Particle breakage occurs in comminution machines and, inadvertently, in other process equipment during handling as well as in geotechnical applications. For nearly a century, researchers have developed mathematical expressions to describe single-particle breakage having different levels of complexity and abilities to represent it. The work presents and analyses critically a breakage model that has been found to be suitable to describe breakage of brittle materials in association to the discrete element method, either embedded in it as part of particle replacement schemes or coupled to it in microscale population balance models. The energy-based model accounts for variability and size-dependency of fracture energy of particles, weakening when particles are stressed below this value, as well as energy and size-dependent fragment size distributions when particles are stressed beyond it, discriminating between surface and body breakage. The work then further validates the model on the basis of extensive data from impact load cell and drop weight tests. Finally, a discussion of challenges associated to fitting its parameters and on applications is presented.
{"title":"Review and Further Validation of a Practical Single-particle Breakage Model","authors":"L. M. Tavares","doi":"10.14356/KONA.2022012","DOIUrl":"https://doi.org/10.14356/KONA.2022012","url":null,"abstract":"Particle breakage occurs in comminution machines and, inadvertently, in other process equipment during handling as well as in geotechnical applications. For nearly a century, researchers have developed mathematical expressions to describe single-particle breakage having different levels of complexity and abilities to represent it. The work presents and analyses critically a breakage model that has been found to be suitable to describe breakage of brittle materials in association to the discrete element method, either embedded in it as part of particle replacement schemes or coupled to it in microscale population balance models. The energy-based model accounts for variability and size-dependency of fracture energy of particles, weakening when particles are stressed below this value, as well as energy and size-dependent fragment size distributions when particles are stressed beyond it, discriminating between surface and body breakage. The work then further validates the model on the basis of extensive data from impact load cell and drop weight tests. Finally, a discussion of challenges associated to fitting its parameters and on applications is presented.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"5 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87878908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The KONA Award 2020","authors":"","doi":"10.14356/kona.2022024","DOIUrl":"https://doi.org/10.14356/kona.2022024","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"16 5","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72471916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maik Orth, P. Kieckhefen, Swantje Pietsch, S. Heinrich
{"title":"Correlating Granule Surface Structure Morphology and Process Conditions in Fluidized Bed Layering Spray Granulation","authors":"Maik Orth, P. Kieckhefen, Swantje Pietsch, S. Heinrich","doi":"10.14356/kona.2022016","DOIUrl":"https://doi.org/10.14356/kona.2022016","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"14 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89829442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.
{"title":"Grain-size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials","authors":"P. Poorsolhjouy, A. Misra","doi":"10.14356/kona.2022001","DOIUrl":"https://doi.org/10.14356/kona.2022001","url":null,"abstract":"The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"8 1","pages":"2022001"},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89939753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The simulation of grinding mills with the discrete element method (DEM) has been advancing. First, it emerged as a method for studying charge motion with spherical balls and predicting the power draw of the mill. Subsequently, studies on liner wear, charge motion with ellipsoidal and polyhedral shaped particles simulated with three dimensional DEM followed. Further, the impact energy spectra computed in the DEM algorithm is leading to the development of models for the breakage of brittle particles in mills. The core elements in such simulations are the shape of particles in the mill charge and the power draw of the mill due to operating variables. To advance the field, we present a set of experimental data and the corresponding DEM validation results for a 90 × 13 cm mill. The DEM algorithm uses the volume-overlap method which is more realistic for multifaceted irregular particle collisions. Further, we use the scanned shape of the rock media and multifaceted spherical shape for the grinding media to represent as close as possible the actual charge in the mill. First, we present DEM validation for spherical grinding media-only experiments, rock-only experiments, and a mixture of spherical grinding media and rocks, as well as aluminum cubes only to represent the theme of particle shape. Finally, a discussion of the contact mechanics parameters in the four modes of experiments is given. Since the feed ore to plant scale mills can vary in shape, mill simulations with scanned shape of typical particles are the future for more accurate results.
{"title":"Verification of Polyhedral DEM with Laboratory Grinding Mill Experiments","authors":"Alberto M. Puga, N. Govender, R. Rajamani","doi":"10.14356/KONA.2022013","DOIUrl":"https://doi.org/10.14356/KONA.2022013","url":null,"abstract":"The simulation of grinding mills with the discrete element method (DEM) has been advancing. First, it emerged as a method for studying charge motion with spherical balls and predicting the power draw of the mill. Subsequently, studies on liner wear, charge motion with ellipsoidal and polyhedral shaped particles simulated with three dimensional DEM followed. Further, the impact energy spectra computed in the DEM algorithm is leading to the development of models for the breakage of brittle particles in mills. The core elements in such simulations are the shape of particles in the mill charge and the power draw of the mill due to operating variables. To advance the field, we present a set of experimental data and the corresponding DEM validation results for a 90 × 13 cm mill. The DEM algorithm uses the volume-overlap method which is more realistic for multifaceted irregular particle collisions. Further, we use the scanned shape of the rock media and multifaceted spherical shape for the grinding media to represent as close as possible the actual charge in the mill. First, we present DEM validation for spherical grinding media-only experiments, rock-only experiments, and a mixture of spherical grinding media and rocks, as well as aluminum cubes only to represent the theme of particle shape. Finally, a discussion of the contact mechanics parameters in the four modes of experiments is given. Since the feed ore to plant scale mills can vary in shape, mill simulations with scanned shape of typical particles are the future for more accurate results.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"35 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81855839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The calcium-looping process, relying on the reversible calcination/carbonation of CaCO 3 , is one of the most promising solution to perform thermochemical energy storage (TCES) for concentrating solar power (CSP) plants. Indeed, CaO precursors such as limestone can rely on the high energy density, low cost, large availability and nontoxicity. In this work, the study of the sound-assisted carbonation of fine CaO particles (< 50 μm) for TCES-CSP has been furthered. In particular, a kinetic study has been performed to analyse the effect of the particular carbonation conditions to be used in TCES-CSP applications, i.e. involving carbonation under high CO 2 partial pressure and at high temperature. All the experimental tests have been performed in a lab-scale sound-assisted fluidized bed reactor applying high intensity acoustic field with proper frequency (150 dB–120 Hz). The carbonation kinetics has been analysed by applying a simple kinetic model, able to properly describe the fast (under kinetic control) and slow (under diffusion control) stage of the of the reaction. In particular, the reaction rate, the intrinsic carbonation kinetic constant and the characteristic product layer thickness have been evaluated, also highlighting their dependence on the temperature between 800 and 845 °C; a value of 49 kJ mol –1 has been obtained for the activation energy. Finally, a good agreement between the conversion-time profiles, evaluated from the applied kinetic models, and the experimental data has been obtained.
{"title":"Carbonation Kinetics of Fine CaO Particles in a Sound-Assisted Fluidized Bed for Thermochemical Energy Storage","authors":"F. Raganati, P. Ammendola","doi":"10.14356/KONA.2022007","DOIUrl":"https://doi.org/10.14356/KONA.2022007","url":null,"abstract":"The calcium-looping process, relying on the reversible calcination/carbonation of CaCO 3 , is one of the most promising solution to perform thermochemical energy storage (TCES) for concentrating solar power (CSP) plants. Indeed, CaO precursors such as limestone can rely on the high energy density, low cost, large availability and nontoxicity. In this work, the study of the sound-assisted carbonation of fine CaO particles (< 50 μm) for TCES-CSP has been furthered. In particular, a kinetic study has been performed to analyse the effect of the particular carbonation conditions to be used in TCES-CSP applications, i.e. involving carbonation under high CO 2 partial pressure and at high temperature. All the experimental tests have been performed in a lab-scale sound-assisted fluidized bed reactor applying high intensity acoustic field with proper frequency (150 dB–120 Hz). The carbonation kinetics has been analysed by applying a simple kinetic model, able to properly describe the fast (under kinetic control) and slow (under diffusion control) stage of the of the reaction. In particular, the reaction rate, the intrinsic carbonation kinetic constant and the characteristic product layer thickness have been evaluated, also highlighting their dependence on the temperature between 800 and 845 °C; a value of 49 kJ mol –1 has been obtained for the activation energy. Finally, a good agreement between the conversion-time profiles, evaluated from the applied kinetic models, and the experimental data has been obtained.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"26 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84805471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanoparticle synthesis using flow chemistry has the potential to enhance the large-scale accessibility of precision-engineered nanomaterials at lower prices. This goal has been difficult to achieve primarily due to reactor fouling and the lack of efficient reagent mixing encountered, especially in those scaled-up systems. The present study aimed to overcome the two challenges by integrating a liquid-liquid biphasic segmented flow system with static mixing. This strategy was applied to the synthesis of gold nanoparticles (AuNPs) using citrate reduction chemistry. It was demonstrated that reactor fouling was eliminated by implementing the biphasic flow strategy. As a result, the overall mean particle size of the as-synthesized AuNPs was measured to be 15.5 nm with a polydispersity index (PDI) of 0.07, and with the reproducibility of ± 6.4 %. The biphasic flow system achieved a reaction yield of 88.7 ± 1 .1 % r eliably with a throughput of 60 m L/hour up to 8 hours.
利用流动化学合成纳米粒子有可能以更低的价格提高精密工程纳米材料的大规模可及性。这一目标很难实现,主要是由于反应器结垢和缺乏有效的试剂混合,特别是在那些放大的系统中。本研究旨在通过集成具有静态混合的液-液两相分段流系统来克服这两个挑战。该策略被应用于利用柠檬酸还原化学合成金纳米颗粒(AuNPs)。结果表明,采用双相流策略可以消除反应器的污染。结果表明,合成的AuNPs总体平均粒径为15.5 nm,多分散性指数(PDI)为0.07,重现性为±6.4%。双相流体系的反应产率为88.7±1.1%,反应通量为60 m L/h,持续8小时。
{"title":"Continuous Synthesis of Precision Gold Nanoparticles Using a Flow Reactor","authors":"Jiaqi Dong, J. Lau, S. Svoronos, B. Moudgil","doi":"10.14356/KONA.2022011","DOIUrl":"https://doi.org/10.14356/KONA.2022011","url":null,"abstract":"Nanoparticle synthesis using flow chemistry has the potential to enhance the large-scale accessibility of precision-engineered nanomaterials at lower prices. This goal has been difficult to achieve primarily due to reactor fouling and the lack of efficient reagent mixing encountered, especially in those scaled-up systems. The present study aimed to overcome the two challenges by integrating a liquid-liquid biphasic segmented flow system with static mixing. This strategy was applied to the synthesis of gold nanoparticles (AuNPs) using citrate reduction chemistry. It was demonstrated that reactor fouling was eliminated by implementing the biphasic flow strategy. As a result, the overall mean particle size of the as-synthesized AuNPs was measured to be 15.5 nm with a polydispersity index (PDI) of 0.07, and with the reproducibility of ± 6.4 %. The biphasic flow system achieved a reaction yield of 88.7 ± 1 .1 % r eliably with a throughput of 60 m L/hour up to 8 hours.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"14 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84123789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Purwanto, S. S. Nisa, I. P. Lestari, M. Ikhsanudin, C. Yudha, H. Widiyandari
{"title":"High Performance Nickel Based Electrodes in State-of-the-Art Lithium-ion Batteries: Morphological Perspectives","authors":"A. Purwanto, S. S. Nisa, I. P. Lestari, M. Ikhsanudin, C. Yudha, H. Widiyandari","doi":"10.14356/kona.2022015","DOIUrl":"https://doi.org/10.14356/kona.2022015","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"8 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79974436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}