首页 > 最新文献

KONA Powder and Particle Journal最新文献

英文 中文
DEM Modelling of Segregation in Granular Materials: A Review 颗粒材料中偏析的DEM建模:综述
4区 材料科学 Q1 Engineering Pub Date : 2023-01-01 DOI: 10.14356/kona.2024017
Ahmed Hadi, Raïsa Roeplal, Yusong Pang, Dingena L. Schott
Segregation control is a challenging yet crucial aspect of bulk material handling processes. The discrete element method (DEM) can offer useful insights into segregation phenomena, provided that reliable models are developed. The main challenge in this regard is finding a good balance between including particle-level details and managing the computational load. This is especially true for industrial applications, where multi-component flows consisting of particles with various irregular shapes and wide size distributions are encountered in huge amounts. In this work, we review the state of the art in DEM modelling of segregation in industrial applications involving the gravity-driven flow of dry, cohesionless granular materials. We start by introducing a novel scientific notation to distinguish between different types of mixtures. Next, we review how parameters for mixture models are determined in the current literature, and how segregation is affected by material, geometric and operational parameters based on these models. Finally, we review existing segregation indices and their applicability to multi-component segregation. We conclude that systematic calibration procedures for segregation models are currently missing in the literature, and realistic models representing multi-component mixtures have not yet been developed. Filling these gaps will pave the way for optimising industrial processes dealing with segregation.
分离控制是散装物料处理过程中一个具有挑战性但又至关重要的方面。如果建立了可靠的模型,离散元法(DEM)可以对分离现象提供有用的见解。这方面的主要挑战是在包括粒子级细节和管理计算负载之间找到一个很好的平衡。在工业应用中尤其如此,在工业应用中,由各种不规则形状和宽尺寸分布的颗粒组成的多组分流会大量遇到。在这项工作中,我们回顾了工业应用中涉及重力驱动的干燥无黏结颗粒材料流动的分离的DEM建模的最新进展。我们首先引入一种新的科学符号来区分不同类型的混合物。接下来,我们回顾了当前文献中如何确定混合模型的参数,以及基于这些模型的材料、几何和操作参数如何影响偏析。最后,回顾了现有的偏析指标及其在多组分偏析中的适用性。我们得出的结论是,目前文献中缺乏对偏析模型的系统校准程序,并且尚未开发出代表多组分混合物的现实模型。填补这些空白将为优化处理隔离的工业过程铺平道路。
{"title":"DEM Modelling of Segregation in Granular Materials: A Review","authors":"Ahmed Hadi, Raïsa Roeplal, Yusong Pang, Dingena L. Schott","doi":"10.14356/kona.2024017","DOIUrl":"https://doi.org/10.14356/kona.2024017","url":null,"abstract":"Segregation control is a challenging yet crucial aspect of bulk material handling processes. The discrete element method (DEM) can offer useful insights into segregation phenomena, provided that reliable models are developed. The main challenge in this regard is finding a good balance between including particle-level details and managing the computational load. This is especially true for industrial applications, where multi-component flows consisting of particles with various irregular shapes and wide size distributions are encountered in huge amounts. In this work, we review the state of the art in DEM modelling of segregation in industrial applications involving the gravity-driven flow of dry, cohesionless granular materials. We start by introducing a novel scientific notation to distinguish between different types of mixtures. Next, we review how parameters for mixture models are determined in the current literature, and how segregation is affected by material, geometric and operational parameters based on these models. Finally, we review existing segregation indices and their applicability to multi-component segregation. We conclude that systematic calibration procedures for segregation models are currently missing in the literature, and realistic models representing multi-component mixtures have not yet been developed. Filling these gaps will pave the way for optimising industrial processes dealing with segregation.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135442728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle Size Measurement Using a Phase Retrieval Holography System with a GPU-Equipped SBC 使用配备gpu的SBC相位检索全息系统进行粒度测量
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2023-01-01 DOI: 10.14356/kona.2024002
Yohsuke Tanaka, D. Nakai
{"title":"Particle Size Measurement Using a Phase Retrieval Holography System with a GPU-Equipped SBC","authors":"Yohsuke Tanaka, D. Nakai","doi":"10.14356/kona.2024002","DOIUrl":"https://doi.org/10.14356/kona.2024002","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84567722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of Fugitive Particulate Matter Emission: Current State and Trends 逸散性颗粒物排放的测量:现状和趋势
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2023-01-01 DOI: 10.14356/kona.2024008
Tianyi Cai, Wu Zhou
{"title":"Measurement of Fugitive Particulate Matter Emission: Current State and Trends","authors":"Tianyi Cai, Wu Zhou","doi":"10.14356/kona.2024008","DOIUrl":"https://doi.org/10.14356/kona.2024008","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77330263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of DEM Parameters and Operating Conditions on Particle Dynamics in a Laboratory Scale Rotating Disc DEM参数和工况对实验室尺度旋转圆盘颗粒动力学的影响
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2023-01-01 DOI: 10.14356/kona.2024016
R. M. Lima, Gisele M. Souza, R. J. Brandão, C. Duarte, M. Barrozo
{"title":"Effects of DEM Parameters and Operating Conditions on Particle Dynamics in a Laboratory Scale Rotating Disc","authors":"R. M. Lima, Gisele M. Souza, R. J. Brandão, C. Duarte, M. Barrozo","doi":"10.14356/kona.2024016","DOIUrl":"https://doi.org/10.14356/kona.2024016","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72528507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review and Further Validation of a Practical Single-particle Breakage Model 一个实用的单颗粒断裂模型的回顾与进一步验证
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2022-01-10 DOI: 10.14356/KONA.2022012
L. M. Tavares
Particle breakage occurs in comminution machines and, inadvertently, in other process equipment during handling as well as in geotechnical applications. For nearly a century, researchers have developed mathematical expressions to describe single-particle breakage having different levels of complexity and abilities to represent it. The work presents and analyses critically a breakage model that has been found to be suitable to describe breakage of brittle materials in association to the discrete element method, either embedded in it as part of particle replacement schemes or coupled to it in microscale population balance models. The energy-based model accounts for variability and size-dependency of fracture energy of particles, weakening when particles are stressed below this value, as well as energy and size-dependent fragment size distributions when particles are stressed beyond it, discriminating between surface and body breakage. The work then further validates the model on the basis of extensive data from impact load cell and drop weight tests. Finally, a discussion of challenges associated to fitting its parameters and on applications is presented.
颗粒破碎发生在粉碎机中,在处理过程中不经意地发生在其他工艺设备中,以及在岩土工程应用中。近一个世纪以来,研究人员已经开发出数学表达式来描述具有不同复杂程度和表示能力的单颗粒断裂。这项工作提出并批判性地分析了一个断裂模型,该模型已被发现适合于描述与离散元方法相关的脆性材料的断裂,无论是作为颗粒替换方案的一部分嵌入其中,还是与微尺度种群平衡模型相耦合。基于能量的模型考虑了颗粒断裂能的可变性和尺寸依赖性,当颗粒的应力低于该值时减弱,以及当颗粒的应力超过该值时,能量和尺寸依赖性碎片尺寸分布,区分了表面和身体的断裂。然后,在冲击称重传感器和落锤试验的大量数据的基础上,进一步验证了该模型。最后,讨论了拟合参数及其应用所面临的挑战。
{"title":"Review and Further Validation of a Practical Single-particle Breakage Model","authors":"L. M. Tavares","doi":"10.14356/KONA.2022012","DOIUrl":"https://doi.org/10.14356/KONA.2022012","url":null,"abstract":"Particle breakage occurs in comminution machines and, inadvertently, in other process equipment during handling as well as in geotechnical applications. For nearly a century, researchers have developed mathematical expressions to describe single-particle breakage having different levels of complexity and abilities to represent it. The work presents and analyses critically a breakage model that has been found to be suitable to describe breakage of brittle materials in association to the discrete element method, either embedded in it as part of particle replacement schemes or coupled to it in microscale population balance models. The energy-based model accounts for variability and size-dependency of fracture energy of particles, weakening when particles are stressed below this value, as well as energy and size-dependent fragment size distributions when particles are stressed beyond it, discriminating between surface and body breakage. The work then further validates the model on the basis of extensive data from impact load cell and drop weight tests. Finally, a discussion of challenges associated to fitting its parameters and on applications is presented.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87878908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
The 8th APT (Asian Particle Technology Symposium) 2021 Held in Osaka 2021第八届亚洲粒子技术研讨会在大阪举行
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2022-01-10 DOI: 10.14356/kona.2022023
{"title":"The 8th APT (Asian Particle Technology Symposium) 2021 Held in Osaka","authors":"","doi":"10.14356/kona.2022023","DOIUrl":"https://doi.org/10.14356/kona.2022023","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88255983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The KONA Award 2020 2020年KONA奖
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2022-01-10 DOI: 10.14356/kona.2022024
{"title":"The KONA Award 2020","authors":"","doi":"10.14356/kona.2022024","DOIUrl":"https://doi.org/10.14356/kona.2022024","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72471916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editor’s Preface 编者前言
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2022-01-10 DOI: 10.14356/kona.2022021
W. Tanthapanichakoon
{"title":"Editor’s Preface","authors":"W. Tanthapanichakoon","doi":"10.14356/kona.2022021","DOIUrl":"https://doi.org/10.14356/kona.2022021","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85598762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlating Granule Surface Structure Morphology and Process Conditions in Fluidized Bed Layering Spray Granulation 流化床分层喷雾造粒过程中颗粒表面结构形态与工艺条件的关系
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2022-01-10 DOI: 10.14356/kona.2022016
Maik Orth, P. Kieckhefen, Swantje Pietsch, S. Heinrich
{"title":"Correlating Granule Surface Structure Morphology and Process Conditions in Fluidized Bed Layering Spray Granulation","authors":"Maik Orth, P. Kieckhefen, Swantje Pietsch, S. Heinrich","doi":"10.14356/kona.2022016","DOIUrl":"https://doi.org/10.14356/kona.2022016","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89829442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Grain-size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials 晶粒尺寸对致密粘性颗粒材料力学行为和破坏的影响
IF 4.1 4区 材料科学 Q1 Engineering Pub Date : 2022-01-10 DOI: 10.14356/kona.2022001
P. Poorsolhjouy, A. Misra
The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.
晶粒尺寸会显著影响颗粒的力学形态,从而影响宏观力学响应。从纯几何角度看,晶粒尺寸的变化会影响晶粒对相互作用的体积数密度以及邻近几何形状。此外,晶粒尺寸的改变会影响晶粒对相互作用的初始刚度和损伤行为。颗粒细观力学方法(GMA)提供了一种将晶粒尺度与连续介质模型连接起来的范式,能够从几何效应和晶粒对变形/耗散效应两方面描述晶粒尺寸的影响。本文利用简单幂律对基于GMA的cauchy型连续体模型进行了改进,模拟了晶粒尺寸对晶粒对相互作用体积数密度的影响,以及控制晶粒对变形和耗散机制的参数。应用该增强模型对常规三轴试验条件下粘性颗粒固体的宏观响应进行了预测。结果表明,减小晶粒尺寸可以触发脆性向韧性的转变。晶粒尺寸影响颗粒材料的压缩/膨胀行为以及峰后软化/硬化。宏观尺度的破坏/屈服应力也被发现与晶粒尺寸成反比关系,这与文献中报道的一致。
{"title":"Grain-size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials","authors":"P. Poorsolhjouy, A. Misra","doi":"10.14356/kona.2022001","DOIUrl":"https://doi.org/10.14356/kona.2022001","url":null,"abstract":"The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89939753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
KONA Powder and Particle Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1