首页 > 最新文献

The Astrophysical Journal Letters最新文献

英文 中文
The Gravitational-wave Background Null Hypothesis: Characterizing Noise in Millisecond Pulsar Arrival Times with the Parkes Pulsar Timing Array 引力波背景零假设:用帕克斯脉冲星定时阵列表征毫秒脉冲星到达时间中的噪声
Pub Date : 2023-06-28 DOI: 10.3847/2041-8213/acdd03
D. Reardon, A. Zic, R. Shannon, Valentina Di Marco, G. Hobbs, Agastya Kapur, M. Lower, R. Mandow, H. Middleton, M. T. Miles, Axl F. Rogers, Jacob Askew, M. Bailes, N. Bhat, A. Cameron, M. Kerr, Atharva Kulkarni, R. Manchester, R. Nathan, C. Russell, S. Osłowski, Xingjiang Zhu
The noise in millisecond pulsar (MSP) timing data can include contributions from observing instruments, the interstellar medium, the solar wind, solar system ephemeris errors, and the pulsars themselves. The noise environment must be accurately characterized in order to form the null hypothesis from which signal models can be compared, including the signature induced by nanohertz-frequency gravitational waves (GWs). Here we describe the noise models developed for each of the MSPs in the Parkes Pulsar Timing Array (PPTA) third data release, which have been used as the basis of a search for the isotropic stochastic GW background. We model pulsar spin noise, dispersion measure variations, scattering variations, events in the pulsar magnetospheres, solar wind variability, and instrumental effects. We also search for new timing model parameters and detected Shapiro delays in PSR J0614−3329 and PSR J1902−5105. The noise and timing models are validated by testing the normalized and whitened timing residuals for Gaussianity and residual correlations with time. We demonstrate that the choice of noise models significantly affects the inferred properties of a common-spectrum process. Using our detailed models, the recovered common-spectrum noise in the PPTA is consistent with a power law with a spectral index of γ = 13/3, the value predicted for a stochastic GW background from a population of supermassive black hole binaries driven solely by GW emission.
毫秒脉冲星(MSP)计时数据中的噪声可能包括观测仪器、星际介质、太阳风、太阳系星历误差和脉冲星本身的贡献。噪声环境必须准确地表征,以便形成零假设,从而可以比较信号模型,包括纳赫兹频率引力波(GWs)引起的信号。本文描述了帕克斯脉冲星定时阵列(PPTA)第三次数据发布中为每个msp开发的噪声模型,该模型已被用作搜索各向同性随机GW背景的基础。我们模拟脉冲星自旋噪声、色散测量变化、散射变化、脉冲星磁层事件、太阳风变率和仪器效应。我们还搜索了新的时序模型参数,并在PSR J0614 - 3329和PSR J1902 - 5105中检测到了夏皮罗延迟。通过测试归一化和白化的时间残差的高斯性和残差与时间的相关性,对噪声和时间模型进行了验证。我们证明了噪声模型的选择显著影响了共谱过程的推断性质。利用我们的详细模型,在PPTA中恢复的共谱噪声符合一个幂律,其光谱指数为γ = 13/3,这是由GW发射驱动的超大质量黑洞双星群体随机GW背景预测的值。
{"title":"The Gravitational-wave Background Null Hypothesis: Characterizing Noise in Millisecond Pulsar Arrival Times with the Parkes Pulsar Timing Array","authors":"D. Reardon, A. Zic, R. Shannon, Valentina Di Marco, G. Hobbs, Agastya Kapur, M. Lower, R. Mandow, H. Middleton, M. T. Miles, Axl F. Rogers, Jacob Askew, M. Bailes, N. Bhat, A. Cameron, M. Kerr, Atharva Kulkarni, R. Manchester, R. Nathan, C. Russell, S. Osłowski, Xingjiang Zhu","doi":"10.3847/2041-8213/acdd03","DOIUrl":"https://doi.org/10.3847/2041-8213/acdd03","url":null,"abstract":"The noise in millisecond pulsar (MSP) timing data can include contributions from observing instruments, the interstellar medium, the solar wind, solar system ephemeris errors, and the pulsars themselves. The noise environment must be accurately characterized in order to form the null hypothesis from which signal models can be compared, including the signature induced by nanohertz-frequency gravitational waves (GWs). Here we describe the noise models developed for each of the MSPs in the Parkes Pulsar Timing Array (PPTA) third data release, which have been used as the basis of a search for the isotropic stochastic GW background. We model pulsar spin noise, dispersion measure variations, scattering variations, events in the pulsar magnetospheres, solar wind variability, and instrumental effects. We also search for new timing model parameters and detected Shapiro delays in PSR J0614−3329 and PSR J1902−5105. The noise and timing models are validated by testing the normalized and whitened timing residuals for Gaussianity and residual correlations with time. We demonstrate that the choice of noise models significantly affects the inferred properties of a common-spectrum process. Using our detailed models, the recovered common-spectrum noise in the PPTA is consistent with a power law with a spectral index of γ = 13/3, the value predicted for a stochastic GW background from a population of supermassive black hole binaries driven solely by GW emission.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124366814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background nanogravity 15年数据集:引力波背景对超大质量黑洞双星的约束
Pub Date : 2023-06-28 DOI: 10.3847/2041-8213/ace18b
G. Agazie, A. Anumarlapudi, A. Archibald, P. Baker, B. B'ecsy, L. Blecha, Alexander Bonilla, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, D. D’Orazio, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, E. Gardiner, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, T. Littenberg, Tianyu Liu, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom,
The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.
nanogravity 15年的数据集显示了低频引力波背景(GWB)存在的证据。虽然许多物理过程都可以产生这种低频引力波,但在这里,我们将信号分析为来自分布在宇宙中的超大质量黑洞(SMBH)双星群。我们表明,SMBH双星群的天体物理驱动模型能够重现观测到的低频引力波频谱的振幅和形状。虽然在我们目前的测量精度下,多种模型变化能够再现GWB光谱,但我们的研究结果强调了准确建模二元演化对于产生真实的GWB光谱的重要性。此外,虽然合理的参数能够再现15年的观测值,但隐含的GWB幅度需要大量参数位于期望值的边缘,或者少量参数与标准期望显著不同。虽然我们还不能确定推断出的GWB信号的起源,但信号与天体物理学预期的一致性提供了一个诱人的前景,可以确认SMBH双星能够形成,达到亚秒差距的距离,并最终合并。随着时间的推移,GWB频谱的高阶特征将明确地决定GWB的性质,并允许对SMBH种群的新约束。
{"title":"The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background","authors":"G. Agazie, A. Anumarlapudi, A. Archibald, P. Baker, B. B'ecsy, L. Blecha, Alexander Bonilla, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, D. D’Orazio, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, E. Gardiner, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, T. Littenberg, Tianyu Liu, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom,","doi":"10.3847/2041-8213/ace18b","DOIUrl":"https://doi.org/10.3847/2041-8213/ace18b","url":null,"abstract":"The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114114608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars nanogrv 15年数据集:68毫秒脉冲星的观测和定时
Pub Date : 2023-06-28 DOI: 10.3847/2041-8213/acda9a
G. Agazie, Md F. Alam, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, L. Blecha, Victoria Bonidie, A. Brazier, P. Brook, S. Burke-Spolaor, B. B'ecsy, Christopher Chapman, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, K. Gultekin, J. Hazboun, R. Jennings, Cody Jessup, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, A. Kuske, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, Ye Lin, Tianyu Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, Kaleb Maraccini, A. McEwen, J. McKee, Maura A. McLaughlin, N. McMann, B. W. Meyers, C. Mingarelli, A. Mitridate, C. Ng, D. Nice, S. Ocker, K. Olum, Elisa Panciu, T. Pennucci, B. Perera, N. Pol, H. Radovan, S. Ransom, P. Ray, J. Romano, Laura Salo, S. C. Sardesai, C. Schmiedekamp, A. Schmiedekamp, K. Schmitz, B. Shapiro-Albe
We present observations and timing analyses of 68 millisecond pulsars (MSPs) comprising the 15 yr data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is a pulsar timing array (PTA) experiment that is sensitive to low-frequency gravitational waves (GWs). This is NANOGrav’s fifth public data release, including both “narrowband” and “wideband” time-of-arrival (TOA) measurements and corresponding pulsar timing models. We have added 21 MSPs and extended our timing baselines by 3 yr, now spanning nearly 16 yr for some of our sources. The data were collected using the Arecibo Observatory, the Green Bank Telescope, and the Very Large Array between frequencies of 327 MHz and 3 GHz, with most sources observed approximately monthly. A number of notable methodological and procedural changes were made compared to our previous data sets. These improve the overall quality of the TOA data set and are part of the transition to new pulsar timing and PTA analysis software packages. For the first time, our data products are accompanied by a full suite of software to reproduce data reduction, analysis, and results. Our timing models include a variety of newly detected astrometric and binary pulsar parameters, including several significant improvements to pulsar mass constraints. We find that the time series of 23 pulsars contain detectable levels of red noise, 10 of which are new measurements. In this data set, we find evidence for a stochastic GW background.
本文对北美纳赫兹引力波天文台(NANOGrav) 15年数据集中的68颗毫秒脉冲星(msp)进行了观测和时序分析。nanogravity是一种对低频引力波敏感的脉冲星定时阵列(PTA)实验。这是nanogrv的第五次公开数据发布,包括“窄带”和“宽带”到达时间(TOA)测量和相应的脉冲星定时模型。我们增加了21个msp,并将我们的时间基准延长了3年,现在我们的一些来源跨越了近16年。数据是通过阿雷西博天文台、格林班克望远镜和甚大阵列收集的,频率在327兆赫和3千兆赫之间,大多数来源大约每月观测一次。与之前的数据集相比,我们在方法和程序上做了一些显著的改变。这些改进了TOA数据集的整体质量,是向新的脉冲星定时和PTA分析软件包过渡的一部分。第一次,我们的数据产品伴随着一套完整的软件来重现数据缩减、分析和结果。我们的计时模型包括各种新探测到的天体测量和双星脉冲星参数,包括对脉冲星质量约束的几项重大改进。我们发现23颗脉冲星的时间序列包含可探测到的红噪声,其中10颗是新测量到的。在这个数据集中,我们发现了随机GW背景的证据。
{"title":"The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars","authors":"G. Agazie, Md F. Alam, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, L. Blecha, Victoria Bonidie, A. Brazier, P. Brook, S. Burke-Spolaor, B. B'ecsy, Christopher Chapman, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, K. Gultekin, J. Hazboun, R. Jennings, Cody Jessup, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, A. Kuske, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, Ye Lin, Tianyu Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, Kaleb Maraccini, A. McEwen, J. McKee, Maura A. McLaughlin, N. McMann, B. W. Meyers, C. Mingarelli, A. Mitridate, C. Ng, D. Nice, S. Ocker, K. Olum, Elisa Panciu, T. Pennucci, B. Perera, N. Pol, H. Radovan, S. Ransom, P. Ray, J. Romano, Laura Salo, S. C. Sardesai, C. Schmiedekamp, A. Schmiedekamp, K. Schmitz, B. Shapiro-Albe","doi":"10.3847/2041-8213/acda9a","DOIUrl":"https://doi.org/10.3847/2041-8213/acda9a","url":null,"abstract":"We present observations and timing analyses of 68 millisecond pulsars (MSPs) comprising the 15 yr data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is a pulsar timing array (PTA) experiment that is sensitive to low-frequency gravitational waves (GWs). This is NANOGrav’s fifth public data release, including both “narrowband” and “wideband” time-of-arrival (TOA) measurements and corresponding pulsar timing models. We have added 21 MSPs and extended our timing baselines by 3 yr, now spanning nearly 16 yr for some of our sources. The data were collected using the Arecibo Observatory, the Green Bank Telescope, and the Very Large Array between frequencies of 327 MHz and 3 GHz, with most sources observed approximately monthly. A number of notable methodological and procedural changes were made compared to our previous data sets. These improve the overall quality of the TOA data set and are part of the transition to new pulsar timing and PTA analysis software packages. For the first time, our data products are accompanied by a full suite of software to reproduce data reduction, analysis, and results. Our timing models include a variety of newly detected astrometric and binary pulsar parameters, including several significant improvements to pulsar mass constraints. We find that the time series of 23 pulsars contain detectable levels of red noise, 10 of which are new measurements. In this data set, we find evidence for a stochastic GW background.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120834101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 60
The NANOGrav 15 yr Data Set: Search for Signals from New Physics nanogravity 15年数据集:寻找来自新物理学的信号
Pub Date : 2023-06-28 DOI: 10.3847/2041-8213/acdc91
A. Afzal, G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, J. Blanco-Pillado, L. Blecha, K. Boddy, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, Richard von Eckardstein, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, Lydia Guertin, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, Vincent S. H. Lee, N. Lewandowska, Rafael R. Lino dos Santos, T. Littenberg, Tianyu Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, J. Nay, P. Natarajan, C.
The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.
北美纳赫兹引力波天文台(nanogravity)收集的15年脉冲星计时数据显示了低频引力波(GW)背景存在的确凿证据。在本文中,我们研究了该信号的潜在宇宙学解释,特别是宇宙暴胀,标量诱导的GWs,一阶相变,宇宙弦和畴壁。我们发现,除了场论起源的稳定宇宙弦外,所有这些模型都能再现观测到的信号。与超大质量黑洞双星(SMBHBs)的标准解释相比,许多宇宙学模型似乎提供了更好的拟合,导致贝叶斯因子在10到100之间。然而,这些结果在很大程度上依赖于对宇宙SMBHB种群的建模假设,在这个阶段,不应该被视为新物理学的证据。此外,我们确定了排除的参数区域,其中来自宇宙源的预测GW信号明显超过nanogravity信号。这些参数约束与nanogravity信号的来源无关,说明脉冲星授时数据为约束这些模型的参数空间提供了一种新的方法。最后,我们在银河系中寻找超轻暗物质(ULDM)和暗物质子结构模型产生的确定性信号。我们没有发现这些信号的证据,因此报告了这些模型的更新约束。在ULDM的情况下,这些约束优于与电子、μ子或胶子耦合的ULDM的扭转平衡和原子钟约束。
{"title":"The NANOGrav 15 yr Data Set: Search for Signals from New Physics","authors":"A. Afzal, G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, J. Blanco-Pillado, L. Blecha, K. Boddy, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, Richard von Eckardstein, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, Lydia Guertin, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, Vincent S. H. Lee, N. Lewandowska, Rafael R. Lino dos Santos, T. Littenberg, Tianyu Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, J. Nay, P. Natarajan, C. ","doi":"10.3847/2041-8213/acdc91","DOIUrl":"https://doi.org/10.3847/2041-8213/acdc91","url":null,"abstract":"The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129052175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 140
Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array 用帕克斯脉冲星定时阵列寻找各向同性引力波背景
Pub Date : 2023-06-28 DOI: 10.3847/2041-8213/acdd02
D. Reardon, A. Zic, R. Shannon, G. Hobbs, M. Bailes, Valentina Di Marco, Agastya Kapur, Axl F. Rogers, E. Thrane, Jacob Askew, N. Bhat, A. Cameron, M. Curyło, W. Coles, S. Dai, B. Goncharov, M. Kerr, Atharva Kulkarni, Y. Levin, M. Lower, R. Manchester, R. Mandow, M. T. Miles, R. Nathan, S. Osłowski, C. Russell, R. Spiewak, Songbo Zhang, Xingjiang Zhu
Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 yr. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise process. Represented as a strain spectrum hc=A(f/1yr−1)α , we measure A=3.1−0.9+1.3×10−15 and α = −0.45 ± 0.20, respectively (median and 68% credible interval). For a spectral index of α = −2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we recover an amplitude of A=2.04−0.22+0.25×10−15 . However, we demonstrate that the apparent signal strength is time-dependent, as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a process with α = −2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of p ≲ 0.02 (approx. 2σ). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.
脉冲星定时阵列的目标是探测纳赫兹频率的引力波。GWs背景调制脉冲星到达时间,并表现为一个随机过程,与所有脉冲星共有,具有明显的空间相关性。在这里,我们描述了利用帕克斯脉冲星定时阵列(PPTA)第三次数据发布的30毫秒脉冲星的观测对各向同性随机引力波背景(GWB)的搜索,该观测历时18年。使用当前的贝叶斯推理技术,我们恢复并表征了共谱噪声过程。用应变谱hc= a (f/1yr - 1)α表示,我们分别测量到a =3.1−0.9+1.3×10−15和α =−0.45±0.20(中位数和68%可信区间)。对于α =−2/3的光谱指数,对应于吸入超大质量黑洞双星辐射的gw的各向同性背景,我们恢复了a =2.04−0.22+0.25×10−15的振幅。然而,我们证明了表观信号强度是时间相关的,因为我们的数据集的前半部分可以用来在A上放置一个上限,该上限与使用完整数据集推断的共谱幅度相张力。我们通过分层分析单个脉冲星对来搜索观测中的空间相关性,这也允许通过随机化脉冲星在天空中的位置来进行显著性验证。对于α = - 2/3的过程,我们测量了与GWB一致的空间相关性,估计的假警报概率为p > 0.02(约为0.03)。2σ)。PPTA的长授时基线和对南方脉冲星的访问将继续在国际脉冲星授时阵列中发挥重要作用。
{"title":"Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array","authors":"D. Reardon, A. Zic, R. Shannon, G. Hobbs, M. Bailes, Valentina Di Marco, Agastya Kapur, Axl F. Rogers, E. Thrane, Jacob Askew, N. Bhat, A. Cameron, M. Curyło, W. Coles, S. Dai, B. Goncharov, M. Kerr, Atharva Kulkarni, Y. Levin, M. Lower, R. Manchester, R. Mandow, M. T. Miles, R. Nathan, S. Osłowski, C. Russell, R. Spiewak, Songbo Zhang, Xingjiang Zhu","doi":"10.3847/2041-8213/acdd02","DOIUrl":"https://doi.org/10.3847/2041-8213/acdd02","url":null,"abstract":"Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 yr. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise process. Represented as a strain spectrum hc=A(f/1yr−1)α , we measure A=3.1−0.9+1.3×10−15 and α = −0.45 ± 0.20, respectively (median and 68% credible interval). For a spectral index of α = −2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we recover an amplitude of A=2.04−0.22+0.25×10−15 . However, we demonstrate that the apparent signal strength is time-dependent, as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a process with α = −2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of p ≲ 0.02 (approx. 2σ). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125567554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 142
The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget nanogravity 15年数据集:检测器特性和噪声预算
Pub Date : 2023-06-28 DOI: 10.3847/2041-8213/acda88
G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. Bécsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, Lydia Guertin, K. Gültekin, J. Hazboun, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Joseph W. Lazio, N. Lewandowska, Tingting Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, C. Mingarelli, A. Mitridate, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, N. Pol, H. Radovan, S. Ransom, P. Ray, J. Romano, S. C. Sardesai, A. Schmiedekamp, C. Schmiedekamp, K. Schmitz, B. Shapiro-Albert, X. Siemens, J. Simon, M. Siwek, I. Stairs, D. Stinebring, K. Stovall, A. Susobhanan, J. Swiggum, S. T
Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency GW signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15 yr data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white-noise parameters and two red-noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7 × 10−15 at 5 nHz. A power-law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav’s 15 yr GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.
脉冲星定时阵列(PTAs)是一种银河系尺度的引力波探测器。每一个单独的臂由一个毫秒脉冲星、一个射电望远镜和一个千秒差距长的路径组成,它们的特性不同,但总的来说,可以用来提取低频的GW信号。我们在NANOGrav 15年数据发布和相关论文中提供了噪声和敏感性分析,并深入介绍了PTA噪声模型。作为我们分析的第一步,我们用三种白噪声参数和两种红噪声参数来描述每个脉冲星数据集。这些参数,连同时序模型,特别是时变色散测量的分段常数模型,决定了我们正在寻找的低频GW波段的灵敏度曲线。我们将本次数据发布中所有脉冲星的信息制成表格,并给出一些具有代表性的灵敏度曲线。然后,我们使用信噪比统计结合单个脉冲星的灵敏度来计算PTA对GWs随机背景的全局灵敏度,得到5 nHz下的最小噪声特征应变为7 × 10−15。幂律综合分析显示,与NANOGrav的15年GW背景分析中恢复的振幅大致一致。虽然我们的现象学噪声模型不能明确地模拟所有已知的物理效应,但它提供了数据中噪声的准确表征,同时保持了对多类GW信号的灵敏度。
{"title":"The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget","authors":"G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. Bécsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, Lydia Guertin, K. Gültekin, J. Hazboun, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Joseph W. Lazio, N. Lewandowska, Tingting Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, C. Mingarelli, A. Mitridate, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, N. Pol, H. Radovan, S. Ransom, P. Ray, J. Romano, S. C. Sardesai, A. Schmiedekamp, C. Schmiedekamp, K. Schmitz, B. Shapiro-Albert, X. Siemens, J. Simon, M. Siwek, I. Stairs, D. Stinebring, K. Stovall, A. Susobhanan, J. Swiggum, S. T","doi":"10.3847/2041-8213/acda88","DOIUrl":"https://doi.org/10.3847/2041-8213/acda88","url":null,"abstract":"Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency GW signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15 yr data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white-noise parameters and two red-noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7 × 10−15 at 5 nHz. A power-law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav’s 15 yr GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122318125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries nanogravity 15年数据集:单个超大质量黑洞双星引力波的贝叶斯极限
Pub Date : 2023-06-28 DOI: 10.3847/2041-8213/ace18a
G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, Matthew C. Digman, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, Gabriel Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, Tingting Liu, D. Lorimer, Jingshu Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom, P. Ray, Jo√£o Romano, S. C. Sardesai, A. Schmiedekamp, C. Schmiedekamp, K. Schmitz, B. Shapiro-Albert, X. Siemens, J. Si
Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings–Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10−15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency.
基于对脉冲星定时阵列数据的分析,最近报道了低频随机引力波背景的证据。这种背景最可能的来源是一群超大质量的双星黑洞,其中最大的一个可能在这些数据集中被单独探测到。在这里,我们展示了在nanogravity 15年数据集中对单个超大质量黑洞双星的搜索。介绍了几种新技术,提高了分析的效率和建模精度。搜索发现了两个候选信号的微弱证据,一个引力波频率为~ 4nhz,另一个引力波频率为~ 170 nHz。当背景模型中包含Hellings-Downs相关性时,低频候选值的重要性大大降低。由于缺乏一个可信的宿主星系,发现这样一个来源的可能性不大,而且它的大部分支持来自一个具有相应双星周期的脉冲星,因此高频候选星系被低估了。由于没有发现来自单个双星系统信号的令人信服的证据,我们对这类系统发出的引力波的应变振幅设定了上限。在我们最敏感的6赫兹频率下,我们在应变幅度上放置了8 × 10−15的天平均95%上限。我们还计算了排除体积和相应的有效半径,在此范围内,我们可以排除以给定频率发射的黑洞双星的存在。
{"title":"The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries","authors":"G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, M. DeCesar, P. Demorest, Matthew C. Digman, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, Gabriel Freedman, N. Garver-Daniels, P. Gentile, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, Tingting Liu, D. Lorimer, Jingshu Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom, P. Ray, Jo√£o Romano, S. C. Sardesai, A. Schmiedekamp, C. Schmiedekamp, K. Schmitz, B. Shapiro-Albert, X. Siemens, J. Si","doi":"10.3847/2041-8213/ace18a","DOIUrl":"https://doi.org/10.3847/2041-8213/ace18a","url":null,"abstract":"Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings–Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10−15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117071160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Periodic Radio Emission from the T8 Dwarf WISE J062309.94–045624.6 T8矮星WISE J062309.94-045624.6的周期性射电辐射
Pub Date : 2023-06-27 DOI: 10.3847/2041-8213/ace188
Kovi Rose, J. Pritchard, T. Murphy, M. Caleb, D. Dobie, L. Driessen, S. Duchesne, D. Kaplan, E. Lenc, Ziteng Wang
We present the detection of rotationally modulated, circularly polarized radio emission from the T8 brown dwarf WISE J062309.94−045624.6 between 0.9 and 2.0 GHz. We detected this high-proper-motion ultracool dwarf with the Australian SKA Pathfinder in 1.36 GHz imaging data from the Rapid ASKAP Continuum Survey. We observed WISE J062309.94−045624.6 to have a time and frequency averaged Stokes I flux density of 4.17 ± 0.41 mJy beam−1, with an absolute circular polarization fraction of 66.3% ± 9.0%, and calculated a specific radio luminosity of L ν ∼ 1014.8 erg s−1 Hz−1. In follow-up observations with the Australian Telescope Compact Array and MeerKAT we identified a multipeaked pulse structure, used dynamic spectra to place a lower limit of B > 0.71 kG on the dwarf’s magnetic field, and measured a P = 1.912 ± 0.005 hr periodicity, which we concluded to be due to rotational modulation. The luminosity and period we measured are comparable to those of other ultracool dwarfs observed at radio wavelengths. This implies that future megahertz to gigahertz surveys, with increased cadence and improved sensitivity, are likely to detect similar or later-type dwarfs. Our detection of WISE J062309.94−045624.6 makes this dwarf the coolest and latest-type star observed to produce radio emission.
我们探测到T8褐矮星WISE J062309.94−045624.6在0.9和2.0 GHz之间的旋转调制圆偏振射电辐射。我们用来自快速ASKAP连续体调查的1.36 GHz成像数据,用澳大利亚SKA探路者探测到了这颗高运动超冷矮星。我们观测到WISE J062309.94 - 045624.6的时间和频率平均Stokes I通量密度为4.17±0.41 mJy束- 1,绝对圆极化分数为66.3%±9.0%,计算出特定的射电光度为L ν ~ 1014.8 erg s - 1 Hz - 1。在随后的澳大利亚望远镜阵列和MeerKAT观测中,我们发现了一个多峰脉冲结构,使用动态光谱对矮星磁场进行了下限B > 0.71 kG的测量,并测量了P = 1.912±0.005 hr的周期,我们认为这是由于旋转调制引起的。我们测量的亮度和周期与在无线电波长下观测到的其他超冷矮星相当。这意味着未来兆赫到千兆赫的调查,随着节奏的增加和灵敏度的提高,很可能会探测到类似或更晚类型的矮星。我们对WISE J062309.94−045624.6的探测使这颗矮星成为观测到的产生射电辐射的最冷、最新类型的恒星。
{"title":"Periodic Radio Emission from the T8 Dwarf WISE J062309.94–045624.6","authors":"Kovi Rose, J. Pritchard, T. Murphy, M. Caleb, D. Dobie, L. Driessen, S. Duchesne, D. Kaplan, E. Lenc, Ziteng Wang","doi":"10.3847/2041-8213/ace188","DOIUrl":"https://doi.org/10.3847/2041-8213/ace188","url":null,"abstract":"We present the detection of rotationally modulated, circularly polarized radio emission from the T8 brown dwarf WISE J062309.94−045624.6 between 0.9 and 2.0 GHz. We detected this high-proper-motion ultracool dwarf with the Australian SKA Pathfinder in 1.36 GHz imaging data from the Rapid ASKAP Continuum Survey. We observed WISE J062309.94−045624.6 to have a time and frequency averaged Stokes I flux density of 4.17 ± 0.41 mJy beam−1, with an absolute circular polarization fraction of 66.3% ± 9.0%, and calculated a specific radio luminosity of L ν ∼ 1014.8 erg s−1 Hz−1. In follow-up observations with the Australian Telescope Compact Array and MeerKAT we identified a multipeaked pulse structure, used dynamic spectra to place a lower limit of B > 0.71 kG on the dwarf’s magnetic field, and measured a P = 1.912 ± 0.005 hr periodicity, which we concluded to be due to rotational modulation. The luminosity and period we measured are comparable to those of other ultracool dwarfs observed at radio wavelengths. This implies that future megahertz to gigahertz surveys, with increased cadence and improved sensitivity, are likely to detect similar or later-type dwarfs. Our detection of WISE J062309.94−045624.6 makes this dwarf the coolest and latest-type star observed to produce radio emission.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132025073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Variation of the Rotation in the Solar Transition Region 太阳过渡区自转的时间变化
Pub Date : 2023-06-27 DOI: 10.3847/2041-8213/acd9a3
Xiaojuan Zhang, L. Deng, Y. Fei, Chun Li, X. Tian
The temporal variations of solar rotation in the photosphere, chromosphere, and corona have been widely investigated, whereas the rotation of the solar transition region is rarely studied. Here, we perform a primary study about the long-term variation of the rotation in the transition region using Lyα irradiance from 1947 February 14 to 2023 February 20. Correlation techniques are used, and the main results are as follows. (1) The sidereal rotation period of the solar transition region varies between 22.24 and 31.49 days, and the mean sidereal rotation period is 25.50 days for the studied time interval 1947–2022. (2) The rotation period of the transition region exhibits a clear downward trend during 1947–2022, which might be caused by the reduced heliospheric pressure and the weaker solar global magnetic fields. (3) Significant periodic signal of the quasi-Schwabe cycle is found in the rotation periods of the transition region. (4) The cross-correlation between the rotation periods of the solar transition region and sunspot activity corroborates a strong correlation with the Schwabe cycle. Possible mechanisms responsible for these results are discussed.
太阳旋转在光球层、色球层和日冕层的时间变化已经被广泛研究,而太阳过渡区的旋转很少被研究。本文利用1947年2月14日至2023年2月20日的Lyα辐照度对过渡区自转的长期变化进行了初步研究。运用相关技术,主要结果如下:(1)太阳过渡区的恒星自转周期在22.24 ~ 31.49 d之间,1947 ~ 2022年的平均恒星自转周期为25.50 d。(2) 1947—2022年,过渡区的自转周期呈现明显的下降趋势,这可能是由于日球压力降低和太阳总磁场减弱所致。(3)在过渡区的旋转周期中发现了明显的准schwabe周期信号。(4)太阳过渡区自转周期与黑子活动的相互关系证实了与Schwabe周期的强相关性。讨论了导致这些结果的可能机制。
{"title":"Temporal Variation of the Rotation in the Solar Transition Region","authors":"Xiaojuan Zhang, L. Deng, Y. Fei, Chun Li, X. Tian","doi":"10.3847/2041-8213/acd9a3","DOIUrl":"https://doi.org/10.3847/2041-8213/acd9a3","url":null,"abstract":"The temporal variations of solar rotation in the photosphere, chromosphere, and corona have been widely investigated, whereas the rotation of the solar transition region is rarely studied. Here, we perform a primary study about the long-term variation of the rotation in the transition region using Lyα irradiance from 1947 February 14 to 2023 February 20. Correlation techniques are used, and the main results are as follows. (1) The sidereal rotation period of the solar transition region varies between 22.24 and 31.49 days, and the mean sidereal rotation period is 25.50 days for the studied time interval 1947–2022. (2) The rotation period of the transition region exhibits a clear downward trend during 1947–2022, which might be caused by the reduced heliospheric pressure and the weaker solar global magnetic fields. (3) Significant periodic signal of the quasi-Schwabe cycle is found in the rotation periods of the transition region. (4) The cross-correlation between the rotation periods of the solar transition region and sunspot activity corroborates a strong correlation with the Schwabe cycle. Possible mechanisms responsible for these results are discussed.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126683700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining Dark Energy from the Local Group Dynamics 局域群动力学对暗能量的约束
Pub Date : 2023-06-26 DOI: 10.3847/2041-8213/ace90b
D. Benisty, A. Davis, N. W. Evans
This Letter develops a method to constrain the cosmological constant Λ from binary galaxies, focusing on the Milky Way and Andromeda galaxies. We provide an analytical solution to the two-body problem with Λ and show that the ratio between the Keplerian period and TΛ=2π/(cΛ)≈63.2Gyr controls the importance of effects from the cosmological constant. The Andromeda–Milky Way orbit has a period of ∼17 Gyr, and so dark energy has to be taken into account. Using the current best mass estimates of the Milky Way and Andromeda galaxies, we find the cosmological constant value has an upper bound that is 5.44 times the value obtained by Planck. With future astrometric measurements, the bound on the cosmological constant can be reduced to 1.67±0.79ΛPL . Our results offer the prospects of constraints on Λ over very different scales than previously. The Local Group provides also a completely novel platform to test alternative theories of gravity. We illustrate this by deriving bounds on scalar-tensor theories of gravity over megaparsec scales.
这封信开发了一种方法来约束宇宙常数Λ从双星系,重点是银河系和仙女座星系。我们用Λ给出了二体问题的解析解,并证明了开普勒周期与TΛ=2π/(cΛ)≈63.2Gyr的比值控制了宇宙学常数效应的重要性。仙女座-银河系的轨道周期为~ 17 Gyr,因此必须考虑暗能量。利用目前对银河系和仙女座星系的最佳质量估计,我们发现宇宙常数值的上限是普朗克得到的值的5.44倍。在未来的天文测量中,宇宙学常数的界限可以降低到1.67±0.79ΛPL。我们的研究结果提供了Λ在不同尺度上的约束前景。本地小组也提供了一个全新的平台来测试其他的重力理论。我们通过在百万秒差距尺度上推导引力的标量张量理论的界限来说明这一点。
{"title":"Constraining Dark Energy from the Local Group Dynamics","authors":"D. Benisty, A. Davis, N. W. Evans","doi":"10.3847/2041-8213/ace90b","DOIUrl":"https://doi.org/10.3847/2041-8213/ace90b","url":null,"abstract":"This Letter develops a method to constrain the cosmological constant Λ from binary galaxies, focusing on the Milky Way and Andromeda galaxies. We provide an analytical solution to the two-body problem with Λ and show that the ratio between the Keplerian period and TΛ=2π/(cΛ)≈63.2Gyr controls the importance of effects from the cosmological constant. The Andromeda–Milky Way orbit has a period of ∼17 Gyr, and so dark energy has to be taken into account. Using the current best mass estimates of the Milky Way and Andromeda galaxies, we find the cosmological constant value has an upper bound that is 5.44 times the value obtained by Planck. With future astrometric measurements, the bound on the cosmological constant can be reduced to 1.67±0.79ΛPL . Our results offer the prospects of constraints on Λ over very different scales than previously. The Local Group provides also a completely novel platform to test alternative theories of gravity. We illustrate this by deriving bounds on scalar-tensor theories of gravity over megaparsec scales.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134163610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Astrophysical Journal Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1