首页 > 最新文献

Linear Algebra and its Applications最新文献

英文 中文
On the maximal ranks of some third-order quaternion tensors
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-18 DOI: 10.1016/j.laa.2024.12.010
Y.G. Liang, Yang Zhang
A complex tensor T can be considered as a quaternion tensor. Consequently, decomposing T using simple quaternion tensors, rather than simple complex tensors, can potentially result in decompositions with a smaller rank. In this paper, we first present an example demonstrating this. Furthermore, we show that the maximal rank of a 3 × 3 × 3 quaternion tensor is 5, and in doing so provide explicit decompositions into simple tensors with several cases. Finally, we provide the maximal ranks for all n1×n2×n3 quaternion tensors with 2n1,n2,n33.
{"title":"On the maximal ranks of some third-order quaternion tensors","authors":"Y.G. Liang,&nbsp;Yang Zhang","doi":"10.1016/j.laa.2024.12.010","DOIUrl":"10.1016/j.laa.2024.12.010","url":null,"abstract":"<div><div>A complex tensor <em>T</em> can be considered as a quaternion tensor. Consequently, decomposing <em>T</em> using simple quaternion tensors, rather than simple complex tensors, can potentially result in decompositions with a smaller rank. In this paper, we first present an example demonstrating this. Furthermore, we show that the maximal rank of a 3 × 3 × 3 quaternion tensor is 5, and in doing so provide explicit decompositions into simple tensors with several cases. Finally, we provide the maximal ranks for all <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> quaternion tensors with <span><math><mn>2</mn><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≤</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 405-428"},"PeriodicalIF":1.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenvalues of parametric rank-one perturbations of matrix pencils
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-18 DOI: 10.1016/j.laa.2024.12.012
Hannes Gernandt , Carsten Trunk
We study the behavior of eigenvalues of regular matrix pencils under rank-one perturbations which depend on a scalar parameter. In particular, the change of the algebraic multiplicities, the change of the eigenvalues for small parameter variations, as well as the asymptotic eigenvalue behavior as the parameter tends to infinity, is described. Besides that, an interlacing result for rank-one perturbations of matrix pencils is obtained. Finally, we show how to use these results in the redesign of electrical circuits, like for the low pass filter or for a two-stage CMOS operational amplifier.
{"title":"Eigenvalues of parametric rank-one perturbations of matrix pencils","authors":"Hannes Gernandt ,&nbsp;Carsten Trunk","doi":"10.1016/j.laa.2024.12.012","DOIUrl":"10.1016/j.laa.2024.12.012","url":null,"abstract":"<div><div>We study the behavior of eigenvalues of regular matrix pencils under rank-one perturbations which depend on a scalar parameter. In particular, the change of the algebraic multiplicities, the change of the eigenvalues for small parameter variations, as well as the asymptotic eigenvalue behavior as the parameter tends to infinity, is described. Besides that, an interlacing result for rank-one perturbations of matrix pencils is obtained. Finally, we show how to use these results in the redesign of electrical circuits, like for the low pass filter or for a two-stage CMOS operational amplifier.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 429-457"},"PeriodicalIF":1.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensions of Riccati diagonal stability
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-18 DOI: 10.1016/j.laa.2024.12.014
Ali Algefary , Jianhong Xu
As generalizations of Riccati diagonal stability on a matrix pair, the notions of Riccati α-scalar stability and α-diagonal stability are introduced and fully characterized. Further extensions involving different block diagonal structures, simultaneous α-scalar stability, and simultaneous α-diagonal stability are also presented.
{"title":"Extensions of Riccati diagonal stability","authors":"Ali Algefary ,&nbsp;Jianhong Xu","doi":"10.1016/j.laa.2024.12.014","DOIUrl":"10.1016/j.laa.2024.12.014","url":null,"abstract":"<div><div>As generalizations of Riccati diagonal stability on a matrix pair, the notions of Riccati <em>α</em>-scalar stability and <em>α</em>-diagonal stability are introduced and fully characterized. Further extensions involving different block diagonal structures, simultaneous <em>α</em>-scalar stability, and simultaneous <em>α</em>-diagonal stability are also presented.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 463-479"},"PeriodicalIF":1.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the positivity of inverse operators acting on C⋆-algebras
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-16 DOI: 10.1016/j.laa.2024.12.006
Jochen Glück , Ulrich Groh
For a positive and invertible linear operator T acting on a C-algebra, we give necessary and sufficient criteria for the inverse operator T1 to be positive, too. Moreover, a simple counterexample shows that T1 need not be positive even if T is unital and its spectrum is contained in the unit circle.
{"title":"A note on the positivity of inverse operators acting on C⋆-algebras","authors":"Jochen Glück ,&nbsp;Ulrich Groh","doi":"10.1016/j.laa.2024.12.006","DOIUrl":"10.1016/j.laa.2024.12.006","url":null,"abstract":"<div><div>For a positive and invertible linear operator <em>T</em> acting on a C<sup>⋆</sup>-algebra, we give necessary and sufficient criteria for the inverse operator <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> to be positive, too. Moreover, a simple counterexample shows that <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> need not be positive even if <em>T</em> is unital and its spectrum is contained in the unit circle.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 337-354"},"PeriodicalIF":1.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smith forms of matrices in Companion Rings, with group theoretic and topological applications
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-16 DOI: 10.1016/j.laa.2024.12.003
Vanni Noferini , Gerald Williams
Let R be a commutative ring and g(t)R[t] a monic polynomial. The commutative ring of polynomials f(Cg) in the companion matrix Cg of g(t), where f(t)R[t], is called the Companion Ring of g(t). Special instances include the rings of circulant matrices, skew-circulant matrices, pseudo-circulant matrices, or lower triangular Toeplitz matrices. When R is an Elementary Divisor Domain, we develop new tools for computing the Smith forms of matrices in Companion Rings. In particular, we obtain a formula for the second last non-zero determinantal divisor, we provide an f(Cg)g(Cf) swap theorem, and a composition theorem. When R is a principal ideal domain we also obtain a formula for the number of non-unit invariant factors. By applying these to families of circulant matrices that arise as relation matrices of cyclically presented groups, in many cases we compute the groups' abelianizations. When the group is the fundamental group of a three dimensional manifold, this provides the homology of the manifold. In other cases we obtain lower bounds for the rank of the abelianization and record consequences for finiteness or solvability of the group, or for the Heegaard genus of a corresponding manifold.
{"title":"Smith forms of matrices in Companion Rings, with group theoretic and topological applications","authors":"Vanni Noferini ,&nbsp;Gerald Williams","doi":"10.1016/j.laa.2024.12.003","DOIUrl":"10.1016/j.laa.2024.12.003","url":null,"abstract":"<div><div>Let <em>R</em> be a commutative ring and <span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>[</mo><mi>t</mi><mo>]</mo></math></span> a monic polynomial. The commutative ring of polynomials <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> in the companion matrix <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> of <span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, where <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, is called the Companion Ring of <span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. Special instances include the rings of circulant matrices, skew-circulant matrices, pseudo-circulant matrices, or lower triangular Toeplitz matrices. When <em>R</em> is an Elementary Divisor Domain, we develop new tools for computing the Smith forms of matrices in Companion Rings. In particular, we obtain a formula for the second last non-zero determinantal divisor, we provide an <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo><mo>↔</mo><mi>g</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>)</mo></math></span> swap theorem, and a composition theorem. When <em>R</em> is a principal ideal domain we also obtain a formula for the number of non-unit invariant factors. By applying these to families of circulant matrices that arise as relation matrices of cyclically presented groups, in many cases we compute the groups' abelianizations. When the group is the fundamental group of a three dimensional manifold, this provides the homology of the manifold. In other cases we obtain lower bounds for the rank of the abelianization and record consequences for finiteness or solvability of the group, or for the Heegaard genus of a corresponding manifold.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 372-404"},"PeriodicalIF":1.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The truncated univariate rational moment problem
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-13 DOI: 10.1016/j.laa.2024.12.009
Rajkamal Nailwal , Aljaž Zalar
Given a closed subset K in R, the rational K–truncated moment problem (K–RTMP) asks to characterize the existence of a positive Borel measure μ, supported on K, such that a linear functional L, defined on all rational functions of the form fq, where q is a fixed polynomial with all real zeros of even order and f is any real polynomial of degree at most 2k, is an integration with respect to μ. The case of a compact set K was solved in [4], but there is no argument that ensures that μ vanishes on all real zeros of q. An obvious necessary condition for the solvability of the K–RTMP is that L is nonnegative on every f satisfying f|K0. If L is strictly positive on every 0f|K0, we add the missing argument from [4] and also bound the number of atoms in a minimal representing measure. We show by an example that nonnegativity of L is not sufficient and add the missing conditions to the solution. We also solve the K–RTMP for unbounded K and derive the solutions to the strong truncated Hamburger moment problem and the truncated moment problem on the unit circle as special cases.
{"title":"The truncated univariate rational moment problem","authors":"Rajkamal Nailwal ,&nbsp;Aljaž Zalar","doi":"10.1016/j.laa.2024.12.009","DOIUrl":"10.1016/j.laa.2024.12.009","url":null,"abstract":"<div><div>Given a closed subset <em>K</em> in <span><math><mi>R</mi></math></span>, the rational <em>K</em>–truncated moment problem (<em>K</em>–RTMP) asks to characterize the existence of a positive Borel measure <em>μ</em>, supported on <em>K</em>, such that a linear functional <span><math><mi>L</mi></math></span>, defined on all rational functions of the form <span><math><mfrac><mrow><mi>f</mi></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>, where <em>q</em> is a fixed polynomial with all real zeros of even order and <em>f</em> is any real polynomial of degree at most 2<em>k</em>, is an integration with respect to <em>μ</em>. The case of a compact set <em>K</em> was solved in <span><span>[4]</span></span>, but there is no argument that ensures that <em>μ</em> vanishes on all real zeros of <em>q</em>. An obvious necessary condition for the solvability of the <em>K</em>–RTMP is that <span><math><mi>L</mi></math></span> is nonnegative on every <em>f</em> satisfying <span><math><mi>f</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>K</mi></mrow></msub><mo>≥</mo><mn>0</mn></math></span>. If <span><math><mi>L</mi></math></span> is strictly positive on every <span><math><mn>0</mn><mo>≠</mo><mi>f</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>K</mi></mrow></msub><mo>≥</mo><mn>0</mn></math></span>, we add the missing argument from <span><span>[4]</span></span> and also bound the number of atoms in a minimal representing measure. We show by an example that nonnegativity of <span><math><mi>L</mi></math></span> is not sufficient and add the missing conditions to the solution. We also solve the <em>K</em>–RTMP for unbounded <em>K</em> and derive the solutions to the strong truncated Hamburger moment problem and the truncated moment problem on the unit circle as special cases.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 280-301"},"PeriodicalIF":1.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the complex stability radius for time-delay differential-algebraic systems
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-13 DOI: 10.1016/j.laa.2024.12.007
Alexander Malyshev , Miloud Sadkane
An algorithm is proposed for computing the complex stability radius of a linear differential-algebraic system with a single delay and including a neutral term. The exponential factor in the characteristic equation is replaced by its Padé approximant thus reducing the level set method for finding the stability radius to a rational matrix eigenvalue problem. The level set method is coupled with a quadratically convergent iteration. An important condition relating the algebraic constraint and neutral term is introduced to eliminate the presence of characteristic roots approaching the imaginary axis at infinity. The number of iterations of the algorithm is roughly proportional to the numerical value of this condition. Effectiveness of the algorithm is illustrated by numerical examples.
{"title":"On the complex stability radius for time-delay differential-algebraic systems","authors":"Alexander Malyshev ,&nbsp;Miloud Sadkane","doi":"10.1016/j.laa.2024.12.007","DOIUrl":"10.1016/j.laa.2024.12.007","url":null,"abstract":"<div><div>An algorithm is proposed for computing the complex stability radius of a linear differential-algebraic system with a single delay and including a neutral term. The exponential factor in the characteristic equation is replaced by its Padé approximant thus reducing the level set method for finding the stability radius to a rational matrix eigenvalue problem. The level set method is coupled with a quadratically convergent iteration. An important condition relating the algebraic constraint and neutral term is introduced to eliminate the presence of characteristic roots approaching the imaginary axis at infinity. The number of iterations of the algorithm is roughly proportional to the numerical value of this condition. Effectiveness of the algorithm is illustrated by numerical examples.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 355-371"},"PeriodicalIF":1.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum spectral radius of P2k+1-free graphs of given size
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-12 DOI: 10.1016/j.laa.2024.12.008
Benju Wang, Bing Wang
<div><div>In this paper, we consider a Brualdi-Hoffman-Turán problem for graphs without path of given length. Denote by <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> the graph obtained from a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> by linking two vertices of distance two in the cycle. Recently, Li, Zhai and Shu showed that for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and a graph <em>G</em> of size <span><math><mi>m</mi><mo>≥</mo><mn>16</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, if <em>G</em> is <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-free or <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-free, then the maximum adjacency spectral radius <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt><mo>)</mo></math></span>. It follows immediately that if <em>G</em> is <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free of size <span><math><mi>m</mi><mo>≥</mo><mn>16</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, then <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt><mo>)</mo></math></span>. However, the upper bound is not sharp. We consider the case for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs and obtain the following result: Let <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> and <em>G</em> be a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph of size <span><math><mi>m</mi><mo>≥</mo><mn>4</mn><msup><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup></math></span>. Then <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>
{"title":"The maximum spectral radius of P2k+1-free graphs of given size","authors":"Benju Wang,&nbsp;Bing Wang","doi":"10.1016/j.laa.2024.12.008","DOIUrl":"10.1016/j.laa.2024.12.008","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we consider a Brualdi-Hoffman-Turán problem for graphs without path of given length. Denote by &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; the graph obtained from a cycle &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; by linking two vertices of distance two in the cycle. Recently, Li, Zhai and Shu showed that for &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and a graph &lt;em&gt;G&lt;/em&gt; of size &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, if &lt;em&gt;G&lt;/em&gt; is &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;-free or &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;-free, then the maximum adjacency spectral radius &lt;span&gt;&lt;math&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. It follows immediately that if &lt;em&gt;G&lt;/em&gt; is &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-free of size &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. However, the upper bound is not sharp. We consider the case for &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-free graphs and obtain the following result: Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;em&gt;G&lt;/em&gt; be a &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-free graph of size &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. Then &lt;span&gt;&lt;math&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 302-314"},"PeriodicalIF":1.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Row or column completion of polynomial matrices of given degree II
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-10 DOI: 10.1016/j.laa.2024.12.004
Agurtzane Amparan , Itziar Baragaña , Silvia Marcaida , Alicia Roca
The row (column) completion problem of polynomial matrices of given degree with prescribed eigenstructure has been studied in [1], where several results of prescription of some of the four types of invariants that form the eigenstructure have also been obtained. In this paper we conclude the study, solving the completion for the cases not covered there. More precisely, we solve the row completion problem of a polynomial matrix when we prescribe the infinite (finite) structure and column and/or row minimal indices, and finally the column and/or row minimal indices. The necessity of the characterizations obtained holds to be true over arbitrary fields in all cases, whilst to prove the sufficiency it is required, in some of the cases, to work over algebraically closed fields.
{"title":"Row or column completion of polynomial matrices of given degree II","authors":"Agurtzane Amparan ,&nbsp;Itziar Baragaña ,&nbsp;Silvia Marcaida ,&nbsp;Alicia Roca","doi":"10.1016/j.laa.2024.12.004","DOIUrl":"10.1016/j.laa.2024.12.004","url":null,"abstract":"<div><div>The row (column) completion problem of polynomial matrices of given degree with prescribed eigenstructure has been studied in <span><span>[1]</span></span>, where several results of prescription of some of the four types of invariants that form the eigenstructure have also been obtained. In this paper we conclude the study, solving the completion for the cases not covered there. More precisely, we solve the row completion problem of a polynomial matrix when we prescribe the infinite (finite) structure and column and/or row minimal indices, and finally the column and/or row minimal indices. The necessity of the characterizations obtained holds to be true over arbitrary fields in all cases, whilst to prove the sufficiency it is required, in some of the cases, to work over algebraically closed fields.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 252-279"},"PeriodicalIF":1.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some observations on Erdős matrices
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-12-10 DOI: 10.1016/j.laa.2024.12.002
Raghavendra Tripathi
In a seminal paper in 1959, Marcus and Ree proved that every n×n bistochastic matrix A satisfies AF2maxσSnAi,σ(i) where Sn is the symmetric group on {1,,n}. Erdős asked to characterize the bistochastic matrices for which the equality holds in the Marcus–Ree inequality. We refer to such matrices as Erdős matrices. While this problem is trivial in dimension n=2, the case of dimension n=3 was only resolved recently in [4] in 2023. We prove that for every n, there are only finitely many n×n Erdős matrices. We also give a complete characterization of Erdős matrices that yields an algorithm to generate all Erdős matrices in any given dimension. We also prove that Erdős matrices can have only rational entries. This answers a question of [4].
{"title":"Some observations on Erdős matrices","authors":"Raghavendra Tripathi","doi":"10.1016/j.laa.2024.12.002","DOIUrl":"10.1016/j.laa.2024.12.002","url":null,"abstract":"<div><div>In a seminal paper in 1959, Marcus and Ree proved that every <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> bistochastic matrix <em>A</em> satisfies <span><math><msubsup><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>σ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>⁡</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>σ</mi><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msub></math></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the symmetric group on <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. Erdős asked to characterize the bistochastic matrices for which the equality holds in the Marcus–Ree inequality. We refer to such matrices as Erdős matrices. While this problem is trivial in dimension <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span>, the case of dimension <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span> was only resolved recently in <span><span>[4]</span></span> in 2023. We prove that for every <em>n</em>, there are only finitely many <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Erdős matrices. We also give a complete characterization of Erdős matrices that yields an algorithm to generate all Erdős matrices in any given dimension. We also prove that Erdős matrices can have only rational entries. This answers a question of <span><span>[4]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 236-251"},"PeriodicalIF":1.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Linear Algebra and its Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1