Shebin Hong, Ya Cui, Dongming He, Hao Wu, Weidong Jiang, Jian Cao, Xudong Wang
Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult. In this study, a novel osteoblast-targeted CH6 aptamer-functionalized TDN (TDN-CH6) is aimed to develop for osteoporotic mandibular regeneration. This results demonstrated that TDN-CH6 exhibits superior osteoblast specificity and efficient recruitment to bone fracture sites. Furthermore, TDN-CH6 significantly enhances cellular activity and osteogenic differentiation compared to TDN alone. Notably, Gelatin Methacryloyl (GelMA) hydrogels incorporating TDN and TDN-CH6 shows improved biological performance and are favorable for osteoporotic mandibular regeneration, suggesting that this platform represents a promising strategy for addressing complex bone defects.
{"title":"GelMA Hydrogels Integrated With aptamer CH6-Functionalized Tetrahedral DNA Nanostructures for Osteoporotic Mandibular Regeneration.","authors":"Shebin Hong, Ya Cui, Dongming He, Hao Wu, Weidong Jiang, Jian Cao, Xudong Wang","doi":"10.1002/mabi.202400471","DOIUrl":"https://doi.org/10.1002/mabi.202400471","url":null,"abstract":"<p><p>Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult. In this study, a novel osteoblast-targeted CH6 aptamer-functionalized TDN (TDN-CH6) is aimed to develop for osteoporotic mandibular regeneration. This results demonstrated that TDN-CH6 exhibits superior osteoblast specificity and efficient recruitment to bone fracture sites. Furthermore, TDN-CH6 significantly enhances cellular activity and osteogenic differentiation compared to TDN alone. Notably, Gelatin Methacryloyl (GelMA) hydrogels incorporating TDN and TDN-CH6 shows improved biological performance and are favorable for osteoporotic mandibular regeneration, suggesting that this platform represents a promising strategy for addressing complex bone defects.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400471"},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yahao Ma, Cong Wang, Jun Li, Pengfei Xie, Longyou Xiao, Seeram Ramakrishna, Nuan Chen, Xiaoying Wang, Liumin He
The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration. Comprehensive material characterizations shows that CP/HA/HGF holds the potential as a scaffold material based on its good overall performance. In vitro experiments revealed that the combination of conductive composite scaffolds and electrical stimulation facilitated axonal growth and myelin formation in the dorsal root ganglion, while also promoting the migration of Schwann cells. Therefore, the conductive composite scaffold studied in this paper presents a promising strategy for enhancing neural regeneration.
{"title":"CP/HA/HGF Conductive Composite Scaffolds with Synergistic Electrical Stimulation for Nerve Regeneration.","authors":"Yahao Ma, Cong Wang, Jun Li, Pengfei Xie, Longyou Xiao, Seeram Ramakrishna, Nuan Chen, Xiaoying Wang, Liumin He","doi":"10.1002/mabi.202400265","DOIUrl":"https://doi.org/10.1002/mabi.202400265","url":null,"abstract":"<p><p>The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration. Comprehensive material characterizations shows that CP/HA/HGF holds the potential as a scaffold material based on its good overall performance. In vitro experiments revealed that the combination of conductive composite scaffolds and electrical stimulation facilitated axonal growth and myelin formation in the dorsal root ganglion, while also promoting the migration of Schwann cells. Therefore, the conductive composite scaffold studied in this paper presents a promising strategy for enhancing neural regeneration.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400265"},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sourav Sen, Rakesh Kumar, Rahul Singh Tomar, Sangita Roy
Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability. This advanced strategy can address the limitation of the lower mechanical strength of the individual peptide hydrogel by incorporating the biopolymer, resulting in the formation of a composite scaffold. In this direction, this advanced strategy is explored using noncovalent interactions between cellulose nano-fiber (CNF) and cationic Cardin-motif peptide to develop advanced composite scaffolds. The bioactive cationic peptide otherwise failed to form hydrogel at physiological conditions. Interestingly, the differential mixing ratio of CNF and peptide modulated the surface charge, functionality, and mechanical properties of the composite scaffolds, resulting in diverse cellular responses. 10:1 (w/w) ratio of CNF and peptide-based composite scaffold demonstrates improved cellular survival and proliferation in 2D culture conditions. Notably, in 3D cultures, cell proliferation on the 10:1 matrix is comparable to Matrigel, highlighting its potential for advanced tissue engineering applications.
{"title":"Designing Short Cardin-Motif Peptide and Biopolymer-Based Multicomponent Hydrogels for Developing Advanced Composite Scaffolds for Improving Cellular Behavior.","authors":"Sourav Sen, Rakesh Kumar, Rahul Singh Tomar, Sangita Roy","doi":"10.1002/mabi.202400555","DOIUrl":"https://doi.org/10.1002/mabi.202400555","url":null,"abstract":"<p><p>Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability. This advanced strategy can address the limitation of the lower mechanical strength of the individual peptide hydrogel by incorporating the biopolymer, resulting in the formation of a composite scaffold. In this direction, this advanced strategy is explored using noncovalent interactions between cellulose nano-fiber (CNF) and cationic Cardin-motif peptide to develop advanced composite scaffolds. The bioactive cationic peptide otherwise failed to form hydrogel at physiological conditions. Interestingly, the differential mixing ratio of CNF and peptide modulated the surface charge, functionality, and mechanical properties of the composite scaffolds, resulting in diverse cellular responses. 10:1 (w/w) ratio of CNF and peptide-based composite scaffold demonstrates improved cellular survival and proliferation in 2D culture conditions. Notably, in 3D cultures, cell proliferation on the 10:1 matrix is comparable to Matrigel, highlighting its potential for advanced tissue engineering applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400555"},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}