Pub Date : 2025-01-28DOI: 10.1016/j.laa.2025.01.036
Aida Abiad , Wieb Bosma , Thijs van Veluw
Hoffman's bound is a well-known spectral bound on the chromatic number of a graph, known to be tight for instance for bipartite graphs. While Hoffman colorings (colorings attaining the bound) were studied before for regular graphs, for general graphs not much is known. We investigate tightness of the Hoffman bound, with a particular focus on irregular graphs, obtaining several results on the graph structure of Hoffman colorings. In particular, we prove a Decomposition Theorem, which characterizes the structure of Hoffman colorings, and we use it to completely classify Hoffman colorability of cone graphs and line graphs. We also prove a partial converse, the Composition Theorem, leading to an algorithm for computing all connected Hoffman colorable graphs for some given number of vertices and colors. Since several graph coloring parameters are known to be sandwiched between the Hoffman bound and the chromatic number, as a byproduct of our results, we obtain the values of these chromatic parameters.
{"title":"Hoffman colorings of graphs","authors":"Aida Abiad , Wieb Bosma , Thijs van Veluw","doi":"10.1016/j.laa.2025.01.036","DOIUrl":"10.1016/j.laa.2025.01.036","url":null,"abstract":"<div><div>Hoffman's bound is a well-known spectral bound on the chromatic number of a graph, known to be tight for instance for bipartite graphs. While Hoffman colorings (colorings attaining the bound) were studied before for regular graphs, for general graphs not much is known. We investigate tightness of the Hoffman bound, with a particular focus on irregular graphs, obtaining several results on the graph structure of Hoffman colorings. In particular, we prove a Decomposition Theorem, which characterizes the structure of Hoffman colorings, and we use it to completely classify Hoffman colorability of cone graphs and line graphs. We also prove a partial converse, the Composition Theorem, leading to an algorithm for computing all connected Hoffman colorable graphs for some given number of vertices and colors. Since several graph coloring parameters are known to be sandwiched between the Hoffman bound and the chromatic number, as a byproduct of our results, we obtain the values of these chromatic parameters.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 129-150"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study confirms the convexity of the joint numerical range of any k real-valued linear functions on the complex Stiefel manifold under the condition . Revealing the hidden convexity of fractional linear programming on the complex Stiefel manifold, a first-time study, serves as an impactful application.
{"title":"Numerical range of real-valued linear mapping on the complex Stiefel manifold: Convexity and application","authors":"Hanzhi Chen, Zhenhong Huang, Mengmeng Song, Yong Xia","doi":"10.1016/j.laa.2025.01.031","DOIUrl":"10.1016/j.laa.2025.01.031","url":null,"abstract":"<div><div>The study confirms the convexity of the joint numerical range of any <em>k</em> real-valued linear functions on the <span><math><mi>n</mi><mo>×</mo><mi>p</mi></math></span> complex Stiefel manifold under the condition <span><math><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. Revealing the hidden convexity of fractional linear programming on the complex Stiefel manifold, a first-time study, serves as an impactful application.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 95-110"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.laa.2025.01.034
Yu Luo , Zhenyu Ni , Yanxia Dong
For a given graph F, let and be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all F-free graphs of order n, respectively. and consist of the extremal graphs associated with and , respectively. The odd wheel is constructed by joining a vertex to a cycle . Cioabă, Desai and Tait determined the spectral extremal graphs of for . Xiao and Zamora determined the Turán number and all extremal graphs for , which is the union of t vertex-disjoint copies of for . In this paper, we focus on the graph with maximum spectral radius among those that exclude any subgraph isomorphic to . We present structural characteristics of these spectral extremal graphs for . Furthermore, we demonstrate that for and n large enough.
{"title":"Spectral extremal graphs for disjoint odd wheels","authors":"Yu Luo , Zhenyu Ni , Yanxia Dong","doi":"10.1016/j.laa.2025.01.034","DOIUrl":"10.1016/j.laa.2025.01.034","url":null,"abstract":"<div><div>For a given graph <em>F</em>, let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all <em>F</em>-free graphs of order <em>n</em>, respectively. <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> consist of the extremal graphs associated with <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, respectively. The odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is constructed by joining a vertex to a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span>. Cioabă, Desai and Tait determined the spectral extremal graphs of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Xiao and Zamora determined the Turán number and all extremal graphs for <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, which is the union of <em>t</em> vertex-disjoint copies of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, we focus on the graph with maximum spectral radius among those that exclude any subgraph isomorphic to <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We present structural characteristics of these spectral extremal graphs for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Furthermore, we demonstrate that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>10</mn></math></span> and <em>n</em> large enough.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 243-266"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143348007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.laa.2025.01.033
Lihuan Mao , Yuanhang Xu , Fenjin Liu , Bei Liu
Two graphs G and H are cospectral if they share the same spectrum. Constructing cospectral non-isomorphic graphs has been studied extensively for many years and various constructions are known in the literature. In this paper, we construct infinite families of adjacency cospectral graphs through the GM-switching method based on generalized Johnson graphs. We give some graph operations (e.g. rooted-product, corona, cartesian product, and coalescence) to construct distance cospectral graphs with different edges via a regular rational orthogonal matrix.
{"title":"Constructing adjacency and distance cospectral graphs via regular rational orthogonal matrix","authors":"Lihuan Mao , Yuanhang Xu , Fenjin Liu , Bei Liu","doi":"10.1016/j.laa.2025.01.033","DOIUrl":"10.1016/j.laa.2025.01.033","url":null,"abstract":"<div><div>Two graphs <em>G</em> and <em>H</em> are <em>cospectral</em> if they share the same spectrum. Constructing <em>cospectral</em> non-isomorphic graphs has been studied extensively for many years and various constructions are known in the literature. In this paper, we construct infinite families of adjacency cospectral graphs through the GM-switching method based on generalized Johnson graphs. We give some graph operations (e.g. rooted-product, corona, cartesian product, and coalescence) to construct distance cospectral graphs with different edges via a regular rational orthogonal matrix.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 111-128"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.laa.2025.01.035
Sara Accomando
In this paper we present some results concerning associative superalgebras endowed with a superautomorphism of order ≤2. We characterize the superalgebras with superautomorphism with multiplicities of the cocharacter bounded by a constant. Moreover, we determine the characterization of the superalgebras with superautomorphism with polynomial growth of the codimensions and we give a classification of the subvarieties of the varieties of almost polynomial growth. Finally, we characterize the superalgebras with superautomorphism with linear growth of the codimensions.
{"title":"Polynomial codimension growth of superalgebras with superautomorphism","authors":"Sara Accomando","doi":"10.1016/j.laa.2025.01.035","DOIUrl":"10.1016/j.laa.2025.01.035","url":null,"abstract":"<div><div>In this paper we present some results concerning associative superalgebras endowed with a superautomorphism of order ≤2. We characterize the superalgebras with superautomorphism with multiplicities of the cocharacter bounded by a constant. Moreover, we determine the characterization of the superalgebras with superautomorphism with polynomial growth of the codimensions and we give a classification of the subvarieties of the varieties of almost polynomial growth. Finally, we characterize the superalgebras with superautomorphism with linear growth of the codimensions.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 50-79"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.laa.2025.01.032
S.P. Glasby , Alice C. Niemeyer , Cheryl E. Praeger
<div><div>Let <span><math><mi>V</mi><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> be a <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of order <em>q</em>. Fix positive integers <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> satisfying <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>d</mi></math></span>. Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a certain quantity <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> which arises in both graph theory and group representation theory: <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the proportion of 3-walks in the ‘bipartite <em>q</em>-Kneser graph’ <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> that are closed 3-arcs. We prove that, for a group <em>G</em> satisfying <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>⊴</mo><mi>G</mi><mo>⩽</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, the proportion of certain element-pairs in <em>G</em> called ‘<span><math><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-stingray duos’ which generate an irreducible subgroup is also equal to <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We give an exact formula for <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, and prove that<span><span><span><math><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo><</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo><</mo><mn>1</mn
{"title":"Bipartite q-Kneser graphs and two-generated irreducible linear groups","authors":"S.P. Glasby , Alice C. Niemeyer , Cheryl E. Praeger","doi":"10.1016/j.laa.2025.01.032","DOIUrl":"10.1016/j.laa.2025.01.032","url":null,"abstract":"<div><div>Let <span><math><mi>V</mi><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> be a <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of order <em>q</em>. Fix positive integers <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> satisfying <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>d</mi></math></span>. Motivated by analysing a fundamental algorithm in computational group theory for recognising classical groups, we consider a certain quantity <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> which arises in both graph theory and group representation theory: <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the proportion of 3-walks in the ‘bipartite <em>q</em>-Kneser graph’ <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> that are closed 3-arcs. We prove that, for a group <em>G</em> satisfying <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>⊴</mo><mi>G</mi><mo>⩽</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, the proportion of certain element-pairs in <em>G</em> called ‘<span><math><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-stingray duos’ which generate an irreducible subgroup is also equal to <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We give an exact formula for <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, and prove that<span><span><span><math><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo><</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo><</mo><mn>1</mn","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 203-229"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1016/j.laa.2025.01.029
Oskar Maria Baksalary , Dennis Bernstein
For complex matrices A and B, the Rao-Mitra-Bhimasankaram (RMB) relation , defined by if , is reflexive and antisymmetric, but not transitive. This paper shows that, despite the lack of transitivity, is strongly antisymmetric in the sense that, for all integers , implies . The proof of this result is based on a novel proof that is antisymmetric.
{"title":"The Rao-Mitra-Bhimasankaram relation is strongly antisymmetric","authors":"Oskar Maria Baksalary , Dennis Bernstein","doi":"10.1016/j.laa.2025.01.029","DOIUrl":"10.1016/j.laa.2025.01.029","url":null,"abstract":"<div><div>For <span><math><mi>n</mi><mo>×</mo><mi>m</mi></math></span> complex matrices <em>A</em> and <em>B</em>, the Rao-Mitra-Bhimasankaram (RMB) relation <span><math><mover><mrow><mo>≤</mo></mrow><mrow><mi>RMB</mi></mrow></mover></math></span>, defined by <span><math><mi>A</mi><mover><mrow><mo>≤</mo></mrow><mrow><mi>RMB</mi></mrow></mover><mi>B</mi></math></span> if <span><math><mi>A</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mo>=</mo><mi>A</mi><msup><mrow><mi>B</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi></math></span>, is reflexive and antisymmetric, but not transitive. This paper shows that, despite the lack of transitivity, <span><math><mover><mrow><mo>≤</mo></mrow><mrow><mi>RMB</mi></mrow></mover></math></span> is strongly antisymmetric in the sense that, for all integers <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mover><mrow><mo>≤</mo></mrow><mrow><mi>RMB</mi></mrow></mover><mo>⋯</mo><mover><mrow><mo>≤</mo></mrow><mrow><mi>RMB</mi></mrow></mover><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mover><mrow><mo>≤</mo></mrow><mrow><mi>RMB</mi></mrow></mover><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> implies <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The proof of this result is based on a novel proof that <span><math><mover><mrow><mo>≤</mo></mrow><mrow><mi>RMB</mi></mrow></mover></math></span> is antisymmetric.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 80-94"},"PeriodicalIF":1.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1016/j.laa.2025.01.028
Froilán M. Dopico , Vanni Noferini , Ion Zaballa
Rosenbrock's theorem on polynomial system matrices is a classical result in linear systems theory that relates the Smith-McMillan form of a rational matrix G with the Smith form of an irreducible polynomial system matrix P giving rise to G and the Smith form of a submatrix of P. This theorem has been essential in the development of algorithms for computing the poles and zeros of a rational matrix via linearizations and generalized eigenvalue algorithms. In this paper, we extend Rosenbrock's theorem to system matrices P with entries in an arbitrary elementary divisor domain and matrices G with entries in the field of fractions of . These are the most general rings where the involved Smith-McMillan and Smith forms both exist and, so, where the problem makes sense. Moreover, we analyze in detail what happens when the system matrix is not irreducible. Finally, we explore how Rosenbrock's theorem can be extended when the system matrix P itself has entries in the field of fractions of the elementary divisor domain.
{"title":"Rosenbrock's theorem on system matrices over elementary divisor domains","authors":"Froilán M. Dopico , Vanni Noferini , Ion Zaballa","doi":"10.1016/j.laa.2025.01.028","DOIUrl":"10.1016/j.laa.2025.01.028","url":null,"abstract":"<div><div>Rosenbrock's theorem on polynomial system matrices is a classical result in linear systems theory that relates the Smith-McMillan form of a rational matrix <em>G</em> with the Smith form of an irreducible polynomial system matrix <em>P</em> giving rise to <em>G</em> and the Smith form of a submatrix of <em>P</em>. This theorem has been essential in the development of algorithms for computing the poles and zeros of a rational matrix via linearizations and generalized eigenvalue algorithms. In this paper, we extend Rosenbrock's theorem to system matrices <em>P</em> with entries in an arbitrary elementary divisor domain <span><math><mi>R</mi></math></span> and matrices <em>G</em> with entries in the field of fractions of <span><math><mi>R</mi></math></span>. These are the most general rings where the involved Smith-McMillan and Smith forms both exist and, so, where the problem makes sense. Moreover, we analyze in detail what happens when the system matrix is not irreducible. Finally, we explore how Rosenbrock's theorem can be extended when the system matrix <em>P</em> itself has entries in the field of fractions of the elementary divisor domain.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 10-49"},"PeriodicalIF":1.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1016/j.laa.2025.01.025
Emil Horobeţ , Ettore Teixeira Turatti
Subtracting a critical rank-one approximation from a matrix always results in a matrix with a lower rank. This is not true for tensors in general. Motivated by this, we ask the question: what is the closure of the set of those tensors for which subtracting some of its critical rank-one approximation from it and repeating the process we will eventually get to zero? In this article, we show how to construct this variety of tensors and we show how this is connected to the bottleneck points of the variety of rank-one tensors (and in general to the singular locus of the hyperdeterminant), and how this variety can be equal to and in some cases be more than (weakly) orthogonally decomposable tensors.
{"title":"When does subtracting a rank-one approximation decrease tensor rank?","authors":"Emil Horobeţ , Ettore Teixeira Turatti","doi":"10.1016/j.laa.2025.01.025","DOIUrl":"10.1016/j.laa.2025.01.025","url":null,"abstract":"<div><div>Subtracting a critical rank-one approximation from a matrix always results in a matrix with a lower rank. This is not true for tensors in general. Motivated by this, we ask the question: what is the closure of the set of those tensors for which subtracting some of its critical rank-one approximation from it and repeating the process we will eventually get to zero? In this article, we show how to construct this variety of tensors and we show how this is connected to the bottleneck points of the variety of rank-one tensors (and in general to the singular locus of the hyperdeterminant), and how this variety can be equal to and in some cases be more than (weakly) orthogonally decomposable tensors.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 397-415"},"PeriodicalIF":1.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1016/j.laa.2025.01.030
Xinmei Yuan , Danyi Li , Weigen Yan
Let G be a connected graph, and let and be the line graph and middle graph of G. Gutman and Sciriha (On the nullity of line graphs of trees, Discrete Mathematics, 232 (2001), 35-45) proved that the nullity of of a tree T satisfies or . But the problem to determine which trees T satisfy or is still open. In this paper, we prove that if G is a bipartite graph, and otherwise. As an application, we show that for the so-called silicate network obtained from the hexagonal lattice in the context of statistical physics.
{"title":"On the nullity of middle graphs","authors":"Xinmei Yuan , Danyi Li , Weigen Yan","doi":"10.1016/j.laa.2025.01.030","DOIUrl":"10.1016/j.laa.2025.01.030","url":null,"abstract":"<div><div>Let <em>G</em> be a connected graph, and let <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>M</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the line graph and middle graph of <em>G</em>. Gutman and Sciriha (On the nullity of line graphs of trees, Discrete Mathematics, 232 (2001), 35-45) proved that the nullity <span><math><mi>η</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo></math></span> of <span><math><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> of a tree <em>T</em> satisfies <span><math><mi>η</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span> or <span><math><mi>η</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. But the problem to determine which trees <em>T</em> satisfy <span><math><mi>η</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span> or <span><math><mi>η</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span> is still open. In this paper, we prove that <span><math><mi>η</mi><mo>(</mo><mi>M</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span> if <em>G</em> is a bipartite graph, and <span><math><mi>η</mi><mo>(</mo><mi>M</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span> otherwise. As an application, we show that <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for the so-called silicate network <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> obtained from the hexagonal lattice in the context of statistical physics.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 1-9"},"PeriodicalIF":1.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143138520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}