苗的发展情况,并回顾了它们的潜力和相关挑战。
{"title":"Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment.","authors":"Sheng Zeng, Shaoqiang Xing, Yifei Zhang, Haifeng Wang, Qian Liu","doi":"10.1631/jzus.B2300392","DOIUrl":"10.1631/jzus.B2300392","url":null,"abstract":"<p><p>Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated <i>Mycobacterium bovis</i> vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 7","pages":"557-567"},"PeriodicalIF":4.7,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human umbilical cord mesenchymal stem cells attenuate diabetic nephropathy through the IGF1R-CHK2-p53 signalling axis in male rats with type 2 diabetes mellitus. 人脐带间充质干细胞通过 IGF1R-CHK2-p53 信号轴减轻 2 型糖尿病雄性大鼠的糖尿病肾病。
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-10 DOI: 10.1631/jzus.B2300182
Hao Zhang, Xinshu Wang, Bo Hu, Peicheng Li, Yierfan Abuduaini, Hongmei Zhao, Ayinaer Jieensihan, Xishuang Chen, Shiyu Wang, Nuojin Guo, Jian Yuan, Yunhui Li, Lei Li, Yuntong Yang, Zhongmin Liu, Zhaosheng Tang, Hua Wang

Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red "O" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.

糖尿病(DM)是一种以慢性高血糖为特征的疾病综合征。长期的高血糖环境会导致活性氧(ROS)生成和核DNA损伤。输注人脐带间充质干细胞(HUcMSC)对2型糖尿病(T2DM)大鼠有显著的抗糖尿病作用。胰岛素样生长因子1(IGF1)受体(IGF1R)对促进糖尿病患者的糖代谢非常重要;然而,HUcMSC通过IGF1R和DNA损伤修复治疗糖尿病的机制仍不清楚。本研究采用高脂饮食和链脲佐菌素(STZ)诱导糖尿病大鼠模型,并给大鼠输注四次 HUcMSC。研究人员对大鼠的血糖、白细胞介素-6(IL-6)、IL-10、肾小球基底膜和肾功能进行了检测。通过免疫共沉淀实验确定了与 IGF1R 相互作用的蛋白质。通过免疫组化(IHC)和免疫印迹分析检测了IGF1R、磷酸化检查点激酶2(p-CHK2)和磷酸化蛋白53(p-p53)的表达。酶联免疫吸附试验(ELISA)用于测定血清中 8-羟基脱氧鸟苷(8-OHdG)的水平。流式细胞术实验用于检测 HUcMSC 的表面标记。通过油红 "O "染色和茜素红染色鉴定 HUcMSC 的形态和表型。DM大鼠血糖和IL-6/10水平异常,肾小球基底膜肾功能改变,IGF1和IGF1R表达增加。IGF1R与CHK2相互作用,在IGF1R敲除的细胞中,p-CHK2的表达明显下降。当使用顺铂诱导 DNA 损伤时,p-CHK2 的表达高于未使用顺铂处理的 IGF1R 敲除组。输注 HUcMSC 可改善 DM 大鼠肾脏的异常情况,并保护其肾脏结构和功能。与对照组相比,DM组IGF1、IGF1R、p-CHK2和p-p53的表达以及8-OHdG的水平显著升高,而HUcMSC治疗后则有所下降。我们的研究结果表明,IGF1R可与CHK2相互作用并介导DNA损伤。输注 HUcMSC 对 DM 大鼠的肾损伤有保护作用。其潜在机制可能包括 HUcMSC 通过 IGF1R-CHK2-p53 信号通路介导的糖尿病治疗增强作用。
{"title":"Human umbilical cord mesenchymal stem cells attenuate diabetic nephropathy through the IGF1R-CHK2-p53 signalling axis in male rats with type 2 diabetes mellitus.","authors":"Hao Zhang, Xinshu Wang, Bo Hu, Peicheng Li, Yierfan Abuduaini, Hongmei Zhao, Ayinaer Jieensihan, Xishuang Chen, Shiyu Wang, Nuojin Guo, Jian Yuan, Yunhui Li, Lei Li, Yuntong Yang, Zhongmin Liu, Zhaosheng Tang, Hua Wang","doi":"10.1631/jzus.B2300182","DOIUrl":"10.1631/jzus.B2300182","url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red \"O\" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in <i>IGF1R</i>-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the <i>IGF1R</i>-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 7","pages":"568-580"},"PeriodicalIF":4.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural substrates for regulating self-grooming behavior in rodents. 调节啮齿动物自我梳理行为的神经基质
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-09 DOI: 10.1631/jzus.B2300562
Guanqing Li, Chanyi Lu, Miaomiao Yin, Peng Wang, Pengbo Zhang, Jialiang Wu, Wenqiang Wang, Ding Wang, Mengyue Wang, Jiahan Liu, Xinghan Lin, Jian-Xu Zhang, Zhenshan Wang, Yiqun Yu, Yun-Feng Zhang

Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.

梳理作为一种进化保守的重复行为,在包括人类在内的各种动物中都很常见,其基本功能包括(但不限于)保持卫生、调节体温、放松、减轻压力和社交行为。在啮齿类动物中,梳理涉及一种模式化和序列化的结构,被称为句法链,包括四个阶段,以头尾渐进的方式重复定型动作,从鼻子开始到脸部,再到头部,最后以舔身体结束。梳理行为的发生与环境有关,这表明其具有适应意义。本综述简要总结了啮齿动物梳理行为的神经基质,并探讨了梳理行为与神经精神疾病和神经退行性疾病的啮齿动物模型的相关性。我们进一步强调了啮齿动物梳理行为作为神经精神疾病模型中重复行为可靠测量指标的实用性,为转化精神病学带来了希望。在此,我们主要关注啮齿动物的自我梳理行为。由于篇幅有限,我们将不涉及异性梳理(同种动物通过舔舐或仔细啃咬对一种动物进行梳理)和异性梳理(针对另一种动物的一种梳理行为,发生在其他情况下,如母性行为、性行为、攻击行为或社交行为)。
{"title":"Neural substrates for regulating self-grooming behavior in rodents.","authors":"Guanqing Li, Chanyi Lu, Miaomiao Yin, Peng Wang, Pengbo Zhang, Jialiang Wu, Wenqiang Wang, Ding Wang, Mengyue Wang, Jiahan Liu, Xinghan Lin, Jian-Xu Zhang, Zhenshan Wang, Yiqun Yu, Yun-Feng Zhang","doi":"10.1631/jzus.B2300562","DOIUrl":"10.1631/jzus.B2300562","url":null,"abstract":"<p><p>Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-16"},"PeriodicalIF":4.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment. 用于改善膀胱癌治疗的纳米卡介苗免疫疗法。
IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-09 DOI: 10.1631/jzus.B2300392
Sheng Zeng, Shaoqiang Xing, Yifei Zhang, Haifeng Wang, Qian Liu

Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.

癌症免疫疗法已迅速成为继手术、放疗和化疗之后的第四种主流治疗方法,并取得了一些可喜的成果。其目的是通过动员或刺激细胞毒性免疫细胞来杀死肿瘤细胞。然而,由于缺乏适当的给药途径和高毒性,肿瘤免疫疗法的临床应用受到限制。最近,纳米材料和基因工程通过保护抗原递送、激活靶向 T 细胞、调节免疫抑制肿瘤微环境和提高疗效,在克服这些限制方面显示出巨大潜力。卡介苗(Bacillus Calmette-Guérin,BCG)是一种用于预防结核病的牛分枝杆菌减毒活疫苗,1927 年首次被报道具有抗肿瘤活性。卡介苗疗法可通过诱导各种细胞因子和趋化因子激活免疫系统,其特异性免疫和炎症反应可发挥抗肿瘤作用。卡介苗在 20 世纪 70 年代首次被用作膀胱癌的膀胱内治疗剂,可有效提高免疫抗肿瘤活性,防止肿瘤复发。最近,纳米卡介苗和基因工程卡介苗因能诱导更强、更稳定的免疫反应而被提出作为膀胱癌的替代治疗药物。在本研究中,我们概述了用于膀胱癌免疫疗法的纳米卡介苗和基因工程卡介苗的发展情况,并回顾了它们的潜力和相关挑战。
{"title":"Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment.","authors":"Sheng Zeng, Shaoqiang Xing, Yifei Zhang, Haifeng Wang, Qian Liu","doi":"10.1631/jzus.B2300392","DOIUrl":"https://doi.org/10.1631/jzus.B2300392","url":null,"abstract":"<p><p>Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated <i>Mycobacterium bovis</i> vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-11"},"PeriodicalIF":4.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Zhejiang University SCIENCE B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1