Pub Date : 2025-02-11Print Date: 2025-04-01DOI: 10.26508/lsa.202403065
Sophie Lebon, Arnaud Bruneel, Séverine Drunat, Alexandra Albert, Zsolt Csaba, Monique Elmaleh, Alexandra Ntorkou, Yann Ténier, François Fenaille, Pierre Gressens, Sandrine Passemard, Odile Boespflug-Tanguy, Imen Dorboz, Vincent El Ghouzzi
GRASP65 is a Golgi-associated peripheral protein encoded by the GORASP1 gene and required for Golgi cisternal stacking in vitro. A key role of GRASP65 in the regulation of cell division has also been suggested. However, depletion of GRASP65 in mice has little effect on the Golgi structure and the gene has not been associated with any human phenotype to date. Here, we report the identification of the first human pathogenic variant of GORASP1 (c.1170_1171del; p.Asp390Glufs*18) in a patient combining a neurodevelopmental disorder with neurosensory, neuromuscular, and skeletal abnormalities. Functional analysis revealed that the variant leads to a total absence of GRASP65. The structure of the Golgi apparatus did not show fragmentation, but glycosylation anomalies such as hyposialylation were detected. Mitosis analyses revealed an excess of prometaphases and metaphases with polar chromosomes, suggesting a delay in the cell cycle. These phenotypes were recapitulated in RPE cells in which a similar mutation was introduced by CRISPR/Cas9. These results indicate that loss of GRASP65 in humans causes a novel Golgipathy associated with defects in glycosylation and mitotic progression.
{"title":"A biallelic variant in <i>GORASP1</i> causes a novel Golgipathy with glycosylation and mitotic defects.","authors":"Sophie Lebon, Arnaud Bruneel, Séverine Drunat, Alexandra Albert, Zsolt Csaba, Monique Elmaleh, Alexandra Ntorkou, Yann Ténier, François Fenaille, Pierre Gressens, Sandrine Passemard, Odile Boespflug-Tanguy, Imen Dorboz, Vincent El Ghouzzi","doi":"10.26508/lsa.202403065","DOIUrl":"10.26508/lsa.202403065","url":null,"abstract":"<p><p>GRASP65 is a Golgi-associated peripheral protein encoded by the <i>GORASP1</i> gene and required for Golgi cisternal stacking in vitro. A key role of GRASP65 in the regulation of cell division has also been suggested. However, depletion of GRASP65 in mice has little effect on the Golgi structure and the gene has not been associated with any human phenotype to date. Here, we report the identification of the first human pathogenic variant of <i>GORASP1</i> (c.1170_1171del; p.Asp390Glufs*18) in a patient combining a neurodevelopmental disorder with neurosensory, neuromuscular, and skeletal abnormalities. Functional analysis revealed that the variant leads to a total absence of GRASP65. The structure of the Golgi apparatus did not show fragmentation, but glycosylation anomalies such as hyposialylation were detected. Mitosis analyses revealed an excess of prometaphases and metaphases with polar chromosomes, suggesting a delay in the cell cycle. These phenotypes were recapitulated in RPE cells in which a similar mutation was introduced by CRISPR/Cas9. These results indicate that loss of GRASP65 in humans causes a novel Golgipathy associated with defects in glycosylation and mitotic progression.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11Print Date: 2025-05-01DOI: 10.26508/lsa.202201490
Toini Pemmari, Stuart Prince, Niklas Wiss, Kuldar Kõiv, Ulrike May, Tarmo Mölder, Aleksander Sudakov, Fernanda Munoz Caro, Soili Lehtonen, Hannele Uusitalo-Järvinen, Tambet Teesalu, Tero Ah Järvinen
In vivo phage display is a method used for identification of organ- or disease-specific vascular homing peptides for targeted delivery of pharmaceutics. It is agnostic as to the nature and identity of the target molecules. The current in vivo biopanning lacks inbuilt mechanisms to select for peptides capable of vascular homing that would also be capable of tissue penetration to reach therapeutically relevant cells in the tissue parenchyma. Here, we combined in vivo phage display with microdialysis-based parenchymal recovery and high-throughput sequencing to select for peptides that, besides vascular homing, facilitate extravasation and tissue penetration. We first demonstrated in skin wounds that the method can selectively separate known homing peptides from those with additional tissue-penetrating ability. Screening of a naïve peptide library identifies peptides that home and extravasate to extravascular granulation tissue in vascularized and diabetic wounds and cross blood-retina barrier in retinopathy. Our work suggests that in vivo phage display combined with microdialysis can be used for the discovery of vascular homing peptides capable of extravasation and tissue penetration.
{"title":"Screening of homing and tissue-penetrating peptides by microdialysis and in vivo phage display.","authors":"Toini Pemmari, Stuart Prince, Niklas Wiss, Kuldar Kõiv, Ulrike May, Tarmo Mölder, Aleksander Sudakov, Fernanda Munoz Caro, Soili Lehtonen, Hannele Uusitalo-Järvinen, Tambet Teesalu, Tero Ah Järvinen","doi":"10.26508/lsa.202201490","DOIUrl":"10.26508/lsa.202201490","url":null,"abstract":"<p><p>In vivo phage display is a method used for identification of organ- or disease-specific vascular homing peptides for targeted delivery of pharmaceutics. It is agnostic as to the nature and identity of the target molecules. The current in vivo biopanning lacks inbuilt mechanisms to select for peptides capable of vascular homing that would also be capable of tissue penetration to reach therapeutically relevant cells in the tissue parenchyma. Here, we combined in vivo phage display with microdialysis-based parenchymal recovery and high-throughput sequencing to select for peptides that, besides vascular homing, facilitate extravasation and tissue penetration. We first demonstrated in skin wounds that the method can selectively separate known homing peptides from those with additional tissue-penetrating ability. Screening of a naïve peptide library identifies peptides that home and extravasate to extravascular granulation tissue in vascularized and diabetic wounds and cross blood-retina barrier in retinopathy. Our work suggests that in vivo phage display combined with microdialysis can be used for the discovery of vascular homing peptides capable of extravasation and tissue penetration.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07Print Date: 2025-04-01DOI: 10.26508/lsa.202403073
Shin Ebihara, Yuji Owada, Masao Ono
IL-17A plays an important role in the pathology of psoriasis and psoriatic arthritis (PsA). However, the pathogenic association between the skin and joint manifestations in PsA is not completely understood. In this study, we initially observed that IL-17A and FGF7 induced endochondral ossification in the mouse entheseal histoculture. Importantly, the responses of endochondral ossification by IL-17A stimulation were strongly inhibited by the treatment of a blocking antibody to FGF receptor 2IIIb, which is the receptor of FGF7, suggesting that FGF7 acts as a downstream factor of IL-17A in the endochondral ossification in the culture. Next, using the animal PsA model, the administration of an anti-FGF receptor 2IIIb antibody resulted in significant suppression of ankylosing enthesitis but not dermatitis. Collectively, our findings indicate that augmented IL-17A in PsA dermatitis induces the elevation of FGF7 levels in joint enthesis and results in a non-redundant role of FGF7 signaling in the development of ankylosing enthesitis in PsA.
{"title":"FGF7 as an essential mediator for the onset of ankylosing enthesitis related to psoriatic dermatitis.","authors":"Shin Ebihara, Yuji Owada, Masao Ono","doi":"10.26508/lsa.202403073","DOIUrl":"10.26508/lsa.202403073","url":null,"abstract":"<p><p>IL-17A plays an important role in the pathology of psoriasis and psoriatic arthritis (PsA). However, the pathogenic association between the skin and joint manifestations in PsA is not completely understood. In this study, we initially observed that IL-17A and FGF7 induced endochondral ossification in the mouse entheseal histoculture. Importantly, the responses of endochondral ossification by IL-17A stimulation were strongly inhibited by the treatment of a blocking antibody to FGF receptor 2IIIb, which is the receptor of FGF7, suggesting that FGF7 acts as a downstream factor of IL-17A in the endochondral ossification in the culture. Next, using the animal PsA model, the administration of an anti-FGF receptor 2IIIb antibody resulted in significant suppression of ankylosing enthesitis but not dermatitis. Collectively, our findings indicate that augmented IL-17A in PsA dermatitis induces the elevation of FGF7 levels in joint enthesis and results in a non-redundant role of FGF7 signaling in the development of ankylosing enthesitis in PsA.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07Print Date: 2025-04-01DOI: 10.26508/lsa.202403140
Bunu Lama, Hyewon Park, Anita Saraf, Victoria Hassebroek, Daniel Keifenheim, Tomoko Saito-Fujita, Noriko Saitoh, Vasilisa Aksenova, Alexei Arnaoutov, Mary Dasso, Duncan J Clarke, Yoshiaki Azuma
Either inhibiting or stabilizing SUMOylation in mitosis causes defects in chromosome segregation, suggesting that dynamic mitotic SUMOylation of proteins is critical to maintain integrity of the genome. Polo-like kinase 1-interacting checkpoint helicase (PICH), a mitotic chromatin remodeling enzyme, interacts with SUMOylated chromosomal proteins via three SUMO-interacting motifs (SIMs) to control their association with chromosomes. Using cell lines with conditional PICH depletion/PICH replacement, we revealed mitotic defects associated with compromised PICH functions toward SUMOylated chromosomal proteins. Defects in either remodeling activity or SIMs of PICH delayed mitotic progression caused by activation of the spindle assembly checkpoint (SAC) indicated by extended duration of Mad1 foci at centromeres. Proteomics analysis of chromosomal SUMOylated proteins whose abundance is controlled by PICH activity identified candidate proteins to explain the SAC activation phenotype. Among the identified candidates, Bub1 kinetochore abundance is increased upon loss of PICH. Our results demonstrated a novel relationship between PICH and the SAC, where PICH directly or indirectly affects Bub1 association at the kinetochore and impacts SAC activity to control mitosis.
{"title":"PICH impacts the spindle assembly checkpoint via its DNA translocase and SUMO-interaction activities.","authors":"Bunu Lama, Hyewon Park, Anita Saraf, Victoria Hassebroek, Daniel Keifenheim, Tomoko Saito-Fujita, Noriko Saitoh, Vasilisa Aksenova, Alexei Arnaoutov, Mary Dasso, Duncan J Clarke, Yoshiaki Azuma","doi":"10.26508/lsa.202403140","DOIUrl":"10.26508/lsa.202403140","url":null,"abstract":"<p><p>Either inhibiting or stabilizing SUMOylation in mitosis causes defects in chromosome segregation, suggesting that dynamic mitotic SUMOylation of proteins is critical to maintain integrity of the genome. Polo-like kinase 1-interacting checkpoint helicase (PICH), a mitotic chromatin remodeling enzyme, interacts with SUMOylated chromosomal proteins via three <u>S</u>UMO-<u>i</u>nteracting <u>m</u>otifs (SIMs) to control their association with chromosomes. Using cell lines with conditional PICH depletion/PICH replacement, we revealed mitotic defects associated with compromised PICH functions toward SUMOylated chromosomal proteins. Defects in either remodeling activity or SIMs of PICH delayed mitotic progression caused by activation of the spindle assembly checkpoint (SAC) indicated by extended duration of Mad1 foci at centromeres. Proteomics analysis of chromosomal SUMOylated proteins whose abundance is controlled by PICH activity identified candidate proteins to explain the SAC activation phenotype. Among the identified candidates, Bub1 kinetochore abundance is increased upon loss of PICH. Our results demonstrated a novel relationship between PICH and the SAC, where PICH directly or indirectly affects Bub1 association at the kinetochore and impacts SAC activity to control mitosis.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-05Print Date: 2025-04-01DOI: 10.26508/lsa.202402956
Tobias Beckröge, Bettina Jux, Hannah Seifert, Hannah Theobald, Elena De Domenico, Stefan Paulusch, Marc Beyer, Andreas Schlitzer, Elvira Mass, Waldemar Kolanus
The transition of an embryo from gastrulation to organogenesis requires precisely coordinated changes in gene expression, but the underlying mechanisms remain unclear. The RNA-binding protein Trim71 is essential for development and serves as a potent regulator of post-transcriptional gene expression. Here, we show that global deficiency of Trim71 induces severe defects in mesoderm-derived cells at the onset of organogenesis. Murine Trim71-KO embryos displayed impaired primitive erythropoiesis, yolk sac vasculature, heart function, and circulation, explaining the embryonic lethality of these mice. Tie2CreTrim71 conditional knockout did not induce strong defects, showing that Trim71 expression in endothelial cells and their immediate progenitors is dispensable for embryonic survival. scRNA-seq of E7.5 global Trim71-KO embryos revealed that transcriptomic changes arise already at gastrulation, showing a strong up-regulation of the mesodermal pioneer transcription factor Eomes. We identify Eomes as a direct target of Trim71-mediated mRNA repression via the NHL domain, demonstrating a functional link between these important regulatory genes. Taken together, our data suggest that Trim71-dependent control of gene expression at gastrulation establishes a framework for proper development during organogenesis.
{"title":"Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos.","authors":"Tobias Beckröge, Bettina Jux, Hannah Seifert, Hannah Theobald, Elena De Domenico, Stefan Paulusch, Marc Beyer, Andreas Schlitzer, Elvira Mass, Waldemar Kolanus","doi":"10.26508/lsa.202402956","DOIUrl":"10.26508/lsa.202402956","url":null,"abstract":"<p><p>The transition of an embryo from gastrulation to organogenesis requires precisely coordinated changes in gene expression, but the underlying mechanisms remain unclear. The RNA-binding protein Trim71 is essential for development and serves as a potent regulator of post-transcriptional gene expression. Here, we show that global deficiency of <i>Trim71</i> induces severe defects in mesoderm-derived cells at the onset of organogenesis. Murine <i>Trim71</i>-KO embryos displayed impaired primitive erythropoiesis, yolk sac vasculature, heart function, and circulation, explaining the embryonic lethality of these mice. <i>Tie2</i> <sup>Cre</sup> <i>Trim71</i> conditional knockout did not induce strong defects, showing that Trim71 expression in endothelial cells and their immediate progenitors is dispensable for embryonic survival. scRNA-seq of E7.5 global <i>Trim71</i>-KO embryos revealed that transcriptomic changes arise already at gastrulation, showing a strong up-regulation of the mesodermal pioneer transcription factor Eomes. We identify Eomes as a direct target of Trim71-mediated mRNA repression via the NHL domain, demonstrating a functional link between these important regulatory genes. Taken together, our data suggest that Trim71-dependent control of gene expression at gastrulation establishes a framework for proper development during organogenesis.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salamanders demonstrate exceptional resistance to starvation, allowing them to endure extended periods without food in their natural habitats. Although autophagy, a process involving evolutionarily conserved proteins, promotes survival during food scarcity, the specific mechanism by which it contributes to the extreme starvation resistance in newt cells remains unexplored. Our study, using the newt species Pleurodeles waltl, reveals that newt primary fibroblasts maintain constant autophagy activation during prolonged cellular starvation. Unlike normal mammalian fibroblasts, where autophagosome formation increases during acute starvation but returns to baseline levels after extended periods, newt cells maintain elevated autophagosome numbers even 4 d after autophagy initiation, surpassing levels observed in nutrient-rich conditions. Unique P. waltl mTOR orthologs show reduced lysosomal localization compared with mammalian cells in both nutrient-rich and starved states. However, newt cells exhibit dephosphorylation of mTOR substrates under starvation conditions, similar to mammalian cells. These observations suggest that newts may have evolved a distinctive system to balance seemingly conflicting factors: high regenerative capacity and autophagy-mediated survival during starvation.
{"title":"Sustained induction of autophagy enhances survival during prolonged starvation in newt cells.","authors":"Md Mahmudul Hasan, Shinji Goto, Reiko Sekiya, Toshinori Hayashi, Tao-Sheng Li, Tsuyoshi Kawabata","doi":"10.26508/lsa.202402772","DOIUrl":"10.26508/lsa.202402772","url":null,"abstract":"<p><p>Salamanders demonstrate exceptional resistance to starvation, allowing them to endure extended periods without food in their natural habitats. Although autophagy, a process involving evolutionarily conserved proteins, promotes survival during food scarcity, the specific mechanism by which it contributes to the extreme starvation resistance in newt cells remains unexplored. Our study, using the newt species <i>Pleurodeles waltl</i>, reveals that newt primary fibroblasts maintain constant autophagy activation during prolonged cellular starvation. Unlike normal mammalian fibroblasts, where autophagosome formation increases during acute starvation but returns to baseline levels after extended periods, newt cells maintain elevated autophagosome numbers even 4 d after autophagy initiation, surpassing levels observed in nutrient-rich conditions. Unique <i>P. waltl</i> mTOR orthologs show reduced lysosomal localization compared with mammalian cells in both nutrient-rich and starved states. However, newt cells exhibit dephosphorylation of mTOR substrates under starvation conditions, similar to mammalian cells. These observations suggest that newts may have evolved a distinctive system to balance seemingly conflicting factors: high regenerative capacity and autophagy-mediated survival during starvation.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-04Print Date: 2025-04-01DOI: 10.26508/lsa.202503226
Mohammad Ali Mohammad Nezhady, Gael Cagnone, Emmanuel Bajon, Prabhas Chaudhari, Monir Modaresinejad, Pierre Hardy, Damien Maggiorani, Christiane Quiniou, Jean-Sébastien Joyal, Christian Beauséjour, Sylvain Chemtob
G-protein-coupled receptors (GPCRs) are virtually involved in every physiological process. However, mechanisms for their ability to regulate a vast array of different processes remain elusive. An unconventional functional modality could at least in part account for such diverse involvements but has yet to be explored. We found HCAR1, a multifunctional lactate GPCR, to localize at the nucleus and therein capable of initiating location-biased signaling notably nuclear-ERK and AKT. We discovered that nuclear HCAR1 (N-HCAR1) is directly involved in regulating diverse processes. Specifically, N-HCAR1 binds to protein complexes that are involved in promoting protein translation, ribosomal biogenesis, and DNA-damage repair. N-HCAR1 also interacts with chromatin remodelers to directly regulate gene expression. We show that N-HCAR1 displays a broader transcriptomic signature than its plasma membrane counterpart. Interestingly, exclusion of HCAR1 from the nucleus has the same effect as its complete cellular depletion on tumor growth and metastasis in vivo. These results reveal noncanonical functions for a cell nucleus-localized GPCR that are distinct from traditional receptor modalities and through which HCAR1 can participate in regulating various cellular processes.
G 蛋白偶联受体(GPCR)几乎参与了每一个生理过程。然而,它们能够调控大量不同过程的机制仍然难以捉摸。一种非常规的功能模式至少可以部分解释这种多样化的参与,但这种模式还有待探索。我们发现,多功能乳酸 GPCR HCAR1 定位于细胞核,能够启动基于位置的信号传导,特别是核-ERK 和 AKT。我们发现,核 HCAR1(N-HCAR1)直接参与调节多种过程。具体来说,N-HCAR1 与参与促进蛋白质翻译、核糖体生物生成和 DNA 损伤修复的蛋白质复合物结合。N-HCAR1 还与染色质重塑因子相互作用,直接调控基因表达。我们发现,N-HCAR1 比其质膜对应物显示出更广泛的转录组特征。有趣的是,从细胞核中排除 HCAR1 对体内肿瘤生长和转移的影响与从细胞中完全清除 HCAR1 对肿瘤生长和转移的影响相同。这些结果揭示了细胞核定位 GPCR 的非经典功能,这些功能有别于传统的受体模式,HCAR1 可通过这些功能参与调节各种细胞过程。
{"title":"Unconventional receptor functions and location-biased signaling of the lactate GPCR in the nucleus.","authors":"Mohammad Ali Mohammad Nezhady, Gael Cagnone, Emmanuel Bajon, Prabhas Chaudhari, Monir Modaresinejad, Pierre Hardy, Damien Maggiorani, Christiane Quiniou, Jean-Sébastien Joyal, Christian Beauséjour, Sylvain Chemtob","doi":"10.26508/lsa.202503226","DOIUrl":"10.26508/lsa.202503226","url":null,"abstract":"<p><p>G-protein-coupled receptors (GPCRs) are virtually involved in every physiological process. However, mechanisms for their ability to regulate a vast array of different processes remain elusive. An unconventional functional modality could at least in part account for such diverse involvements but has yet to be explored. We found HCAR1, a multifunctional lactate GPCR, to localize at the nucleus and therein capable of initiating location-biased signaling notably nuclear-ERK and AKT. We discovered that nuclear HCAR1 (N-HCAR1) is directly involved in regulating diverse processes. Specifically, N-HCAR1 binds to protein complexes that are involved in promoting protein translation, ribosomal biogenesis, and DNA-damage repair. N-HCAR1 also interacts with chromatin remodelers to directly regulate gene expression. We show that N-HCAR1 displays a broader transcriptomic signature than its plasma membrane counterpart. Interestingly, exclusion of HCAR1 from the nucleus has the same effect as its complete cellular depletion on tumor growth and metastasis in vivo. These results reveal noncanonical functions for a cell nucleus-localized GPCR that are distinct from traditional receptor modalities and through which HCAR1 can participate in regulating various cellular processes.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03Print Date: 2025-04-01DOI: 10.26508/lsa.202402946
Matthias Eudenbach, Jonas Busam, Caroline Bouchard, Oliver Rossbach, Kathi Zarnack, Uta-Maria Bauer
Protein arginine methyltransferase 6 (PRMT6) is a well-characterized epigenetic regulator that methylates histone H3 at arginine 2 (H3R2me2a) in both promoter and enhancer regions, thereby modulating transcriptional initiation. We report here that PRMT6 also regulates gene expression at the post-transcriptional level in the neural pluripotent state and during neuronal differentiation of NT2/D1 cells. PRMT6 knockout causes widespread alternative splicing changes in NT2/D1 cells, most frequently cassette exon alterations. Most of the PRMT6-dependent splicing targets are not transcriptionally affected by the enzyme and regulated in an H3R2me2a-independent manner. However, for a small subset of splicing events, the PRMT6-mediated deposition of H3R2me2a overlaps with the splice site, suggesting a potential dual function in both transcriptional and co-/post-transcriptional regulation. The splicing targets of PRMT6 include ribosomal proteins, splicing factors, and chromatin-modifying enzymes such as PRMT4, DNMT3B, and ASH2L, some of which are associated with differentiation decisions. Taken together, our results in NT2/D1 cells show that PRMT6 exerts predominantly H3R2me2a-independent functions in RNA splicing, which may contribute to pluripotency and neuronal identity.
{"title":"Assessment of PRMT6-dependent alternative splicing in pluripotent and differentiating NT2/D1 cells.","authors":"Matthias Eudenbach, Jonas Busam, Caroline Bouchard, Oliver Rossbach, Kathi Zarnack, Uta-Maria Bauer","doi":"10.26508/lsa.202402946","DOIUrl":"10.26508/lsa.202402946","url":null,"abstract":"<p><p>Protein arginine methyltransferase 6 (PRMT6) is a well-characterized epigenetic regulator that methylates histone H3 at arginine 2 (H3R2me2a) in both promoter and enhancer regions, thereby modulating transcriptional initiation. We report here that PRMT6 also regulates gene expression at the post-transcriptional level in the neural pluripotent state and during neuronal differentiation of NT2/D1 cells. PRMT6 knockout causes widespread alternative splicing changes in NT2/D1 cells, most frequently cassette exon alterations. Most of the PRMT6-dependent splicing targets are not transcriptionally affected by the enzyme and regulated in an H3R2me2a-independent manner. However, for a small subset of splicing events, the PRMT6-mediated deposition of H3R2me2a overlaps with the splice site, suggesting a potential dual function in both transcriptional and co-/post-transcriptional regulation. The splicing targets of PRMT6 include ribosomal proteins, splicing factors, and chromatin-modifying enzymes such as PRMT4, DNMT3B, and ASH2L, some of which are associated with differentiation decisions. Taken together, our results in NT2/D1 cells show that PRMT6 exerts predominantly H3R2me2a-independent functions in RNA splicing, which may contribute to pluripotency and neuronal identity.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03Print Date: 2025-04-01DOI: 10.26508/lsa.202403182
Anton Petcherski, Brett M Tingley, Andrew Martin, Sarah Adams, Alexandra J Brownstein, Ross A Steinberg, Byourak Shabane, Jennifer Ngo, Corey Osto, Gustavo Garcia, Michaela Veliova, Vaithilingaraja Arumugaswami, Aaron H Colby, Orian S Shirihai, Mark W Grinstaff
SARS-CoV-2 can infect cells through endocytic uptake, a process that is targeted by inhibition of lysosomal proteases. However, clinically this approach to treat viral infections has afforded mixed results, with some studies detailing an oral regimen of hydroxychloroquine accompanied by significant off-target toxicities. We rationalized that an organelle-targeted approach will avoid toxicity while increasing the concentration of the drug at the target. Here, we describe a lysosome-targeted, mefloquine-loaded poly(glycerol monostearate-co-ε-caprolactone) nanoparticle (MFQ-NP) for pulmonary delivery via inhalation. Mefloquine is a more effective inhibitor of viral endocytosis than hydroxychloroquine in cellular models of COVID-19. MFQ-NPs are less toxic than molecular mefloquine, are 100-150 nm in diameter, and possess a negative surface charge, which facilitates uptake via endocytosis allowing inhibition of lysosomal proteases. MFQ-NPs inhibit coronavirus infection in mouse MHV-A59 and human OC43 coronavirus model systems and inhibit SARS-CoV-2 WA1 and its Omicron variant in a human lung epithelium model. Organelle-targeted delivery is an effective means to inhibit viral infection.
{"title":"Endolysosome-targeted nanoparticle delivery of antiviral therapy for coronavirus infections.","authors":"Anton Petcherski, Brett M Tingley, Andrew Martin, Sarah Adams, Alexandra J Brownstein, Ross A Steinberg, Byourak Shabane, Jennifer Ngo, Corey Osto, Gustavo Garcia, Michaela Veliova, Vaithilingaraja Arumugaswami, Aaron H Colby, Orian S Shirihai, Mark W Grinstaff","doi":"10.26508/lsa.202403182","DOIUrl":"10.26508/lsa.202403182","url":null,"abstract":"<p><p>SARS-CoV-2 can infect cells through endocytic uptake, a process that is targeted by inhibition of lysosomal proteases. However, clinically this approach to treat viral infections has afforded mixed results, with some studies detailing an oral regimen of hydroxychloroquine accompanied by significant off-target toxicities. We rationalized that an organelle-targeted approach will avoid toxicity while increasing the concentration of the drug at the target. Here, we describe a lysosome-targeted, mefloquine-loaded poly(glycerol monostearate-co-ε-caprolactone) nanoparticle (MFQ-NP) for pulmonary delivery via inhalation. Mefloquine is a more effective inhibitor of viral endocytosis than hydroxychloroquine in cellular models of COVID-19. MFQ-NPs are less toxic than molecular mefloquine, are 100-150 nm in diameter, and possess a negative surface charge, which facilitates uptake via endocytosis allowing inhibition of lysosomal proteases. MFQ-NPs inhibit coronavirus infection in mouse MHV-A59 and human OC43 coronavirus model systems and inhibit SARS-CoV-2 WA1 and its Omicron variant in a human lung epithelium model. Organelle-targeted delivery is an effective means to inhibit viral infection.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The plasma membrane covering the primary cilium has a diverse accumulation of receptors and channels. To ensure the sensor function of the cilia, the ciliary membrane has higher cholesterol content than other cell membrane regions. A peroxisomal biogenesis disorder, Zellweger syndrome, characterized by polycystic kidney, is associated with a reduced level of ciliary cholesterol in cells. However, the etiological mechanism by which ciliary cholesterol lowering causes polycystic kidney disease remains unclear. Here, we demonstrated that lowering ciliary cholesterol by either pharmacological treatment or genetic depletion of peroxisomes impairs the localization of a ciliary ion channel polycystin-2. We also generated cultured renal medullary cells and mice carrying a missense variant in the cholesterol-binding site of polycystin-2 detected in the patient database of autosomal dominant polycystic kidney disease. This missense protein showed normal channel activity but decreased localization to the ciliary membrane. The homozygous mice exhibited embryonic lethality and the ciliopathy spectrum conditions of situs inversus and polycystic kidney. Our results suggest that cholesterol controls the ciliary localization of polycystin-2 to prevent polycystic kidney disease.
{"title":"Cholesterol ensures ciliary polycystin-2 localization to prevent polycystic kidney disease.","authors":"Takeshi Itabashi, Kosuke Hosoba, Tomoka Morita, Sotai Kimura, Kenji Yamaoka, Moe Hirosawa, Daigo Kobayashi, Hiroko Kishi, Kodai Kume, Hiroshi Itoh, Hideshi Kawakami, Kouichi Hashimoto, Takashi Yamamoto, Tatsuo Miyamoto","doi":"10.26508/lsa.202403063","DOIUrl":"10.26508/lsa.202403063","url":null,"abstract":"<p><p>The plasma membrane covering the primary cilium has a diverse accumulation of receptors and channels. To ensure the sensor function of the cilia, the ciliary membrane has higher cholesterol content than other cell membrane regions. A peroxisomal biogenesis disorder, Zellweger syndrome, characterized by polycystic kidney, is associated with a reduced level of ciliary cholesterol in cells. However, the etiological mechanism by which ciliary cholesterol lowering causes polycystic kidney disease remains unclear. Here, we demonstrated that lowering ciliary cholesterol by either pharmacological treatment or genetic depletion of peroxisomes impairs the localization of a ciliary ion channel polycystin-2. We also generated cultured renal medullary cells and mice carrying a missense variant in the cholesterol-binding site of polycystin-2 detected in the patient database of autosomal dominant polycystic kidney disease. This missense protein showed normal channel activity but decreased localization to the ciliary membrane. The homozygous mice exhibited embryonic lethality and the ciliopathy spectrum conditions of situs inversus and polycystic kidney. Our results suggest that cholesterol controls the ciliary localization of polycystin-2 to prevent polycystic kidney disease.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}