Louguangshu Huang, Hui Liu, Xiaoxia Xue, Wuduo Zhao, Tiesheng Li
In this article, an approach to generate self-assembly cyclopalladated polythiophene imine monolayers (denoted as ITO@Pd-CPTIMs) is described. The monolayers were fabricated by combining self-assembly (SA), hybrid doping (HD), and electrochemical polymerization (ECP) called SA-HD-ECP. The catalytic activity and stability of the polymerized monolayers in the Suzuki coupling reaction were improved by modulating the structure and morphology in hybrid doping using different thiophene derivatives, concentrations, and scanning numbers during electrochemical polymerization. Morphological changes in the catalytic surface associated with catalytic activity were investigated. ITO@Pd-PTF could improve catalytic activity with a higher TON value (45000 mol/molcat) and attain recycling ability at least 10 times.
{"title":"Controllable Cyclopalladated Polythiophene Imine Monolayer by Self-Assembly, Hybrid Doping and Electrochemical Polymerization: A Simple Way to Enhance Activity and Stability","authors":"Louguangshu Huang, Hui Liu, Xiaoxia Xue, Wuduo Zhao, Tiesheng Li","doi":"10.21926/cr.2201003","DOIUrl":"https://doi.org/10.21926/cr.2201003","url":null,"abstract":"In this article, an approach to generate self-assembly cyclopalladated polythiophene imine monolayers (denoted as ITO@Pd-CPTIMs) is described. The monolayers were fabricated by combining self-assembly (SA), hybrid doping (HD), and electrochemical polymerization (ECP) called SA-HD-ECP. The catalytic activity and stability of the polymerized monolayers in the Suzuki coupling reaction were improved by modulating the structure and morphology in hybrid doping using different thiophene derivatives, concentrations, and scanning numbers during electrochemical polymerization. Morphological changes in the catalytic surface associated with catalytic activity were investigated. ITO@Pd-PTF could improve catalytic activity with a higher TON value (45000 mol/molcat) and attain recycling ability at least 10 times.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126943806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the relationship between activity and structure of Cu2+ in different chemical environments of Cu-BETA, La2CuO4, and CuO nanocatalysts was systematically investigated for acetonitrile combustion. The study revealed that exchanged and octahedral species of Cu2+ coexist in Cu-BETA, while octahedral species are dominant in CuO and La2CuO4. All nanocatalysts achieved high conversion rates of acetonitrile, which rapidly increased with temperature. CuO and La2CuO4 led to the formation of undesired products such as N2O and NO. On the other hand, Cu-BETA showed high acetonitrile conversion along with a high N2 yield. The excellent performance of Cu-BETA can be attributed to the easy reducibility of the highly dispersed Cu-species and the small crystallite size. Cu-BETA also exhibited exceptional stability. Therefore, the high conversion rate and the high N2 yield make Cu-BETA a promising catalyst for acetonitrile combustion.
{"title":"Acetonitrile Combustion over Copper-Based Nanocatalysts: A Structure-Performance Relationship Study","authors":"J. A. P. Ponciano, M. S. Batista","doi":"10.21926/cr.2201002","DOIUrl":"https://doi.org/10.21926/cr.2201002","url":null,"abstract":"In this paper, the relationship between activity and structure of Cu2+ in different chemical environments of Cu-BETA, La2CuO4, and CuO nanocatalysts was systematically investigated for acetonitrile combustion. The study revealed that exchanged and octahedral species of Cu2+ coexist in Cu-BETA, while octahedral species are dominant in CuO and La2CuO4. All nanocatalysts achieved high conversion rates of acetonitrile, which rapidly increased with temperature. CuO and La2CuO4 led to the formation of undesired products such as N2O and NO. On the other hand, Cu-BETA showed high acetonitrile conversion along with a high N2 yield. The excellent performance of Cu-BETA can be attributed to the easy reducibility of the highly dispersed Cu-species and the small crystallite size. Cu-BETA also exhibited exceptional stability. Therefore, the high conversion rate and the high N2 yield make Cu-BETA a promising catalyst for acetonitrile combustion.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115389641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is important to understand the band offsets between semiconductors, which are crucial to determine the direction of electron transfer at the interfaces. Two methods are normally used to determine the direction from the first principles: alternating slabs put in contact (without empty spaces between them) and separate calculations for each material surface in the presence of vacuum spaces. The first method may introduce distortions due to insufficient epitaxial match, which may lead to bandgap changes, and the second may neglect electron transfer at the interface, which may be important in systems exhibiting very different average electronegativities. This can also imply a spill of electronic density into the vacuum spaces, which will not be present at real interfaces. Herein, both approaches were used to study the BiVO4/NiOOH interface, and the results were compared; the results are here relevant for photoelectrochemistry. The method is based on hybrid Density Functional Theory methods which give for the bulk phases Bandgap values that agree with the experimental ones (in one case, a value reflecting the theoretical value). The distances between the (hybrid DFT-derived) band positions and the corresponding profiles of the Hartree electrostatic potential were transferred to the interfaces. This helps determining the appropriate positions of the valence and conduction bands (as has been suggested by C. G. Van de Walle & R. M. Martin, Phys. Rev. B 1987, 35, 8154). It is ensured that the interfaces are nonpolar (Tasker’s criterion: P.W. Tasker, J. Phys. C: Solid State Phys. 1979, 12, 4977).
了解半导体之间的带偏移是很重要的,这对于确定界面上电子转移的方向至关重要。通常有两种方法用于根据第一原理确定方向:交替放置接触的板料(它们之间没有空白空间)和在存在真空空间的情况下对每个材料表面进行单独计算。第一种方法可能由于外延匹配不足而导致扭曲,这可能导致带隙变化,第二种方法可能忽略了界面上的电子转移,这在具有非常不同的平均电负性的系统中可能很重要。这也可能意味着电子密度溢出到真空空间中,而这在实际界面中是不存在的。本文采用两种方法对BiVO4/NiOOH界面进行了研究,并对研究结果进行了比较;这里的结果与光电化学有关。该方法基于混合密度泛函理论方法,给出了与实验值一致的体相带隙值(在一种情况下,一个值反映了理论值)。混合dft导出的能带位置之间的距离和相应的哈特里静电势分布被传递到界面上。这有助于确定价带和导带的适当位置(如C. G. Van de Walle和R. M. Martin, Phys所建议的)。Rev. B 1987, 35, 8154)。保证了界面是非极性的(Tasker准则:P.W. Tasker, J. Phys。[j] .固体物理学报,1999,12(2):481 - 481。
{"title":"Determining the Band Alignment at the BiVO4|NiOOH Interface Using the Hybrid DFT Technique","authors":"J. Conesa","doi":"10.21926/cr.2201005","DOIUrl":"https://doi.org/10.21926/cr.2201005","url":null,"abstract":"It is important to understand the band offsets between semiconductors, which are crucial to determine the direction of electron transfer at the interfaces. Two methods are normally used to determine the direction from the first principles: alternating slabs put in contact (without empty spaces between them) and separate calculations for each material surface in the presence of vacuum spaces. The first method may introduce distortions due to insufficient epitaxial match, which may lead to bandgap changes, and the second may neglect electron transfer at the interface, which may be important in systems exhibiting very different average electronegativities. This can also imply a spill of electronic density into the vacuum spaces, which will not be present at real interfaces. Herein, both approaches were used to study the BiVO4/NiOOH interface, and the results were compared; the results are here relevant for photoelectrochemistry. The method is based on hybrid Density Functional Theory methods which give for the bulk phases Bandgap values that agree with the experimental ones (in one case, a value reflecting the theoretical value). The distances between the (hybrid DFT-derived) band positions and the corresponding profiles of the Hartree electrostatic potential were transferred to the interfaces. This helps determining the appropriate positions of the valence and conduction bands (as has been suggested by C. G. Van de Walle & R. M. Martin, Phys. Rev. B 1987, 35, 8154). It is ensured that the interfaces are nonpolar (Tasker’s criterion: P.W. Tasker, J. Phys. C: Solid State Phys. 1979, 12, 4977).","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121646843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabien Drault, Y. Snoussi, Camila P. Ferraz, J. Thuriot-Roukos, S. Heyte, I. I. Júnior, Maya Marinova, S. Paul, R. Wojcieszak
Regardless of their size, supported gold nanoparticles are largely used for liquid-phase oxidation reactions. Small gold nanoparticles exhibit good performance during the reduction of organic compounds. The direct reduction of carboxylic acid to aldehyde is a famous and familiar reaction in the field of organic chemistry and is considered as one of the fundamental chemical transformations. Herein, we present Au/hydrotalcite, Au/MgO, and Au/Al2O3 systems as heterogeneous versatile catalysts to realize the oxidation of furfural (FF) to furoic acid (FA) and realize the reduction of FA to FF. Experiments showed that in standard aqueous conditions under air, FF can be easily oxidized to FA. When DMSO was used as a solvent to conduct the experiments under an atmosphere of CO2, FA was reduced to FF. The Au/HT series of catalysts was found to be active in both transformations, pointing out the versatility of the gold-based catalysts. The activity significantly depends on the acid-base properties of the catalyst.
{"title":"Versatility of Supported Gold Nanoparticles on Hydrotalcites used for Oxidation and Reduction Reactions","authors":"Fabien Drault, Y. Snoussi, Camila P. Ferraz, J. Thuriot-Roukos, S. Heyte, I. I. Júnior, Maya Marinova, S. Paul, R. Wojcieszak","doi":"10.21926/cr.2201001","DOIUrl":"https://doi.org/10.21926/cr.2201001","url":null,"abstract":"Regardless of their size, supported gold nanoparticles are largely used for liquid-phase oxidation reactions. Small gold nanoparticles exhibit good performance during the reduction of organic compounds. The direct reduction of carboxylic acid to aldehyde is a famous and familiar reaction in the field of organic chemistry and is considered as one of the fundamental chemical transformations. Herein, we present Au/hydrotalcite, Au/MgO, and Au/Al2O3 systems as heterogeneous versatile catalysts to realize the oxidation of furfural (FF) to furoic acid (FA) and realize the reduction of FA to FF. Experiments showed that in standard aqueous conditions under air, FF can be easily oxidized to FA. When DMSO was used as a solvent to conduct the experiments under an atmosphere of CO2, FA was reduced to FF. The Au/HT series of catalysts was found to be active in both transformations, pointing out the versatility of the gold-based catalysts. The activity significantly depends on the acid-base properties of the catalyst.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121744811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this research was to analyze the effect of different concentrations of nitric and hydrochloric acids on the structural, acidic, and catalytic properties of a post-synthetic treated ZSM-5 type zeolite at various temperatures. The properties of zeolite catalysts were determined using different methods, such as the Brunauer-Emmett-Teller (BET) method for specific surface area, temperature-programmed desorption (TPD) of ammonia method for acidic properties, and a flow-through unit with fixed bed catalyst (with upgrading straight-run gasoline fraction of oil) for catalytic activities of initial zeolite and acid-treated samples. The structural and acidic properties of both untreated and treated zeolites were investigated, and the effect of acid treatment on the catalytic properties of the samples in the course of upgrading the straight-run gasoline fraction of oil was determined. The post-synthetic treatment with aqueous nitric acid increased the specific surface area and volume of micropores of ZSM-5 zeolite, while the treatment with aqueous hydrochloric acid led to the formation of mesopores. Acid treatments of zeolite decreased the number of acid sites, mainly due to diminished concentration of low-temperature sites. The yield of liquid products in the conversion of straight-run gasoline fraction of oil, i.e., generation of high-octane gasolines with improved environmental features, was increased using acid-treated zeolites, which was due to the decrease in arene content.
{"title":"Effect of Acid Treatment on the Properties of Zeolite Catalyst for Straight-Run Gasoline Upgrading","authors":"L. Velichkina, Ya. E. Barbashin, A. Vosmerikov","doi":"10.21926/cr.2104004","DOIUrl":"https://doi.org/10.21926/cr.2104004","url":null,"abstract":"The objective of this research was to analyze the effect of different concentrations of nitric and hydrochloric acids on the structural, acidic, and catalytic properties of a post-synthetic treated ZSM-5 type zeolite at various temperatures. The properties of zeolite catalysts were determined using different methods, such as the Brunauer-Emmett-Teller (BET) method for specific surface area, temperature-programmed desorption (TPD) of ammonia method for acidic properties, and a flow-through unit with fixed bed catalyst (with upgrading straight-run gasoline fraction of oil) for catalytic activities of initial zeolite and acid-treated samples. The structural and acidic properties of both untreated and treated zeolites were investigated, and the effect of acid treatment on the catalytic properties of the samples in the course of upgrading the straight-run gasoline fraction of oil was determined. The post-synthetic treatment with aqueous nitric acid increased the specific surface area and volume of micropores of ZSM-5 zeolite, while the treatment with aqueous hydrochloric acid led to the formation of mesopores. Acid treatments of zeolite decreased the number of acid sites, mainly due to diminished concentration of low-temperature sites. The yield of liquid products in the conversion of straight-run gasoline fraction of oil, i.e., generation of high-octane gasolines with improved environmental features, was increased using acid-treated zeolites, which was due to the decrease in arene content.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123547400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The photocatalytic reaction involved in TiO2 photocatalysis was investigated using a microreactor coated with TiO2 film on the glass plate attached on one side of the microreactor. It was confirmed that the effect of H2O2 on the photocatalytic degradation efficiency of azo dyes (acid orange 7, acid red 151, and acid yellow 23) was dependent on the polymorphs (anatase and rutile) of TiO2 coated on the glass plate of the UV-irradiated microreactor. Scavengers of holes (KI) and electrons (p-benzoquinone) were added to the solution of azo dyes, and their effects on the degradation efficiencies of the azo dye (acid orange 7) in the microreactor system were investigated. It was found that the electron scavengers of p-benzoquinone showed much larger effects on the photocatalytic degradation efficiency than the hole scavengers of KI. Based on these results, the mechanism of the photocatalytic degradation of the azo dyes in the presence of H2O2 was proposed.
{"title":"Photocatalytic Degradation of Azo Dyes Using Microreactors: Mechanistic Study of its Effects on H2O2 Addition","authors":"Y. Murakami, Minato Nakamura","doi":"10.21926/cr.2103002","DOIUrl":"https://doi.org/10.21926/cr.2103002","url":null,"abstract":"The photocatalytic reaction involved in TiO2 photocatalysis was investigated using a microreactor coated with TiO2 film on the glass plate attached on one side of the microreactor. It was confirmed that the effect of H2O2 on the photocatalytic degradation efficiency of azo dyes (acid orange 7, acid red 151, and acid yellow 23) was dependent on the polymorphs (anatase and rutile) of TiO2 coated on the glass plate of the UV-irradiated microreactor. Scavengers of holes (KI) and electrons (p-benzoquinone) were added to the solution of azo dyes, and their effects on the degradation efficiencies of the azo dye (acid orange 7) in the microreactor system were investigated. It was found that the electron scavengers of p-benzoquinone showed much larger effects on the photocatalytic degradation efficiency than the hole scavengers of KI. Based on these results, the mechanism of the photocatalytic degradation of the azo dyes in the presence of H2O2 was proposed.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125519056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fe-rich alloys have been widely studied as catalyst materials for the cathodic oxygen reduction reaction (ORR) in hydrogen fuel cells, and many have shown high activities. The stability of Fe-rich catalysts has also been researched, and some studies have shown promising results using an accelerated stress test (AST), which uses a potential cycling method. However, for commercial fuel cell applications, such as standby power systems, the catalyst has to tolerate a high potential for a long period, which can not be represented by the AST test. In this paper, the cathode stability of a Fe-rich catalyst was studied using a standby cell potential of 0.9V, a potential shown to be challenging for the competing Pt catalysts. After 1500 hrs of testing, significant morphology changes of both the tested cathode and anode were found due to a Fe leaching process. Other alloy materials, including Ni, Cr, and Mn, were also found leached out along with the Fe species from the catalyst framework. The results are a cautionary note for using Fe based catalysts for AEMFC cathodes.
{"title":"Stability of a Fe-Rich Cathode Catalyst in an Anion Exchange Membrane Fuel Cell","authors":"Lin Xie, D. Kirk","doi":"10.21926/cr.2103003","DOIUrl":"https://doi.org/10.21926/cr.2103003","url":null,"abstract":"Fe-rich alloys have been widely studied as catalyst materials for the cathodic oxygen reduction reaction (ORR) in hydrogen fuel cells, and many have shown high activities. The stability of Fe-rich catalysts has also been researched, and some studies have shown promising results using an accelerated stress test (AST), which uses a potential cycling method. However, for commercial fuel cell applications, such as standby power systems, the catalyst has to tolerate a high potential for a long period, which can not be represented by the AST test. In this paper, the cathode stability of a Fe-rich catalyst was studied using a standby cell potential of 0.9V, a potential shown to be challenging for the competing Pt catalysts. After 1500 hrs of testing, significant morphology changes of both the tested cathode and anode were found due to a Fe leaching process. Other alloy materials, including Ni, Cr, and Mn, were also found leached out along with the Fe species from the catalyst framework. The results are a cautionary note for using Fe based catalysts for AEMFC cathodes.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129895221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One-pot synthesis of mesoporous hybrid material consisting of Mn-Co/CoO nanoparticles encapsulated in an N-doped graphene shell decorated with Mo2C nanoparticles (Mo2C-NC@Mn-Co/CoO) was reported. The Mn and Mo components synergistically refined the graphitized carbons due to the interactions with N and C atoms while promoting the stability of the Co/CoO nanoparticles. These components exhibited a beneficial effect on the dispersion of the active metal/metal oxide nanoparticles and the formation of a mesoporous structure under high-temperature conditions, which together led to optimized oxygen adsorption/desorption capabilities as well as mass transport properties. The hybrid material showed high bifunctional performance for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as promising catalytic properties as the air electrode in a zinc-air battery, featuring superior long-term cycle stability comparable to that of Pt-C/RuO2 materials.
{"title":"Development of an Efficient Bi-Functional Catalyst made of a Novel Hybrid Material for Rechargeable Zn-Air Battery","authors":"Shiping Wang, G. Bendt, S. Schulz","doi":"10.21926/cr.2103001","DOIUrl":"https://doi.org/10.21926/cr.2103001","url":null,"abstract":"One-pot synthesis of mesoporous hybrid material consisting of Mn-Co/CoO nanoparticles encapsulated in an N-doped graphene shell decorated with Mo2C nanoparticles (Mo2C-NC@Mn-Co/CoO) was reported. The Mn and Mo components synergistically refined the graphitized carbons due to the interactions with N and C atoms while promoting the stability of the Co/CoO nanoparticles. These components exhibited a beneficial effect on the dispersion of the active metal/metal oxide nanoparticles and the formation of a mesoporous structure under high-temperature conditions, which together led to optimized oxygen adsorption/desorption capabilities as well as mass transport properties. The hybrid material showed high bifunctional performance for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as promising catalytic properties as the air electrode in a zinc-air battery, featuring superior long-term cycle stability comparable to that of Pt-C/RuO2 materials.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127876806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coating Composition on the Basis of Carbamide-PhenolFormaldehyde Co-Oligomer","authors":"Naibova Tm, Musazadeh Zm","doi":"10.35702/catalres.10001","DOIUrl":"https://doi.org/10.35702/catalres.10001","url":null,"abstract":"","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115810217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}