首页 > 最新文献

Linear Algebra and its Applications最新文献

英文 中文
Conic optimization techniques yield sufficient conditions for set-completely positive matrix completion under arrowhead specification pattern 二次优化技术给出了箭头规格模式下集完全正矩阵补全的充分条件
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-17 DOI: 10.1016/j.laa.2025.11.011
Markus Gabl
Matrix completion results deal with the question of when a partially specified symmetric matrix can be completed to a member of certain matrix cones. Results from positive semidefinite matrix completion and completely positive matrix completion have been successfully applied in optimization to greatly reduce the number of variables in conic optimization problems in the space of symmetric matrices. In this text, we go the other direction and show that we can use tools from conic optimization (more precisely: from copositive optimization) to establish a new completion result that complements the existing literature in two regards: firstly, we consider set-completely positive matrix completion, which generalizes completion with respect to the traditional completely positive matrix cone. Secondly, we consider a specification pattern that is not in the scope of classical results for completely positive matrix completion. Namely, we consider arrow-head specification patterns where the width is equal to one. Our theory is applied to a class of quadratic optimization problems.
矩阵补全结果处理的是一个部分指定的对称矩阵何时可以补全到某些矩阵锥的一个成员的问题。正半定矩阵补齐和完全正矩阵补齐的结果已成功地应用于对称矩阵空间的二次优化问题中,大大减少了变量的数量。在本文中,我们走了另一个方向,并表明我们可以使用从二次优化(更准确地说:从组合优化)的工具来建立一个新的补全结果,在两个方面补充了现有的文献:首先,我们考虑集合完全正矩阵补全,它推广了传统的完全正矩阵圆锥补全。其次,我们考虑了一个不在经典结果范围内的规范模式,用于完全正矩阵补全。也就是说,我们考虑宽度等于1的箭头规格模式。我们的理论应用于一类二次优化问题。
{"title":"Conic optimization techniques yield sufficient conditions for set-completely positive matrix completion under arrowhead specification pattern","authors":"Markus Gabl","doi":"10.1016/j.laa.2025.11.011","DOIUrl":"10.1016/j.laa.2025.11.011","url":null,"abstract":"<div><div>Matrix completion results deal with the question of when a partially specified symmetric matrix can be completed to a member of certain matrix cones. Results from positive semidefinite matrix completion and completely positive matrix completion have been successfully applied in optimization to greatly reduce the number of variables in conic optimization problems in the space of symmetric matrices. In this text, we go the other direction and show that we can use tools from conic optimization (more precisely: from copositive optimization) to establish a new completion result that complements the existing literature in two regards: firstly, we consider set-completely positive matrix completion, which generalizes completion with respect to the traditional completely positive matrix cone. Secondly, we consider a specification pattern that is not in the scope of classical results for completely positive matrix completion. Namely, we consider arrow-head specification patterns where the width is equal to one. Our theory is applied to a class of quadratic optimization problems.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 215-251"},"PeriodicalIF":1.1,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145577904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximum spread of non-negative matrices 关于非负矩阵的最大扩展
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-17 DOI: 10.1016/j.laa.2025.11.012
Susie Lu, John Urschel
Given a directed graph G, the spread of G is the largest distance between any two eigenvalues of its adjacency matrix. In 2022, Breen, Riasanovsky, Tait, and Urschel asked what n-vertex directed graph maximizes spread, and whether this graph is undirected. We prove the more general result that the spread of any n×n non-negative matrix A with Amax1 is at most 2n/3, which is tight up to an additive factor and exact when n is a multiple of three. Furthermore, our results show that the matrix with maximum spread is always symmetric.
给定一个有向图G, G的扩展是其邻接矩阵的任意两个特征值之间的最大距离。在2022年,Breen、Riasanovsky、Tait和Urschel提出了一个问题:什么样的n顶点有向图能使传播最大化,以及这个图是否无向。我们证明了更一般的结果,即任意n×n非负矩阵A的最大‖A‖≤1的扩展不超过2n/3,该结果紧于一个可加因子,且当n是3的倍数时精确。进一步地,我们的结果表明具有最大扩展的矩阵总是对称的。
{"title":"On the maximum spread of non-negative matrices","authors":"Susie Lu,&nbsp;John Urschel","doi":"10.1016/j.laa.2025.11.012","DOIUrl":"10.1016/j.laa.2025.11.012","url":null,"abstract":"<div><div>Given a directed graph <em>G</em>, the spread of <em>G</em> is the largest distance between any two eigenvalues of its adjacency matrix. In 2022, Breen, Riasanovsky, Tait, and Urschel asked what <em>n</em>-vertex directed graph maximizes spread, and whether this graph is undirected. We prove the more general result that the spread of any <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> non-negative matrix <em>A</em> with <span><math><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>max</mi></mrow></msub><mo>≤</mo><mn>1</mn></math></span> is at most <span><math><mn>2</mn><mi>n</mi><mo>/</mo><msqrt><mrow><mn>3</mn></mrow></msqrt></math></span>, which is tight up to an additive factor and exact when <em>n</em> is a multiple of three. Furthermore, our results show that the matrix with maximum spread is always symmetric.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 186-195"},"PeriodicalIF":1.1,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145577832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-infinite Riordan matrices: A matricial approach to multiplication and composition of formal Laurent series 双无限里奥登矩阵:形式洛朗级数的乘法和复合的一种材料方法
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-14 DOI: 10.1016/j.laa.2025.11.010
Luis Felipe Prieto-Martínez , Javier Rico
We propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless.
我们提出并研究了形式洛朗级数的乘法和复合的双无穷矩阵方法。我们将Riordan矩阵的概念推广到双无穷上下文中,得到了不一定是下三角形的矩阵,并且不是由一对形式幂级数决定的,而是由一对形式洛朗级数决定的。我们将赖尔当矩阵的第一基本定理推广到这种情况,并推广了Toeplitz和Lagrange子群,它们是经典赖尔当群的子群。最后,作为一个说明性的例子,我们应用我们的方法推导了一个经典组合恒等式,这个恒等式不能用与经典Riordan群相关的技术来证明,表明我们的推广不是徒劳的。
{"title":"Bi-infinite Riordan matrices: A matricial approach to multiplication and composition of formal Laurent series","authors":"Luis Felipe Prieto-Martínez ,&nbsp;Javier Rico","doi":"10.1016/j.laa.2025.11.010","DOIUrl":"10.1016/j.laa.2025.11.010","url":null,"abstract":"<div><div>We propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 139-159"},"PeriodicalIF":1.1,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145577905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matricial Gaussian quadrature rules: Nonsingular case 材料高斯正交规则:非奇异情况
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-13 DOI: 10.1016/j.laa.2025.11.005
Aljaž Zalar , Igor Zobovič
Let L be a linear operator on univariate polynomials of bounded degree, mapping into real symmetric matrices, such that its moment matrix is positive definite. It is known that L admits a finitely atomic positive matrix-valued representing measure μ. Any μ with the smallest sum of the ranks of the matricial masses is called minimal. In this paper, we characterize the existence of a minimal representing measure containing a prescribed atom with prescribed rank of the corresponding mass, thus extending a recent result [1] for the scalar-valued case. As a corollary, we obtain a constructive, linear algebraic proof of the strong truncated Hamburger matrix moment problem [16] in the nonsingular case. The results will be important in the study of the truncated univariate rational matrix moment problem.
设L是对有界次单变量多项式的线性算子,映射到实对称矩阵,使得它的矩矩阵是正定的。已知L允许一个有限原子正矩阵值表示测度μ。物质质量各阶和最小的任何μ称为最小。在本文中,我们刻画了一个最小表示测度的存在性,这个最小表示测度包含了相应质量的规定秩的规定原子,从而推广了最近关于标量值情况的一个结果[1]。作为一个推论,我们得到了强截断汉堡矩阵矩问题[16]在非奇异情况下的一个建设性的线性代数证明。所得结果对截断单变量有理矩阵矩问题的研究具有重要意义。
{"title":"Matricial Gaussian quadrature rules: Nonsingular case","authors":"Aljaž Zalar ,&nbsp;Igor Zobovič","doi":"10.1016/j.laa.2025.11.005","DOIUrl":"10.1016/j.laa.2025.11.005","url":null,"abstract":"<div><div>Let <em>L</em> be a linear operator on univariate polynomials of bounded degree, mapping into real symmetric matrices, such that its moment matrix is positive definite. It is known that <em>L</em> admits a finitely atomic positive matrix-valued representing measure <em>μ</em>. Any <em>μ</em> with the smallest sum of the ranks of the matricial masses is called minimal. In this paper, we characterize the existence of a minimal representing measure containing a prescribed atom with prescribed rank of the corresponding mass, thus extending a recent result <span><span>[1]</span></span> for the scalar-valued case. As a corollary, we obtain a constructive, linear algebraic proof of the strong truncated Hamburger matrix moment problem <span><span>[16]</span></span> in the nonsingular case. The results will be important in the study of the truncated univariate rational matrix moment problem.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 160-185"},"PeriodicalIF":1.1,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145577830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some applications of the (p,r,s) halves of the Riordan arrays Riordan数组(p,r,s)半部分的一些应用
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-11 DOI: 10.1016/j.laa.2025.11.008
Yasemin Alp
<div><div>A Riordan array is provided with <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>. Its horizontal half <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>,</mo><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, vertical half <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> horizontal half <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mi>n</mi><mo>+</mo><mi>r</mi><mo>,</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi><mo>+</mo><mi>k</mi><mo>+</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> vertical half <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mi>r</mi><mo>,</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi><mo>+</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, skew <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> half <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>2</mn><mo>)</mo><mi>k</mi><mo>+</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo>+</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>k</mi><mo>+</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, and <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> half <span><math><msub><mrow><mi>h</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi><mo>+</mo><mo>(</mo><mi>p</mi><mi>s</mi><mo>−</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>k</mi><mo>+</mo><mi>r</mi><mo>,</mo><mi>p</mi><mi>n</mi><mo>+</mo><mo>(</mo><mi>p</mi><mi>s</mi><mo>−</mo><mi>p</mi><mo>)</mo><mi>k</mi><mo>+</mo><mi>r</mi></mrow></msub></math></span> have previously been considered. In this paper, we take into consideration the <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> halves of the Riordan arrays by replacing <em>p</em> with <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span> and <em>s</em> with <span><math><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi><mo>−</m
Riordan数组具有(hn,k)n,k≥0。它的水平一半(h2n,n+k)n,k≥0,垂直一半(h2n−k,n)n,k≥0,(p,r)水平一半(hpn+r,(p−1)n+k+r)n,k≥0,(p,r)垂直一半(hpn−k+r,(p−1)n+r)n,k≥0,歪斜(r,s)一半(h2n+(s−2)k+r,n+(s−1)k+r)n,k≥0,以及(p,r,s)一半h(p+1)n+(ps−p−1)k+r,pn+(ps−p)k+r,p +(ps−p)k+r,p +(ps−p)k+r,k≥0,之前已经考虑过。本文考虑了Riordan数组的(p,r,s)半部分,将p替换为p−1,将s替换为p+q−2p−1,其中q是一个非负整数。这一半H的通称是hpn+(q−2)k+r,(p−1)n+(q−1)k+r。并给出了它们的A序列和z序列。此外,利用这一半的Riordan数组可以找到一些组合恒等式。我们还研究了给定Riordan数组的Riordan前项。
{"title":"Some applications of the (p,r,s) halves of the Riordan arrays","authors":"Yasemin Alp","doi":"10.1016/j.laa.2025.11.008","DOIUrl":"10.1016/j.laa.2025.11.008","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A Riordan array is provided with &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Its horizontal half &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, vertical half &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; horizontal half &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; vertical half &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, skew &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; half &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; half &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; have previously been considered. In this paper, we take into consideration the &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; halves of the Riordan arrays by replacing &lt;em&gt;p&lt;/em&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;em&gt;s&lt;/em&gt; with &lt;span&gt;&lt;math&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/m","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 41-58"},"PeriodicalIF":1.1,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145527587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The P-vertex problem for symmetric matrices whose associated graphs admit perfect matchings 关联图完全匹配的对称矩阵的p顶点问题
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-11 DOI: 10.1016/j.laa.2025.11.009
K. Sharma, S.K. Panda
Let G be the underlying graph of a real symmetric matrix A. Denote by A(j) the principal submatrix of A obtained by deleting the jth row and column, and let mA(λi) denote the algebraic multiplicity of the eigenvalue λi of A. An index j is called a P-vertex of A if mA(j)(0)mA(0)=1. A graph G on n vertices is said to have property (P) if there exists a nonsingular symmetric matrix A whose underlying graph is G such that every vertex of A is a P-vertex. This work develops a graph-theoretic framework for studying property (P), with particular emphasis on graphs that admit a perfect matching. We analyze bipartite graphs that satisfy property (P) and show that the existence of a perfect matching plays a decisive role in their characterization. In particular, we prove that a tree possesses property (P) if and only if it admits a unique perfect matching, and we present an alternative characterization of unicyclic graphs satisfying property (P). The analysis is then extended to non-bipartite graphs with a unique perfect matching, where we highlight structural features that influence property (P). Furthermore, we construct a family of graphs on n vertices that do not satisfy property (P), but have a nonsingular matrix for which the number of P-vertices is n1. We also investigate the behavior of property (P) under certain graph operations, such as the edge-joining of graphs, and show that this operation preserves property (P) under specific conditions. In particular, we establish that if two graphs G and H each satisfy property (P), then the graph obtained by joining them with a single edge also satisfies property (P), and we examine the converse of this result.
设G是实对称矩阵a的底层图。用a (j)表示a的主子矩阵,通过删除第j行和第j列得到,设mA(λi)表示a的特征值λi的代数多重性。如果mA(j)(0)−mA(0)=1,则索引j称为a的p顶点。如果存在一个非奇异对称矩阵A,其底层图为G,使得A的每一个顶点都是P顶点,则表示有n个顶点的图G具有性质(P)。这项工作发展了一个研究性质(P)的图论框架,特别强调了承认完美匹配的图。我们分析了满足性质(P)的二部图,并证明了完美匹配的存在性在二部图的刻画中起决定性作用。特别地,我们证明了树具有性质(P)当且仅当它允许唯一完美匹配,并给出了满足性质(P)的单环图的另一种表征。然后将分析扩展到具有唯一完美匹配的非二部图,其中我们突出了影响性质(P)的结构特征。进一步,我们构造了一个不满足性质(P)的n个顶点的图族,但具有一个P顶点数为n−1的非奇异矩阵。我们还研究了性质(P)在某些图运算(如图的边连接)下的行为,并证明该运算在特定条件下保持性质(P)。特别地,我们建立了如果两个图G和H各自满足性质(P),那么将它们与一条边连接得到的图也满足性质(P),并检验了这个结果的逆性质。
{"title":"The P-vertex problem for symmetric matrices whose associated graphs admit perfect matchings","authors":"K. Sharma,&nbsp;S.K. Panda","doi":"10.1016/j.laa.2025.11.009","DOIUrl":"10.1016/j.laa.2025.11.009","url":null,"abstract":"<div><div>Let <em>G</em> be the underlying graph of a real symmetric matrix <em>A</em>. Denote by <span><math><mi>A</mi><mo>(</mo><mi>j</mi><mo>)</mo></math></span> the principal submatrix of <em>A</em> obtained by deleting the <em>j</em>th row and column, and let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> denote the algebraic multiplicity of the eigenvalue <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> of <em>A</em>. An index <em>j</em> is called a P-vertex of <em>A</em> if <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>A</mi><mo>(</mo><mi>j</mi><mo>)</mo></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>−</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. A graph <em>G</em> on <em>n</em> vertices is said to have property (P) if there exists a nonsingular symmetric matrix <em>A</em> whose underlying graph is <em>G</em> such that every vertex of <em>A</em> is a P-vertex. This work develops a graph-theoretic framework for studying property (P), with particular emphasis on graphs that admit a perfect matching. We analyze bipartite graphs that satisfy property (P) and show that the existence of a perfect matching plays a decisive role in their characterization. In particular, we prove that a tree possesses property (P) if and only if it admits a unique perfect matching, and we present an alternative characterization of unicyclic graphs satisfying property (P). The analysis is then extended to non-bipartite graphs with a unique perfect matching, where we highlight structural features that influence property (P). Furthermore, we construct a family of graphs on <em>n</em> vertices that do not satisfy property (P), but have a nonsingular matrix for which the number of P-vertices is <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We also investigate the behavior of property (P) under certain graph operations, such as the edge-joining of graphs, and show that this operation preserves property (P) under specific conditions. In particular, we establish that if two graphs <em>G</em> and <em>H</em> each satisfy property (P), then the graph obtained by joining them with a single edge also satisfies property (P), and we examine the converse of this result.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 109-138"},"PeriodicalIF":1.1,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145577893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradings and graded identities of null-filiform Leibniz algebras 零丝形莱布尼兹代数的分级和分级恒等式
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-10 DOI: 10.1016/j.laa.2025.11.003
Lucio Centrone , Luís Fertunani , Claudemir Fideles
We classify gradings on null-filiform Leibniz algebras up to equivalence over arbitrary fields. Furthermore, we provide a basis for the graded identities and determine a basis of the relatively free algebra. As a consequence, we establish that the ideal of all graded identities of null-filiform Leibniz algebras satisfy the Specht property. Finally, we extend these results to infinite-dimensional analogs of null-filiform Leibniz algebras.
我们将零线形莱布尼兹代数上的等级划分到任意域上的等价。在此基础上,给出了梯度恒等式的一个基,并确定了相对自由代数的一个基。因此,我们证明了所有零线形莱布尼兹代数的梯度恒等式的理想都满足Specht性质。最后,我们将这些结果推广到无限维的非丝状莱布尼兹代数。
{"title":"Gradings and graded identities of null-filiform Leibniz algebras","authors":"Lucio Centrone ,&nbsp;Luís Fertunani ,&nbsp;Claudemir Fideles","doi":"10.1016/j.laa.2025.11.003","DOIUrl":"10.1016/j.laa.2025.11.003","url":null,"abstract":"<div><div>We classify gradings on null-filiform Leibniz algebras up to equivalence over arbitrary fields. Furthermore, we provide a basis for the graded identities and determine a basis of the relatively free algebra. As a consequence, we establish that the ideal of all graded identities of null-filiform Leibniz algebras satisfy the Specht property. Finally, we extend these results to infinite-dimensional analogs of null-filiform Leibniz algebras.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 59-89"},"PeriodicalIF":1.1,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145525694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positivity of GCD tensors and their determinants GCD张量的正性及其行列式
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-10 DOI: 10.1016/j.laa.2025.11.007
Projesh Nath Choudhury , Krushnachandra Panigrahy
<div><div>Let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> be an ordered set of <em>n</em> distinct positive integers. The <em>m</em>th-order <em>n</em>-dimensional tensor <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>[</mo><mi>S</mi><mo>]</mo></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub><mo>=</mo><mi>GCD</mi><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub><mo>)</mo></math></span>, the greatest common divisor (GCD) of <span><math><msub><mrow><mi>s</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo></math></span>, and <span><math><msub><mrow><mi>s</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span> is called the GCD tensor on <em>S</em>. The earliest result on GCD tensors goes back to Smith [<em>Proc. Lond. Math. Soc.</em>, 1976], who computed the determinant of GCD matrix on <span><math><mi>S</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> using the Euler's totient function, followed by Beslin–Ligh [<em>Linear Algebra Appl.</em>, 1989] who showed all GCD matrices are positive definite. In this note, we study the positivity of higher-order tensors in the <em>k</em>-mode product. We show that all GCD tensors are strongly completely positive (CP). We then show that GCD tensors are infinite divisible. In fact, we prove that for every positive real number <em>r</em>, the tensor <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mo>[</mo><mi>S</mi><mo>]</mo></mrow><mrow><mo>∘</mo><mi>r</mi></mrow></msubsup><mo>=</mo><mo>(</mo><msubsup><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><msub><mrow><m
设S={s1,s2,…,sn}是n个不同正整数的有序集合。第m阶n维张量T[S]=(ti1i2…im),其中ti1i2…im=GCD(si1,si2,…,sim), si1,si2,…,sim的最大公约数(GCD)称为S上的GCD张量。关于GCD张量最早的结果可以追溯到Smith [Proc. Lond]。数学。Soc。贝斯林-光(beslin - light)[线性代数应用,1976],他利用欧拉全等函数计算了S={1,2,…,n}上的GCD矩阵的行列式。[j], 1989]证明了所有GCD矩阵都是正定的。在这篇文章中,我们研究了k模积中高阶张量的正性。证明了所有GCD张量都是强完全正的(CP)。然后我们证明了GCD张量是无限可分的。事实上,我们证明了对于每一个正实数r,张量T[S]°r=(ti1i2…imr)是强CP。最后,我们利用欧拉的totient函数Φ得到了一个有趣的GCD张量分解。利用这种分解,我们证明了因子闭集S={s1,…,sn}上的m阶GCD张量T[S]的行列式(也称为超行列式)为∏i=1nΦ(si)(m−1)(n−1)。
{"title":"Positivity of GCD tensors and their determinants","authors":"Projesh Nath Choudhury ,&nbsp;Krushnachandra Panigrahy","doi":"10.1016/j.laa.2025.11.007","DOIUrl":"10.1016/j.laa.2025.11.007","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be an ordered set of &lt;em&gt;n&lt;/em&gt; distinct positive integers. The &lt;em&gt;m&lt;/em&gt;th-order &lt;em&gt;n&lt;/em&gt;-dimensional tensor &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;GCD&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, the greatest common divisor (GCD) of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is called the GCD tensor on &lt;em&gt;S&lt;/em&gt;. The earliest result on GCD tensors goes back to Smith [&lt;em&gt;Proc. Lond. Math. Soc.&lt;/em&gt;, 1976], who computed the determinant of GCD matrix on &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; using the Euler's totient function, followed by Beslin–Ligh [&lt;em&gt;Linear Algebra Appl.&lt;/em&gt;, 1989] who showed all GCD matrices are positive definite. In this note, we study the positivity of higher-order tensors in the &lt;em&gt;k&lt;/em&gt;-mode product. We show that all GCD tensors are strongly completely positive (CP). We then show that GCD tensors are infinite divisible. In fact, we prove that for every positive real number &lt;em&gt;r&lt;/em&gt;, the tensor &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∘&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;m","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 22-40"},"PeriodicalIF":1.1,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145528037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hermitians in matrix algebras with operator norm and associated Lie algebras - II 带算子范数的矩阵代数中的埃尔米特量及相关李代数
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-10 DOI: 10.1016/j.laa.2025.11.006
John Duncan , Colin M. McGregor
This is a continuation of Crabb et al. (2021) [5] and Duncan and McGregor (2022) [6] and (2024) [7] in which we studied the real space H of Hermitian matrices in Mn(C) with respect to norms on Cn. Here we look further at properties relating to H as a Lie algebra. We introduce the concept of well-embeddedness, and in that context we determine the only simple Lie algebras which can appear in the decomposition of H. Other topics covered include radicals, semisimplicity and Levi factors. Throughout, examples are used to illustrate situations that can arise and properties that are established.
这是Crabb等人(2021)[5]和Duncan和McGregor(2022)[6]和(2024)[7]的延续,其中我们研究了Mn(C)中厄米矩阵相对于Cn上的范数的实空间H。这里我们进一步研究与H作为李代数有关的性质。我们引入了良好嵌入性的概念,并在此背景下,我们确定了h分解中可能出现的唯一简单李代数。其他主题包括根,半简单性和Levi因子。在整个过程中,使用示例来说明可能出现的情况和已建立的属性。
{"title":"Hermitians in matrix algebras with operator norm and associated Lie algebras - II","authors":"John Duncan ,&nbsp;Colin M. McGregor","doi":"10.1016/j.laa.2025.11.006","DOIUrl":"10.1016/j.laa.2025.11.006","url":null,"abstract":"<div><div>This is a continuation of Crabb et al. (2021) <span><span>[5]</span></span> and Duncan and McGregor (2022) <span><span>[6]</span></span> and (2024) <span><span>[7]</span></span> in which we studied the real space <em>H</em> of Hermitian matrices in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> with respect to norms on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Here we look further at properties relating to <em>H</em> as a Lie algebra. We introduce the concept of well-embeddedness, and in that context we determine the only simple Lie algebras which can appear in the decomposition of <em>H</em>. Other topics covered include radicals, semisimplicity and Levi factors. Throughout, examples are used to illustrate situations that can arise and properties that are established.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 90-108"},"PeriodicalIF":1.1,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145528038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cauchy transforms of colored graphs in two variables 双变量彩色图的柯西变换
IF 1.1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-11-07 DOI: 10.1016/j.laa.2025.11.002
Lily Adlin, Giovani Thai, Samuel Tiscareno, Ryan Tully-Doyle
By designating vertices with variables, a simple undirected graph can be augmented to have an associated representing rational function in two variables taking the complex bi-upper halfplane to itself. We give relations between representing functions of certain products of such graphs by way of Schur complements. We also study the connection between the structure of the graph and the regularity of the representing function at a boundary singularity.
通过用变量指定顶点,可以扩充一个简单的无向图,使其在两个变量中具有关联的表示有理函数,该函数取复双上半平面到其本身。利用舒尔补给出了此类图的某些乘积的表示函数之间的关系。我们还研究了图的结构与边界奇点处表示函数的正则性之间的联系。
{"title":"Cauchy transforms of colored graphs in two variables","authors":"Lily Adlin,&nbsp;Giovani Thai,&nbsp;Samuel Tiscareno,&nbsp;Ryan Tully-Doyle","doi":"10.1016/j.laa.2025.11.002","DOIUrl":"10.1016/j.laa.2025.11.002","url":null,"abstract":"<div><div>By designating vertices with variables, a simple undirected graph can be augmented to have an associated representing rational function in two variables taking the complex bi-upper halfplane to itself. We give relations between representing functions of certain products of such graphs by way of Schur complements. We also study the connection between the structure of the graph and the regularity of the representing function at a boundary singularity.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"731 ","pages":"Pages 1-21"},"PeriodicalIF":1.1,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145486068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Linear Algebra and its Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1