Pub Date : 2025-01-30Print Date: 2025-04-01DOI: 10.26508/lsa.202402992
Subin Kim, Jun Gyou Park, Seung Hun Choi, Ji Won Kim, Mi Sun Jin
Drosophila I'm Not Dead Yet (INDY) functions as a transporter for citrate, a key metabolite in the citric acid cycle, across the plasma membrane. Partial deficiency of INDY extends lifespan, akin to the effects of caloric restriction. In this work, we use cryo-electron microscopy to determine structures of INDY in the presence and absence of citrate and in complex with the well-known inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) at resolutions ranging from 2.7 to 3.6 Å. Together with functional data obtained in vitro, the INDY structures reveal the H+/citrate co-transport mechanism, in which aromatic residue F119 serves as a one-gate element. They also provide insight into how protein-lipid interactions at the dimerization interface affect the stability and function of the transporter, and how DIDS disrupts the transport cycle.
{"title":"Cryo-EM structures reveal the H<sup>+</sup>/citrate symport mechanism of <i>Drosophila</i> INDY.","authors":"Subin Kim, Jun Gyou Park, Seung Hun Choi, Ji Won Kim, Mi Sun Jin","doi":"10.26508/lsa.202402992","DOIUrl":"10.26508/lsa.202402992","url":null,"abstract":"<p><p><i>Drosophila</i> I'm Not Dead Yet (INDY) functions as a transporter for citrate, a key metabolite in the citric acid cycle, across the plasma membrane. Partial deficiency of INDY extends lifespan, akin to the effects of caloric restriction. In this work, we use cryo-electron microscopy to determine structures of INDY in the presence and absence of citrate and in complex with the well-known inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) at resolutions ranging from 2.7 to 3.6 Å. Together with functional data obtained in vitro, the INDY structures reveal the H<sup>+</sup>/citrate co-transport mechanism, in which aromatic residue F119 serves as a one-gate element. They also provide insight into how protein-lipid interactions at the dimerization interface affect the stability and function of the transporter, and how DIDS disrupts the transport cycle.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30Print Date: 2025-04-01DOI: 10.26508/lsa.202403028
Wen-An Wang, Andrea Garofoli, Evandro Ferrada, Christoph Klimek, Barbara Steurer, Alvaro Ingles-Prieto, Tanja Osthushenrich, Aidan MacNamara, Anders Malarstig, Tabea Wiedmer, Giulio Superti-Furga
The human SLC39A8 (hSLC39A8) gene encodes a plasma membrane protein SLC39A8 (ZIP8) that mediates the specific uptake of the metals Cd2+, Mn2+, Zn2+, Fe2+, Co2+, and Se4+ Pathogenic variants within hSLC39A8 are associated with congenital disorder of glycosylation type 2 (CDG type II) or Leigh-like syndrome. However, numerous mutations of uncertain significance are also linked to different conditions or benign traits. Our study characterized 21 hSLC39A8 variants and measured their impact on protein localization and intracellular levels of Cd2+, Zn2+, and Mn2+ We identified four variants that disrupt protein expression, five variants with high retention in the endoplasmic reticulum, and 12 variants with localization to the plasma membrane. From the 12 variants with plasma membrane localization, we identified three with complete loss of detectable ion uptake by the cell and five with differential uptake between metal ions. Further in silico analysis on protein stability identified variants that may affect the stability of homodimer interfaces. This study elucidates the variety of effects of hSLC39A8 variants on ZIP8 and on diseases involving disrupted metal ion homeostasis.
{"title":"Human genetic variants in SLC39A8 impact uptake and steady-state metal levels within the cell.","authors":"Wen-An Wang, Andrea Garofoli, Evandro Ferrada, Christoph Klimek, Barbara Steurer, Alvaro Ingles-Prieto, Tanja Osthushenrich, Aidan MacNamara, Anders Malarstig, Tabea Wiedmer, Giulio Superti-Furga","doi":"10.26508/lsa.202403028","DOIUrl":"10.26508/lsa.202403028","url":null,"abstract":"<p><p>The human <i>SLC39A8</i> (<i>hSLC39A8</i>) gene encodes a plasma membrane protein SLC39A8 (ZIP8) that mediates the specific uptake of the metals Cd<sup>2+</sup>, Mn<sup>2+</sup>, Zn<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>, and Se<sup>4+</sup> Pathogenic variants within <i>hSLC39A8</i> are associated with congenital disorder of glycosylation type 2 (CDG type II) or Leigh-like syndrome. However, numerous mutations of uncertain significance are also linked to different conditions or benign traits. Our study characterized 21 <i>hSLC39A8</i> variants and measured their impact on protein localization and intracellular levels of Cd<sup>2+</sup>, Zn<sup>2+</sup>, and Mn<sup>2+</sup> We identified four variants that disrupt protein expression, five variants with high retention in the endoplasmic reticulum, and 12 variants with localization to the plasma membrane. From the 12 variants with plasma membrane localization, we identified three with complete loss of detectable ion uptake by the cell and five with differential uptake between metal ions. Further in silico analysis on protein stability identified variants that may affect the stability of homodimer interfaces. This study elucidates the variety of effects of <i>hSLC39A8</i> variants on ZIP8 and on diseases involving disrupted metal ion homeostasis.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27Print Date: 2025-04-01DOI: 10.26508/lsa.202402907
Cathal Wilson, Laura Giaquinto, Michele Santoro, Giuseppe Di Tullio, Valentina Morra, Wanda Kukulski, Rossella Venditti, Francesca Navone, Nica Borgese, Maria Antonietta De Matteis
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear. A yeast model, expressing human mutant and WT-VAPB under the control of the orthologous yeast promoter in haploid and diploid cells, was developed to mimic the disease situation. Inclusion formation was found to be a developmentally regulated process linked to mitochondrial damage that could be attenuated by reducing ER-mitochondrial contacts. The co-expression of the WT protein retarded P56S-VAPB inclusion formation. Importantly, we validated these results in mammalian motoneuron cells. Our findings indicate that (age-related) damage to mitochondria influences the propensity of the mutant VAPB to form aggregates via ER-mitochondrial contacts, initiating a series of events leading to disease progression.
{"title":"A role for mitochondria-ER crosstalk in amyotrophic lateral sclerosis 8 pathogenesis.","authors":"Cathal Wilson, Laura Giaquinto, Michele Santoro, Giuseppe Di Tullio, Valentina Morra, Wanda Kukulski, Rossella Venditti, Francesca Navone, Nica Borgese, Maria Antonietta De Matteis","doi":"10.26508/lsa.202402907","DOIUrl":"10.26508/lsa.202402907","url":null,"abstract":"<p><p>Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear. A yeast model, expressing human mutant and WT-VAPB under the control of the orthologous yeast promoter in haploid and diploid cells, was developed to mimic the disease situation. Inclusion formation was found to be a developmentally regulated process linked to mitochondrial damage that could be attenuated by reducing ER-mitochondrial contacts. The co-expression of the WT protein retarded P56S-VAPB inclusion formation. Importantly, we validated these results in mammalian motoneuron cells. Our findings indicate that (age-related) damage to mitochondria influences the propensity of the mutant VAPB to form aggregates via ER-mitochondrial contacts, initiating a series of events leading to disease progression.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A pangenome is the sum of the genetic information of all individuals in a species or a population. Genomics research has been gradually shifted to a paradigm using a pangenome as the reference. However, in disease genomics study, pangenome-based analysis is still in its infancy. In this study, we introduced a graph-based pangenome GGCPan from 185 patients with gastric cancer. We then systematically compared the cancer genomics study results using GGCPan, a linear pangenome GCPan, and the human reference genome as the reference. For small variant detection and microsatellite instability status identification, there is little difference in using three different genomes. Using GGCPan as the reference had a significant advantage in structural variant identification. A total of 24 candidate gastric cancer driver genes were detected using three different reference genomes, of which eight were common and five were detected only based on pangenomes. Our results showed that disease-specific pangenome as a reference is promising and a whole set of tools are still to be developed or improved for disease genomics study in the pangenome era.
{"title":"Gastric cancer genomics study using reference human pangenomes.","authors":"Du Jiao, Xiaorui Dong, Shiyu Fan, Xinyi Liu, Yingyan Yu, Chaochun Wei","doi":"10.26508/lsa.202402977","DOIUrl":"10.26508/lsa.202402977","url":null,"abstract":"<p><p>A pangenome is the sum of the genetic information of all individuals in a species or a population. Genomics research has been gradually shifted to a paradigm using a pangenome as the reference. However, in disease genomics study, pangenome-based analysis is still in its infancy. In this study, we introduced a graph-based pangenome GGCPan from 185 patients with gastric cancer. We then systematically compared the cancer genomics study results using GGCPan, a linear pangenome GCPan, and the human reference genome as the reference. For small variant detection and microsatellite instability status identification, there is little difference in using three different genomes. Using GGCPan as the reference had a significant advantage in structural variant identification. A total of 24 candidate gastric cancer driver genes were detected using three different reference genomes, of which eight were common and five were detected only based on pangenomes. Our results showed that disease-specific pangenome as a reference is promising and a whole set of tools are still to be developed or improved for disease genomics study in the pangenome era.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23Print Date: 2025-04-01DOI: 10.26508/lsa.202402819
Daniël P Melters, Minh Bui, Tatini Rakshit, Sergei A Grigoryev, David Sturgill, Yamini Dalal
Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays. CENP-C complex-bound chromatin was refractory to MNase digestion. The CENP-C complex increased in height throughout the cell cycle culminating in mitosis, and the smaller CENP-C complex corresponds to the dimensions of in vitro reconstituted constitutive centromere-associated network. In addition, we found two distinct CENP-A nucleosomal configurations; the taller variant was associated with the CENP-C complex. Finally, CENP-A mutants partially corrected CENP-C overexpression-induced centromeric transcription and mitotic defects. In all, our data support a working model in which CENP-C is critical in regulating centromere homeostasis by supporting a unique higher order structure of centromeric chromatin and altering the accessibility of the centromeric chromatin fiber for transcriptional machinery.
{"title":"High-resolution analysis of human centromeric chromatin.","authors":"Daniël P Melters, Minh Bui, Tatini Rakshit, Sergei A Grigoryev, David Sturgill, Yamini Dalal","doi":"10.26508/lsa.202402819","DOIUrl":"10.26508/lsa.202402819","url":null,"abstract":"<p><p>Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays. CENP-C complex-bound chromatin was refractory to MNase digestion. The CENP-C complex increased in height throughout the cell cycle culminating in mitosis, and the smaller CENP-C complex corresponds to the dimensions of in vitro reconstituted constitutive centromere-associated network. In addition, we found two distinct CENP-A nucleosomal configurations; the taller variant was associated with the CENP-C complex. Finally, CENP-A mutants partially corrected CENP-C overexpression-induced centromeric transcription and mitotic defects. In all, our data support a working model in which CENP-C is critical in regulating centromere homeostasis by supporting a unique higher order structure of centromeric chromatin and altering the accessibility of the centromeric chromatin fiber for transcriptional machinery.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Print Date: 2025-04-01DOI: 10.26508/lsa.202402933
Menghui Ji, Wenjuan Cui, Qian Feng, Jingjin Qi, Xinmin Wang, Hong Zhu, Wenqing Zhang, Wenxiang Fu
NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly. Notably, a small fraction of NME7 localizes within the cilium. Detailed analysis of cilium assembly after NME7 knockdown and knockout revealed that NME7 is required for this process. NME7 knockout cells exhibited sensitivity to nocodazole, indicating its role in ciliary microtubule stability. In addition, NME7 deficiency impacted the Hedgehog signaling pathway, evident from reduced smoothened (Smo) fluorescence within primary cilia. This role of NME7 in Hedgehog signaling may depend on its nucleoside diphosphate kinase activity and γTuRC association. In conclusion, these findings enhance our understanding of the γTuRC roles in primary cilia in mammalian cells, highlighting the importance of NME7 in ciliary functions and signaling pathways.
{"title":"NME7 maintains primary cilium assembly, ciliary microtubule stability, and Hedgehog signaling.","authors":"Menghui Ji, Wenjuan Cui, Qian Feng, Jingjin Qi, Xinmin Wang, Hong Zhu, Wenqing Zhang, Wenxiang Fu","doi":"10.26508/lsa.202402933","DOIUrl":"10.26508/lsa.202402933","url":null,"abstract":"<p><p>NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly. Notably, a small fraction of NME7 localizes within the cilium. Detailed analysis of cilium assembly after NME7 knockdown and knockout revealed that NME7 is required for this process. NME7 knockout cells exhibited sensitivity to nocodazole, indicating its role in ciliary microtubule stability. In addition, NME7 deficiency impacted the Hedgehog signaling pathway, evident from reduced smoothened (Smo) fluorescence within primary cilia. This role of NME7 in Hedgehog signaling may depend on its nucleoside diphosphate kinase activity and γTuRC association. In conclusion, these findings enhance our understanding of the γTuRC roles in primary cilia in mammalian cells, highlighting the importance of NME7 in ciliary functions and signaling pathways.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15Print Date: 2025-03-01DOI: 10.26508/lsa.202402839
Go Shioi, Tomonobu M Watanabe, Junichi Kaneshiro, Yusuke Azuma, Shuichi Onami
During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells. In this report, we present our success in achieving in-toto single-cell observation in a whole hemisphere of an E5.5 embryo for 12 h, using a newly developed incubator-type biaxial light-sheet microscope. To achieve the success, we optimized our microscope system, including an incubator for culture stability, and refining the observation protocol to reduce phototoxicity. Our key discovery is that the scan speed during light-sheet formation plays a critical role in reducing phototoxicity, rather than the irradiation intensity or the interval time between frames. This innovative system not only enabled in-toto single-cell tracking but also led to the discovery of the abrupt shrinking of embryos whose contractile center was located at the extraembryonic ectoderm during monotonous growth up to the E6.5 stage.
{"title":"Trans-scale live-imaging of an E5.5 mouse embryo using incubator-type biaxial light-sheet microscopy.","authors":"Go Shioi, Tomonobu M Watanabe, Junichi Kaneshiro, Yusuke Azuma, Shuichi Onami","doi":"10.26508/lsa.202402839","DOIUrl":"10.26508/lsa.202402839","url":null,"abstract":"<p><p>During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells. In this report, we present our success in achieving in-toto single-cell observation in a whole hemisphere of an E5.5 embryo for 12 h, using a newly developed incubator-type biaxial light-sheet microscope. To achieve the success, we optimized our microscope system, including an incubator for culture stability, and refining the observation protocol to reduce phototoxicity. Our key discovery is that the scan speed during light-sheet formation plays a critical role in reducing phototoxicity, rather than the irradiation intensity or the interval time between frames. This innovative system not only enabled in-toto single-cell tracking but also led to the discovery of the abrupt shrinking of embryos whose contractile center was located at the extraembryonic ectoderm during monotonous growth up to the E6.5 stage.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15Print Date: 2025-03-01DOI: 10.26508/lsa.202302259
Milad Soleimani, Mark Duchow, Ria Goyal, Alexander Somma, Tamer S Kaoud, Kevin N Dalby, Jeanne Kowalski, S Gail Eckhardt, Carla Van Den Berg
Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism. Indeed, TFEB knockdown (KD) inhibited mammosphere formation in vitro and tumor initiation/growth in vivo. These phenotypic effects were accompanied by a decline in CD44high/CD24low cells. Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) induced TFEB nuclear translocation, indicative of TFEB transcriptional activity. TFEB KD blunted, whereas TFEB (S142A) augmented 2-DG-driven unfolded protein response (UPR) mediators, notably BiP/HSPA5 and CHOP. Like TFEB KD, silencing BiP/HSPA5 inhibited CSC self-renewal, suggesting that TFEB augments UPR-related survival. Further studies showed that TFEB KD attenuated 2-DG-directed autophagy, suggesting a mechanism whereby TFEB protects CSCs against 2-DG-induced stress. Our data indicate that TFEB modulates CSC metabolic stress response via autophagy and UPR. These findings reveal the novel role of TFEB in regulating CSCs during metabolic stress in triple-negative breast cancer.
{"title":"Transcription factor EB (TFEB) activity increases resistance of TNBC stem cells to metabolic stress.","authors":"Milad Soleimani, Mark Duchow, Ria Goyal, Alexander Somma, Tamer S Kaoud, Kevin N Dalby, Jeanne Kowalski, S Gail Eckhardt, Carla Van Den Berg","doi":"10.26508/lsa.202302259","DOIUrl":"10.26508/lsa.202302259","url":null,"abstract":"<p><p>Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism. Indeed, TFEB knockdown (KD) inhibited mammosphere formation in vitro and tumor initiation/growth in vivo. These phenotypic effects were accompanied by a decline in CD44<sup>high</sup>/CD24<sup>low</sup> cells. Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) induced TFEB nuclear translocation, indicative of TFEB transcriptional activity. TFEB KD blunted, whereas TFEB (S142A) augmented 2-DG-driven unfolded protein response (UPR) mediators, notably BiP/HSPA5 and CHOP. Like TFEB KD, silencing BiP/HSPA5 inhibited CSC self-renewal, suggesting that TFEB augments UPR-related survival. Further studies showed that TFEB KD attenuated 2-DG-directed autophagy, suggesting a mechanism whereby TFEB protects CSCs against 2-DG-induced stress. Our data indicate that TFEB modulates CSC metabolic stress response via autophagy and UPR. These findings reveal the novel role of TFEB in regulating CSCs during metabolic stress in triple-negative breast cancer.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15Print Date: 2025-03-01DOI: 10.26508/lsa.202403066
Youhani Samarakoon, Tamas Yelland, Esther Garcia-Gonzalez, Amauri da Silva Justo Junior, Mahnoor Mahmood, Anand Manoharan, Shaun Patterson, Valentina Serafin, Payam A Gammage, Sandra Marmiroli, Christina Halsey, Shehab Ismail, Edward W Roberts
T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction. Moreover, as LCK is a driver in T acute lymphocytic leukaemia, it is important to understand its regulation. Here, we demonstrate a direct role of the ciliary protein UNC119 in trafficking LCK to the immunological synapse. Inhibiting UNC119 reduces localisation of LCK without impairing LCK phosphorylation and reduces T-cell receptor signal transduction. Although important for initial LCK reorganisation, activated CD8+ T cells retained their ability to kill target tumour cells when UNC119 was inhibited. UNC119 was also needed to sustain proliferation in patient-derived T-ALL cells. UNC119 may therefore represent a novel therapeutic target in T acute lymphocytic leukaemia, which alters the subcellular localisation of LCK in T acute lymphocytic leukaemia cells but preserves the function of existing cytotoxic lymphocytes.
{"title":"UNC119 regulates T-cell receptor signalling in primary T cells and T acute lymphocytic leukaemia.","authors":"Youhani Samarakoon, Tamas Yelland, Esther Garcia-Gonzalez, Amauri da Silva Justo Junior, Mahnoor Mahmood, Anand Manoharan, Shaun Patterson, Valentina Serafin, Payam A Gammage, Sandra Marmiroli, Christina Halsey, Shehab Ismail, Edward W Roberts","doi":"10.26508/lsa.202403066","DOIUrl":"10.26508/lsa.202403066","url":null,"abstract":"<p><p>T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction. Moreover, as LCK is a driver in T acute lymphocytic leukaemia, it is important to understand its regulation. Here, we demonstrate a direct role of the ciliary protein UNC119 in trafficking LCK to the immunological synapse. Inhibiting UNC119 reduces localisation of LCK without impairing LCK phosphorylation and reduces T-cell receptor signal transduction. Although important for initial LCK reorganisation, activated CD8<sup>+</sup> T cells retained their ability to kill target tumour cells when UNC119 was inhibited. UNC119 was also needed to sustain proliferation in patient-derived T-ALL cells. UNC119 may therefore represent a novel therapeutic target in T acute lymphocytic leukaemia, which alters the subcellular localisation of LCK in T acute lymphocytic leukaemia cells but preserves the function of existing cytotoxic lymphocytes.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.
{"title":"Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination.","authors":"Paraskevi Athanasouli, Tijs Vanhessche, Frederic Lluis","doi":"10.26508/lsa.202403091","DOIUrl":"10.26508/lsa.202403091","url":null,"abstract":"<p><p>Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142950906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}