The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs), which store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, and infection and immunity. Thus, our perception of LDs, from simple globules of fat to highly dynamic organelles of unexpected complexity, has been radically transformed. Here we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.
{"title":"Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions.","authors":"Estela L Arrese, Fredy Z Saudale, Jose L Soulages","doi":"10.4137/LPI.S11128","DOIUrl":"https://doi.org/10.4137/LPI.S11128","url":null,"abstract":"<p><p>The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs), which store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, and infection and immunity. Thus, our perception of LDs, from simple globules of fat to highly dynamic organelles of unexpected complexity, has been radically transformed. Here we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.</p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"7 ","pages":"7-16"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/LPI.S11128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32668156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-22eCollection Date: 2013-01-01DOI: 10.4137/Lpi.s13258
Herman J Kempen, Daniel Bellus, Oleg Fedorov, Silke Nicklisch, Panagis Filippakopoulos, Sarah Picaud, Stefan Knapp
Expression and secretion of apolipoprotein A-I (apoA-I) by cultured liver cells can be markedly stimulated by triazolodiazepines (TZDs). It has been shown previously that the thieno-TZD Ro 11-1464 increases plasma levels of apoA-I and in vivomacrophage reverse cholesterol transport in mice. However, these effects were only seen at high doses, at which the compound could act on central benzodiazepine (BZD) receptors or platelet activating factor (PAF) receptors, interfering with its potential utility. In this work, we describe 2 new thieno-TZDs MDCO-3770 and MDCO-3783, both derived from Ro 11-1464. These compounds display the same high efficacy on apoA-I production, metabolic stability, and lack of cytotoxicity in cultured hepatocytes as Ro 11-1464, but they do not bind to the central BZD receptor and PAF receptor. The quinazoline RVX-208 was less efficacious in stimulating apoA-I production and displayed signs of cytotoxicity. Certain TZDs stimulating apoA-I production are now known to be inhibitors of bromodomain (BRD) extra-terminal (BET) proteins BRDT, BRD2, BRD3, and BRD4, and this inhibition was inferred as a main molecular mechanism for their effect on apoA-I expression. We show here that the thieno-TZD (+)-JQ1, a potent BET inhibitor, strongly stimulated apoA-I production in Hep-G2 cells, but that its enantiomer (-)-JQ1, which has no BET inhibitor activity, also showed considerable effect on apoA-I production. MDCO-3770 and MDCO-3783 also inhibited BRD3 and BRD4 in vitro, with potency somewhat below that of (+)-JQ1. We conclude that the effect of thieno-TZDs on apoA-I expression is not due to inhibition of the BZD or PAF receptors and is not completely explained by transcriptional repression by BET proteins.
{"title":"Stimulation of Hepatic Apolipoprotein A-I Production by Novel Thieno-Triazolodiazepines: Roles of the Classical Benzodiazepine Receptor, PAF Receptor, and Bromodomain Binding.","authors":"Herman J Kempen, Daniel Bellus, Oleg Fedorov, Silke Nicklisch, Panagis Filippakopoulos, Sarah Picaud, Stefan Knapp","doi":"10.4137/Lpi.s13258","DOIUrl":"https://doi.org/10.4137/Lpi.s13258","url":null,"abstract":"<p><p>Expression and secretion of apolipoprotein A-I (apoA-I) by cultured liver cells can be markedly stimulated by triazolodiazepines (TZDs). It has been shown previously that the thieno-TZD Ro 11-1464 increases plasma levels of apoA-I and in vivomacrophage reverse cholesterol transport in mice. However, these effects were only seen at high doses, at which the compound could act on central benzodiazepine (BZD) receptors or platelet activating factor (PAF) receptors, interfering with its potential utility. In this work, we describe 2 new thieno-TZDs MDCO-3770 and MDCO-3783, both derived from Ro 11-1464. These compounds display the same high efficacy on apoA-I production, metabolic stability, and lack of cytotoxicity in cultured hepatocytes as Ro 11-1464, but they do not bind to the central BZD receptor and PAF receptor. The quinazoline RVX-208 was less efficacious in stimulating apoA-I production and displayed signs of cytotoxicity. Certain TZDs stimulating apoA-I production are now known to be inhibitors of bromodomain (BRD) extra-terminal (BET) proteins BRDT, BRD2, BRD3, and BRD4, and this inhibition was inferred as a main molecular mechanism for their effect on apoA-I expression. We show here that the thieno-TZD (+)-JQ1, a potent BET inhibitor, strongly stimulated apoA-I production in Hep-G2 cells, but that its enantiomer (-)-JQ1, which has no BET inhibitor activity, also showed considerable effect on apoA-I production. MDCO-3770 and MDCO-3783 also inhibited BRD3 and BRD4 in vitro, with potency somewhat below that of (+)-JQ1. We conclude that the effect of thieno-TZDs on apoA-I expression is not due to inhibition of the BZD or PAF receptors and is not completely explained by transcriptional repression by BET proteins. </p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"6 ","pages":"47-54"},"PeriodicalIF":0.0,"publicationDate":"2013-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/Lpi.s13258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32715793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-27eCollection Date: 2013-01-01DOI: 10.4137/LPI.S10871
Paul Toren, Benjamin C Mora, Vasundara Venkateswaran
Obesity has been linked to more aggressive characteristics of several cancers, including breast and prostate cancer. Adipose tissue appears to contribute to paracrine interactions in the tumor microenvironment. In particular, cancer-associated adipocytes interact reciprocally with cancer cells and influence cancer progression. Adipokines secreted from adipocytes likely form a key component of the paracrine signaling in the tumor microenvironment. In vitro coculture models allow for the assessment of specific adipokines in this interaction. Furthermore, micronutrients and macronutrients present in the diet may alter the secretion of adipokines from adipocytes. The effect of dietary fat and specific fatty acids on cancer progression in several in vivo model systems and cancer types is reviewed. The more common approaches of caloric restriction or diet-induced obesity in animal models establish that such dietary changes modulate tumor biology. This review seeks to explore available evidence regarding how diet may modulate tumor characteristics through changes in the role of adipocytes in the tumor microenvironment.
{"title":"Diet, obesity, and cancer progression: are adipocytes the link?","authors":"Paul Toren, Benjamin C Mora, Vasundara Venkateswaran","doi":"10.4137/LPI.S10871","DOIUrl":"https://doi.org/10.4137/LPI.S10871","url":null,"abstract":"<p><p>Obesity has been linked to more aggressive characteristics of several cancers, including breast and prostate cancer. Adipose tissue appears to contribute to paracrine interactions in the tumor microenvironment. In particular, cancer-associated adipocytes interact reciprocally with cancer cells and influence cancer progression. Adipokines secreted from adipocytes likely form a key component of the paracrine signaling in the tumor microenvironment. In vitro coculture models allow for the assessment of specific adipokines in this interaction. Furthermore, micronutrients and macronutrients present in the diet may alter the secretion of adipokines from adipocytes. The effect of dietary fat and specific fatty acids on cancer progression in several in vivo model systems and cancer types is reviewed. The more common approaches of caloric restriction or diet-induced obesity in animal models establish that such dietary changes modulate tumor biology. This review seeks to explore available evidence regarding how diet may modulate tumor characteristics through changes in the role of adipocytes in the tumor microenvironment. </p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"6 ","pages":"37-45"},"PeriodicalIF":0.0,"publicationDate":"2013-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/LPI.S10871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32715792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-05-06eCollection Date: 2013-01-01DOI: 10.4137/LPI.S10862
Kelsey D Jordan, Rita K Upmacis
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid (PUFA) with 20 carbon atoms and 5 carbon-carbon double bonds. Mammalian cells cannot synthesize long chain PUFAs such as EPA de novo, and, thus, the most effective way to enrich cells in EPA is by dietary intake of fish oils. EPA supplementation causes an increase in its concentration in plasma lipids and in cell membrane phospholipids. Many beneficial effects of EPA supplementation have been noted, including (1) the potential to sensitize cancerous tumors towards chemotherapy, (2) the promotion of cardiovascular health, and (3) the alleviation of some mental disorders, but results from clinical trials have sometimes been disparate. In this study, we report the use of mass spectrometry to investigate the autoxidation of EPA, thereby demonstrating the formation of a variety of oxidized products. The oxidative stress of the patient may affect the response to EPA and may, in part, explain divergent results from clinical trials.
{"title":"Mass spectrometric analysis of oxidized eicosapentaenoic Acid sodium salt.","authors":"Kelsey D Jordan, Rita K Upmacis","doi":"10.4137/LPI.S10862","DOIUrl":"https://doi.org/10.4137/LPI.S10862","url":null,"abstract":"<p><p>Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid (PUFA) with 20 carbon atoms and 5 carbon-carbon double bonds. Mammalian cells cannot synthesize long chain PUFAs such as EPA de novo, and, thus, the most effective way to enrich cells in EPA is by dietary intake of fish oils. EPA supplementation causes an increase in its concentration in plasma lipids and in cell membrane phospholipids. Many beneficial effects of EPA supplementation have been noted, including (1) the potential to sensitize cancerous tumors towards chemotherapy, (2) the promotion of cardiovascular health, and (3) the alleviation of some mental disorders, but results from clinical trials have sometimes been disparate. In this study, we report the use of mass spectrometry to investigate the autoxidation of EPA, thereby demonstrating the formation of a variety of oxidized products. The oxidative stress of the patient may affect the response to EPA and may, in part, explain divergent results from clinical trials. </p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"6 ","pages":"21-35"},"PeriodicalIF":0.0,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/LPI.S10862","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32715791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-16eCollection Date: 2013-01-01DOI: 10.4137/LPI.S10846
Lucas M Kimmig, Dean G Karalis
Fish oil is rich in the omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Numerous epidemiological studies and several large randomized clinical trials have shown that modest doses of omega-3 PUFAs significantly reduce the risk of unstable angina, myocardial infarction, and sudden cardiac death as well as death in coronary artery disease and heart failure patients. Based on the scientific evidence, the American Heart Association (AHA) has recommended all individuals eat fish at least twice a week to prevent cardiovascular disease. For individuals with coronary artery disease, the recommended dose of omega-3 PUFAs is 1 g of EPA and DHA daily. To lower triglyceride levels, much higher doses are needed. However, more recent randomized clinical trials have questioned the cardiovascular benefits of fish oil. These studies have contributed to the uncertainty health care providers face when recommending omega-3 PUFA supplementation according to clinical guidelines. The purpose of this review is to examine the randomized clinical trials and scientific evidence between omega-3 PUFAs and cardiovascular outcomes to better understand the current role of omega-3 PUFAs in improving cardiovascular health.
{"title":"Do omega-3 polyunsaturated Fatty acids prevent cardiovascular disease? A review of the randomized clinical trials.","authors":"Lucas M Kimmig, Dean G Karalis","doi":"10.4137/LPI.S10846","DOIUrl":"https://doi.org/10.4137/LPI.S10846","url":null,"abstract":"<p><p>Fish oil is rich in the omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Numerous epidemiological studies and several large randomized clinical trials have shown that modest doses of omega-3 PUFAs significantly reduce the risk of unstable angina, myocardial infarction, and sudden cardiac death as well as death in coronary artery disease and heart failure patients. Based on the scientific evidence, the American Heart Association (AHA) has recommended all individuals eat fish at least twice a week to prevent cardiovascular disease. For individuals with coronary artery disease, the recommended dose of omega-3 PUFAs is 1 g of EPA and DHA daily. To lower triglyceride levels, much higher doses are needed. However, more recent randomized clinical trials have questioned the cardiovascular benefits of fish oil. These studies have contributed to the uncertainty health care providers face when recommending omega-3 PUFA supplementation according to clinical guidelines. The purpose of this review is to examine the randomized clinical trials and scientific evidence between omega-3 PUFAs and cardiovascular outcomes to better understand the current role of omega-3 PUFAs in improving cardiovascular health. </p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"6 ","pages":"13-20"},"PeriodicalIF":0.0,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/LPI.S10846","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32716910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-01eCollection Date: 2013-01-01DOI: 10.4137/LPI.S10805
Biswajit Mukherjee, Chowdhury M Hossain, Laboni Mondal, Paramita Paul, Miltu K Ghosh
A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, liver and pancreas. Deregulation of fatty acid metabolism is the main culprit for developing insulin resistance and type 2 diabetes. A predominant predisposing factor to developing obesity, insulin resistance and type 2 diabetes is the permanent elevation of free fatty acids in plasma followed by impaired utilization of lipids by muscle. Diabetes-induced inflammation and oxidative stress have also vital role for development of insulin resistance in diabetic patients. The present review is intended to describe the correlation between lipids, obesity and insulin resistance based on current literature, in order to elucidate involved molecular mechanisms in depth.
{"title":"Obesity and insulin resistance: an abridged molecular correlation.","authors":"Biswajit Mukherjee, Chowdhury M Hossain, Laboni Mondal, Paramita Paul, Miltu K Ghosh","doi":"10.4137/LPI.S10805","DOIUrl":"https://doi.org/10.4137/LPI.S10805","url":null,"abstract":"<p><p>A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, liver and pancreas. Deregulation of fatty acid metabolism is the main culprit for developing insulin resistance and type 2 diabetes. A predominant predisposing factor to developing obesity, insulin resistance and type 2 diabetes is the permanent elevation of free fatty acids in plasma followed by impaired utilization of lipids by muscle. Diabetes-induced inflammation and oxidative stress have also vital role for development of insulin resistance in diabetic patients. The present review is intended to describe the correlation between lipids, obesity and insulin resistance based on current literature, in order to elucidate involved molecular mechanisms in depth. </p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"6 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/LPI.S10805","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32716909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A C Wood, E K Kabagambe, I B Borecki, H K Tiwari, J M Ordovas, D K Arnett
We aimed to investigate the relationship between dietary saturated fat on fasting triglyceride (TG) and cholesterol levels, and any mediation of this relationship by dietary carbohydrate intake. Men and women in the NHLBI Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 1036, mean age ± SD = 49 ± 16 y) were included. Mixed linear models were run with saturated fat as a predictor variable and fasting TG, very low density lipoprotein cholesterol (VLDL-C), low density cholesterol (LDL-C) and high density cholesterol (HDL-C) as separate outcome variables. Subsequent models were run which included dietary carbohydrate as a predictor variable, and an interaction term between saturated fat and carbohydrate. All models controlled for age, sex, BMI, blood pressure and dietary covariates. In models that included only saturated fat as a predictor, saturated fat did not show significant associations with fasting lipids. When carbohydrate intake and an interaction term between carbohydrates and saturated fat intake was included, carbohydrate intake did not associate with lipids, but there was an inverse relationship between saturated fat intake and VLDL-C (P = 0.01) with a significant interaction (P = 0.01) between saturated fat and carbohydrate with regard to fasting VLDL-C concentrations. Similar results were observed for fasting TG levels. We conclude that, when controlling for carbohydrate intake, higher saturated fat was associated with lower VLDL-C and TGs. This was not the case at higher intakes of carbohydrate. This has important implications for dietary advice aimed at reducing TG and VLDL-C levels.
{"title":"Dietary Carbohydrate Modifies the Inverse Association Between Saturated Fat Intake and Cholesterol on Very Low-Density Lipoproteins.","authors":"A C Wood, E K Kabagambe, I B Borecki, H K Tiwari, J M Ordovas, D K Arnett","doi":"10.4137/LPI.S7659","DOIUrl":"https://doi.org/10.4137/LPI.S7659","url":null,"abstract":"<p><p>We aimed to investigate the relationship between dietary saturated fat on fasting triglyceride (TG) and cholesterol levels, and any mediation of this relationship by dietary carbohydrate intake. Men and women in the NHLBI Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 1036, mean age ± SD = 49 ± 16 y) were included. Mixed linear models were run with saturated fat as a predictor variable and fasting TG, very low density lipoprotein cholesterol (VLDL-C), low density cholesterol (LDL-C) and high density cholesterol (HDL-C) as separate outcome variables. Subsequent models were run which included dietary carbohydrate as a predictor variable, and an interaction term between saturated fat and carbohydrate. All models controlled for age, sex, BMI, blood pressure and dietary covariates. In models that included only saturated fat as a predictor, saturated fat did not show significant associations with fasting lipids. When carbohydrate intake and an interaction term between carbohydrates and saturated fat intake was included, carbohydrate intake did not associate with lipids, but there was an inverse relationship between saturated fat intake and VLDL-C (P = 0.01) with a significant interaction (P = 0.01) between saturated fat and carbohydrate with regard to fasting VLDL-C concentrations. Similar results were observed for fasting TG levels. We conclude that, when controlling for carbohydrate intake, higher saturated fat was associated with lower VLDL-C and TGs. This was not the case at higher intakes of carbohydrate. This has important implications for dietary advice aimed at reducing TG and VLDL-C levels.</p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"2011 4","pages":"7-15"},"PeriodicalIF":0.0,"publicationDate":"2011-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/LPI.S7659","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30137748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atherosclerosis, a disease characterized by plaque formation in the arterial wall that can lead to heart attack and stroke, is a principal cause of death in the world. Since the 1990's, protein nitrotyrosine formation has been known to occur in the atherosclerotic plaque. This potentially damaging reaction occurs as a result of tyrosine modification by reactive nitrogen species, such as nitrogen dioxide radical, which forms upon peroxynitrite decomposition or nitrite oxidation by hydrogen peroxide-activated peroxidase enzymes. The presence of protein-bound nitrotyrosine can be considered an indicator of a loss in the natural balance of oxidants and antioxidants, and as such, there is an emerging view that protein-bound nitrotyrosine may be a risk factor for cardiovascular disease. This review brings together evidence that the accumulation of protein nitrotyrosine during atherogenesis is more widespread than initially thought (as its presence can be detected not only in the lesion but also in the blood stream and other organs) and is closely linked to lipid intake.
{"title":"Atherosclerosis: A Link Between Lipid Intake and Protein Tyrosine Nitration.","authors":"Rita K Upmacis","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Atherosclerosis, a disease characterized by plaque formation in the arterial wall that can lead to heart attack and stroke, is a principal cause of death in the world. Since the 1990's, protein nitrotyrosine formation has been known to occur in the atherosclerotic plaque. This potentially damaging reaction occurs as a result of tyrosine modification by reactive nitrogen species, such as nitrogen dioxide radical, which forms upon peroxynitrite decomposition or nitrite oxidation by hydrogen peroxide-activated peroxidase enzymes. The presence of protein-bound nitrotyrosine can be considered an indicator of a loss in the natural balance of oxidants and antioxidants, and as such, there is an emerging view that protein-bound nitrotyrosine may be a risk factor for cardiovascular disease. This review brings together evidence that the accumulation of protein nitrotyrosine during atherogenesis is more widespread than initially thought (as its presence can be detected not only in the lesion but also in the blood stream and other organs) and is closely linked to lipid intake.</p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"2008 2","pages":"75"},"PeriodicalIF":0.0,"publicationDate":"2008-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821105/pdf/nihms78489.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28716543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atherosclerosis, a disease characterized by plaque formation in the arterial wall that can lead to heart attack and stroke, is a principal cause of death in the world. Since the 1990's, protein nitrotyrosine formation has been known to occur in the atherosclerotic plaque. This potentially damaging reaction occurs as a result of tyrosine modification by reactive nitrogen species, such as nitrogen dioxide radical, which forms upon peroxynitrite decomposition or nitrite oxidation by hydrogen peroxide-activated peroxidase enzymes. The presence of protein-bound nitrotyrosine can be considered an indicator of a loss in the natural balance of oxidants and antioxidants, and as such, there is an emerging view that protein-bound nitrotyrosine may be a risk factor for cardiovascular disease. This review brings together evidence that the accumulation of protein nitrotyrosine during atherogenesis is more widespread than initially thought (as its presence can be detected not only in the lesion but also in the blood stream and other organs) and is closely linked to lipid intake.
{"title":"Atherosclerosis: A Link Between Lipid Intake and Protein Tyrosine Nitration.","authors":"R. Upmacis","doi":"10.4137/LPI.S1030","DOIUrl":"https://doi.org/10.4137/LPI.S1030","url":null,"abstract":"Atherosclerosis, a disease characterized by plaque formation in the arterial wall that can lead to heart attack and stroke, is a principal cause of death in the world. Since the 1990's, protein nitrotyrosine formation has been known to occur in the atherosclerotic plaque. This potentially damaging reaction occurs as a result of tyrosine modification by reactive nitrogen species, such as nitrogen dioxide radical, which forms upon peroxynitrite decomposition or nitrite oxidation by hydrogen peroxide-activated peroxidase enzymes. The presence of protein-bound nitrotyrosine can be considered an indicator of a loss in the natural balance of oxidants and antioxidants, and as such, there is an emerging view that protein-bound nitrotyrosine may be a risk factor for cardiovascular disease. This review brings together evidence that the accumulation of protein nitrotyrosine during atherogenesis is more widespread than initially thought (as its presence can be detected not only in the lesion but also in the blood stream and other organs) and is closely linked to lipid intake.","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"12 1","pages":"75"},"PeriodicalIF":0.0,"publicationDate":"2008-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77278851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcio L Rodrigues, Leonardo Nimrichter, Debora L Oliveira, Joshua D Nosanchuk, Arturo Casadevall
Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as 'virulence bags', with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.
{"title":"Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules?","authors":"Marcio L Rodrigues, Leonardo Nimrichter, Debora L Oliveira, Joshua D Nosanchuk, Arturo Casadevall","doi":"10.4137/lpi.s1000","DOIUrl":"https://doi.org/10.4137/lpi.s1000","url":null,"abstract":"<p><p>Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as 'virulence bags', with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.</p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"2 ","pages":"27-40"},"PeriodicalIF":0.0,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/lpi.s1000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29110088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}