首页 > 最新文献

Macromolecular bioscience最新文献

英文 中文
Microfluidic Fabrication of Gelatin-Nano Hydroxyapatite Scaffolds for Enhanced Control of Pore Size Distribution and Osteogenic Differentiation of Dental Pulp Stem Cells. 明胶-纳米羟基磷灰石支架的微流控制造,用于加强对孔径分布和牙髓干细胞成骨分化的控制
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-10 DOI: 10.1002/mabi.202400279
Cem Bayram, Sukru Ozturk, Beren Karaosmanoglu, Merve Gultekinoglu, Ekim Z Taskiran, Kezban Ulubayram, Hamta Majd, Jubair Ahmed, Mohan Edirisinghe

The combination of gelatin and hydroxyapatite (HA) has emerged as a promising strategy in dental tissue engineering due to its favorable biocompatibility, mechanical properties, and ability to support cellular activities essential for tissue regeneration, rendering them ideal components for hard tissue applications. Besides, precise control over interconnecting porosity is of paramount importance for tissue engineering materials. Conventional methods for creating porous scaffolds frequently encounter difficulties in regulating pore size distribution. This study demonstrates the fabrication of gelatin-nano HA scaffolds with uniform porosity using a T-type junction microfluidic device in a single-step process. Significant improvements in control over the pore size distribution are achieved by regulating the flow parameters, resulting in effective and time-efficient manufacturing comparable in quality to the innovative 3D bioprinting techniques. The overall porosity of the scaffolds exceeded 60%, with a remarkably narrow size distribution. The incorporation of nano-HAinto 3D porous gelatin scaffolds successfully induced osteogenic differentiation in stem cells at both the protein and gene levels, as evidenced by the significant increase in osteocalcin (OCN), an important marker of osteogenic differentiation. The OCN levels are 26 and 43 times higher for gelatin and gelatin-HA scaffolds, respectively, compared to the control group.

明胶和羟基磷灰石(HA)具有良好的生物相容性、机械性能和支持组织再生所必需的细胞活动的能力,使它们成为硬组织应用的理想成分,因此明胶和羟基磷灰石(HA)的结合已成为牙科组织工程中一种前景广阔的策略。此外,精确控制相互连接的孔隙率对于组织工程材料来说至关重要。传统的多孔支架制造方法在调节孔径分布方面经常遇到困难。本研究展示了使用 T 型结微流体设备一步法制造具有均匀孔隙率的明胶-纳米 HA 支架。通过调节流动参数,孔径分布的控制得到了显著改善,从而实现了高效、省时的制造,其质量可与创新的三维生物打印技术相媲美。支架的总体孔隙率超过 60%,孔径分布非常窄。在三维多孔明胶支架中加入纳米HA后,成功地在蛋白质和基因水平上诱导了干细胞的成骨分化,成骨分化的重要标志物骨钙素(OCN)的显著增加就是证明。与对照组相比,明胶和明胶-HA支架的OCN水平分别高出26倍和43倍。
{"title":"Microfluidic Fabrication of Gelatin-Nano Hydroxyapatite Scaffolds for Enhanced Control of Pore Size Distribution and Osteogenic Differentiation of Dental Pulp Stem Cells.","authors":"Cem Bayram, Sukru Ozturk, Beren Karaosmanoglu, Merve Gultekinoglu, Ekim Z Taskiran, Kezban Ulubayram, Hamta Majd, Jubair Ahmed, Mohan Edirisinghe","doi":"10.1002/mabi.202400279","DOIUrl":"https://doi.org/10.1002/mabi.202400279","url":null,"abstract":"<p><p>The combination of gelatin and hydroxyapatite (HA) has emerged as a promising strategy in dental tissue engineering due to its favorable biocompatibility, mechanical properties, and ability to support cellular activities essential for tissue regeneration, rendering them ideal components for hard tissue applications. Besides, precise control over interconnecting porosity is of paramount importance for tissue engineering materials. Conventional methods for creating porous scaffolds frequently encounter difficulties in regulating pore size distribution. This study demonstrates the fabrication of gelatin-nano HA scaffolds with uniform porosity using a T-type junction microfluidic device in a single-step process. Significant improvements in control over the pore size distribution are achieved by regulating the flow parameters, resulting in effective and time-efficient manufacturing comparable in quality to the innovative 3D bioprinting techniques. The overall porosity of the scaffolds exceeded 60%, with a remarkably narrow size distribution. The incorporation of nano-HAinto 3D porous gelatin scaffolds successfully induced osteogenic differentiation in stem cells at both the protein and gene levels, as evidenced by the significant increase in osteocalcin (OCN), an important marker of osteogenic differentiation. The OCN levels are 26 and 43 times higher for gelatin and gelatin-HA scaffolds, respectively, compared to the control group.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400279"},"PeriodicalIF":4.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyoxazolines with Cholesterol Lipid Anchor for Fast Intracellular Delivery. 带有胆固醇脂质锚的聚恶唑类化合物可实现快速细胞内传递
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 DOI: 10.1002/mabi.202400148
Laurianne Simon, Liên Sabrina Reichel, Belkacem Tarek Benkhaled, Jean-Marie Devoisselle, Sylvain Catrouillet, Juliane Eberhardt, Stephanie Hoeppener, Ulrich S Schubert, Johannes Christopher Brendel, Marie Morille, Vincent Lapinte, Anja Traeger

Due to the increasing challenges posed by the growing immunity to poly(ethylene glycol) (PEG), there is growing interest in innovative polymer-based materials as viable alternatives. In this study, the advantages of lipids and polymers are combined to allow efficient and rapid cytoplasmic drug delivery. Specifically, poly(2-methyl-2-oxazoline) is modified with a cholesteryl hemisuccinate group as a lipid anchor (CHEMSPOx). The CHEMSPOx is additionally functionalized with a coumarin group (CHEMSPOx-coumarin). Both polymers self-assembled in water into vesicles of ≈100 nm and are successfully loaded with a hydrophobic model drug. The loaded vesicles reveal high cellular internalization across variant cell lines within 1 h at 37 °C as well as 4 °C, albeit to a lesser extent. A kinetic study confirms the fast internalization within 5 min after the sample's addition. Therefore, different internalization pathways are involved, e.g., active uptake but also nonenergy dependent mechanisms. CHEMSPOx and CHEMSPOx-coumarin further demonstrate excellent cyto-, hemo-, and membrane compatibility, as well as a membrane-protecting effect, which underlines their good safety profile for potential biological intravenous application. Overall, CHEMSPOx, as a lipopolyoxazoline, holds great potential for versatile biological applications such as fast and direct intracellular delivery or cellular lysis protection.

由于对聚(乙二醇)(PEG)的免疫力日益增强,带来了越来越多的挑战,人们对以聚合物为基础的创新材料作为可行的替代品越来越感兴趣。在这项研究中,脂质和聚合物的优势结合在一起,实现了高效、快速的细胞质给药。具体来说,聚(2-甲基-2-噁唑啉)被胆固醇半琥珀酸酯基团修饰为脂质锚(CHEMSPOx)。此外,CHEMSPOx 还被香豆素基团功能化(CHEMSPOx-香豆素)。这两种聚合物都能在水中自组装成 ≈100 nm 的囊泡,并成功装载了疏水性模型药物。在 37 °C 和 4 °C 温度下,负载的囊泡在 1 小时内就能在不同细胞系中实现高度细胞内化,尽管程度较低。动力学研究证实了样品加入后 5 分钟内的快速内化。因此,这涉及到不同的内化途径,如主动吸收和非能量依赖机制。CHEMSPOx 和 CHEMSPOx-coumarin 还显示出优异的细胞、血液和膜相容性,以及膜保护作用,这凸显了它们在潜在生物静脉注射应用中的良好安全性。总之,CHEMSPOx 作为一种脂质多羟基唑啉,在快速直接的细胞内递送或细胞裂解保护等多功能生物应用方面具有巨大的潜力。
{"title":"Polyoxazolines with Cholesterol Lipid Anchor for Fast Intracellular Delivery.","authors":"Laurianne Simon, Liên Sabrina Reichel, Belkacem Tarek Benkhaled, Jean-Marie Devoisselle, Sylvain Catrouillet, Juliane Eberhardt, Stephanie Hoeppener, Ulrich S Schubert, Johannes Christopher Brendel, Marie Morille, Vincent Lapinte, Anja Traeger","doi":"10.1002/mabi.202400148","DOIUrl":"https://doi.org/10.1002/mabi.202400148","url":null,"abstract":"<p><p>Due to the increasing challenges posed by the growing immunity to poly(ethylene glycol) (PEG), there is growing interest in innovative polymer-based materials as viable alternatives. In this study, the advantages of lipids and polymers are combined to allow efficient and rapid cytoplasmic drug delivery. Specifically, poly(2-methyl-2-oxazoline) is modified with a cholesteryl hemisuccinate group as a lipid anchor (CHEMSPOx). The CHEMSPOx is additionally functionalized with a coumarin group (CHEMSPOx-coumarin). Both polymers self-assembled in water into vesicles of ≈100 nm and are successfully loaded with a hydrophobic model drug. The loaded vesicles reveal high cellular internalization across variant cell lines within 1 h at 37 °C as well as 4 °C, albeit to a lesser extent. A kinetic study confirms the fast internalization within 5 min after the sample's addition. Therefore, different internalization pathways are involved, e.g., active uptake but also nonenergy dependent mechanisms. CHEMSPOx and CHEMSPOx-coumarin further demonstrate excellent cyto-, hemo-, and membrane compatibility, as well as a membrane-protecting effect, which underlines their good safety profile for potential biological intravenous application. Overall, CHEMSPOx, as a lipopolyoxazoline, holds great potential for versatile biological applications such as fast and direct intracellular delivery or cellular lysis protection.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400148"},"PeriodicalIF":4.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lateral Assessment of Mucomimetic Hydrogels to Evaluate Correlation between Microscopic and Macroscopic Properties. 仿粘液水凝胶的侧面评估,以评价微观和宏观特性之间的相关性。
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 DOI: 10.1002/mabi.202400146
Kristina L Faurschou, Aaron J Clasky, Jeffrey Watchorn, Jennifer Tram Su, Nancy T Li, Alison P McGuigan, Frank X Gu

A major limitation in the development of mucosal drug delivery systems is the design of in vitro models that accurately reflect in vivo conditions. Traditionally, models seek to mimic characteristics of physiological mucus, often focusing on property-specific trial metrics such as rheological behavior or diffusion of a nanoparticle of interest. Despite the success of these models, translation from in vitro results to in vivo trials is limited. As a result, several authors have called for work to develop standardized testing methodologies and characterize the influence of model properties on drug delivery performance. To this end, a series of trials is performed on 12 mucomimetic hydrogels reproduced from literature. Experiments show that there is no consistent correlation between barrier performance and rheological or microstructural properties of the tested mucomimetic hydrogels. In addition, the permeability of both mucopenetrating and mucoadhesive nanoparticles is assessed, revealing non-obvious variations in barrier properties such as the relative contributions of electrostatic and hydrophobic interactions in different models. These results demonstrate the limitations of predicting mucomimetic behavior with common characterization techniques and highlight the importance of testing barrier performance with multiple nanoparticle formulations.

开发粘膜给药系统的一个主要限制因素是设计能准确反映体内条件的体外模型。传统上,模型试图模仿生理粘液的特征,通常侧重于特定性质的试验指标,如流变行为或相关纳米粒子的扩散。尽管这些模型取得了成功,但将体外结果转化为体内试验的可能性有限。因此,多位作者呼吁开发标准化测试方法,并确定模型特性对给药性能的影响。为此,我们对从文献中复制的 12 种仿粘液凝胶进行了一系列试验。实验表明,阻隔性能与所测试的仿粘液水凝胶的流变或微结构特性之间没有一致的相关性。此外,还对粘液渗透性和粘液粘附性纳米粒子的渗透性进行了评估,揭示了屏障性能的非明显变化,如不同模型中静电和疏水相互作用的相对贡献。这些结果表明了用普通表征技术预测仿粘行为的局限性,并强调了用多种纳米粒子配方测试阻隔性能的重要性。
{"title":"Lateral Assessment of Mucomimetic Hydrogels to Evaluate Correlation between Microscopic and Macroscopic Properties.","authors":"Kristina L Faurschou, Aaron J Clasky, Jeffrey Watchorn, Jennifer Tram Su, Nancy T Li, Alison P McGuigan, Frank X Gu","doi":"10.1002/mabi.202400146","DOIUrl":"https://doi.org/10.1002/mabi.202400146","url":null,"abstract":"<p><p>A major limitation in the development of mucosal drug delivery systems is the design of in vitro models that accurately reflect in vivo conditions. Traditionally, models seek to mimic characteristics of physiological mucus, often focusing on property-specific trial metrics such as rheological behavior or diffusion of a nanoparticle of interest. Despite the success of these models, translation from in vitro results to in vivo trials is limited. As a result, several authors have called for work to develop standardized testing methodologies and characterize the influence of model properties on drug delivery performance. To this end, a series of trials is performed on 12 mucomimetic hydrogels reproduced from literature. Experiments show that there is no consistent correlation between barrier performance and rheological or microstructural properties of the tested mucomimetic hydrogels. In addition, the permeability of both mucopenetrating and mucoadhesive nanoparticles is assessed, revealing non-obvious variations in barrier properties such as the relative contributions of electrostatic and hydrophobic interactions in different models. These results demonstrate the limitations of predicting mucomimetic behavior with common characterization techniques and highlight the importance of testing barrier performance with multiple nanoparticle formulations.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400146"},"PeriodicalIF":4.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Sortase-Mediated Ligation for the Synthesis of Block Copolymers and Protein-Polymer Conjugates. 应用分选酶介导的连接技术合成嵌段共聚物和蛋白质-聚合物共轭物。
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1002/mabi.202400316
Johannes Martin, Marcus Michaelis, Saša Petrović, Anne-Catherine Lehnen, Yannic Müllers, Petra Wendler, Heiko M Möller, Matthias Hartlieb, Ulrich Glebe

Sortase-mediated ligation (SML) has become a powerful tool for site-specific protein modification. However, sortase A (SrtA) suffers from low catalytic efficiency and mediates an equilibrium reaction. Therefore, ligations with large macromolecules may be challenging. Here, the synthesis of polymeric building blocks for sortase-mediated ligation constituting peptide-polymers with either the recognition sequence for sortase A (LPX1TGX2) or its nucleophilic counterpart (Gx) is demonstrated. The peptide-polymers are synthesized by solid-phase peptide synthesis followed by photo-iniferter (PI) reversible addition-fragmentation chain-transfer (RAFT) polymerization of various monomers. The building blocks are subsequently utilized to investigate possibilities and limitations when using macromolecules in SML. In particular, diblock copolymers are obtained even when using the orthogonal building blocks in equimolar ratio by exploiting a technique to shift the reaction equilibrium. However, ligations of two polymers can not be achieved when the degree of polymerization exceeds 100. Subsequently, C-terminal protein-polymer conjugates are synthesized. Several polymers are utilized that can replace the omnipresent polyethylene glycol (PEG) in future therapeutics. The conjugation is exemplified with a nanobody that is known for efficient neutralization of SARS-CoV-2. The study demonstrates a universal approach to polymer-LPX1TGX2 and Gx-polymer building blocks and gives insight into their application in SML.

分选酶介导的连接(SML)已成为蛋白质定点修饰的有力工具。然而,分选酶 A(SrtA)的催化效率较低,只能介导平衡反应。因此,与大分子进行连接可能具有挑战性。本文展示了用于分选酶介导的连接的聚合物构件的合成,这些聚合物由带有分选酶 A 识别序列(LPX1TGX2)或其亲核对应物(Gx)的多肽聚合物构成。肽聚合物是通过固相肽合成法合成的,然后用光增感剂(PI)对各种单体进行可逆加成-断裂链转移(RAFT)聚合反应。这些构件随后被用于研究在 SML 中使用大分子的可能性和局限性。特别是,利用一种改变反应平衡的技术,即使以等摩尔比使用正交构筑模块,也能获得二嵌段共聚物。然而,当聚合度超过 100 时,就无法实现两种聚合物的连接。随后,我们合成了 C 端蛋白质-聚合物共轭物。所使用的几种聚合物在未来的治疗中可以取代无处不在的聚乙二醇(PEG)。该共轭物以一种纳米抗体为例,这种纳米抗体可有效中和 SARS-CoV-2 病毒。这项研究展示了聚合物-LPX1TGX2 和 Gx-聚合物构建模块的通用方法,并深入探讨了它们在 SML 中的应用。
{"title":"Application of Sortase-Mediated Ligation for the Synthesis of Block Copolymers and Protein-Polymer Conjugates.","authors":"Johannes Martin, Marcus Michaelis, Saša Petrović, Anne-Catherine Lehnen, Yannic Müllers, Petra Wendler, Heiko M Möller, Matthias Hartlieb, Ulrich Glebe","doi":"10.1002/mabi.202400316","DOIUrl":"10.1002/mabi.202400316","url":null,"abstract":"<p><p>Sortase-mediated ligation (SML) has become a powerful tool for site-specific protein modification. However, sortase A (SrtA) suffers from low catalytic efficiency and mediates an equilibrium reaction. Therefore, ligations with large macromolecules may be challenging. Here, the synthesis of polymeric building blocks for sortase-mediated ligation constituting peptide-polymers with either the recognition sequence for sortase A (LPX<sub>1</sub>TGX<sub>2</sub>) or its nucleophilic counterpart (G<sub>x</sub>) is demonstrated. The peptide-polymers are synthesized by solid-phase peptide synthesis followed by photo-iniferter (PI) reversible addition-fragmentation chain-transfer (RAFT) polymerization of various monomers. The building blocks are subsequently utilized to investigate possibilities and limitations when using macromolecules in SML. In particular, diblock copolymers are obtained even when using the orthogonal building blocks in equimolar ratio by exploiting a technique to shift the reaction equilibrium. However, ligations of two polymers can not be achieved when the degree of polymerization exceeds 100. Subsequently, C-terminal protein-polymer conjugates are synthesized. Several polymers are utilized that can replace the omnipresent polyethylene glycol (PEG) in future therapeutics. The conjugation is exemplified with a nanobody that is known for efficient neutralization of SARS-CoV-2. The study demonstrates a universal approach to polymer-LPX<sub>1</sub>TGX<sub>2</sub> and G<sub>x</sub>-polymer building blocks and gives insight into their application in SML.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400316"},"PeriodicalIF":4.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Self-Assembling Peptide-Based Nanomaterials for Enhanced Photodynamic Therapy. 用于增强光动力疗法的自组装肽基纳米材料的最新进展。
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1002/mabi.202400409
Ziyi Zhang, Runqun Tang, Xiaoyang Liu, Gaolin Liang, Xianbao Sun

Self-assembling peptide-based materials with ordered nanostructures possess advantages such as good biocompatibility and biodegradability, superior controllability, and ease of chemical modification. Through covalent conjugation or non-covalent encapsulation, photosensitizers (PSs) can be carried by self-assembling peptide-based nanomaterials for targeted delivery towards tumor tissues. This improves the stability, solubility, and tumor accumulation of PSs, as well as reduces their dark toxicity. More importantly, these nanomaterials can be tailored with responsiveness to tumor microenvironment, which enables smart release of PSs for precise and enhanced photodynamic therapy (PDT). In this review, the self-assembly of peptide from the perspective of driving forces is first described, and various self-assembling peptide materials with zero to 3D nanostructures are subsequently highlighted for PDT of cancers in recent years. Finally, an outlook in this field is provided to motivate fabrication of advanced PDT nanomaterials.

具有有序纳米结构的自组装肽基材料具有良好的生物相容性和生物可降解性、优异的可控性以及易于化学修饰等优点。通过共价共轭或非共价包封,自组装肽基纳米材料可携带光敏剂(PSs)靶向输送到肿瘤组织。这不仅提高了光敏剂的稳定性、溶解性和肿瘤蓄积性,还降低了它们的暗毒性。更重要的是,这些纳米材料可根据肿瘤微环境进行定制,从而实现 PSs 的智能释放,精确增强光动力疗法(PDT)。本综述首先从驱动力的角度阐述了多肽的自组装,随后重点介绍了近年来用于癌症光动力疗法的各种零到三维纳米结构的多肽自组装材料。最后,对这一领域进行了展望,以推动先进的局部放疗纳米材料的制造。
{"title":"Recent Advances in Self-Assembling Peptide-Based Nanomaterials for Enhanced Photodynamic Therapy.","authors":"Ziyi Zhang, Runqun Tang, Xiaoyang Liu, Gaolin Liang, Xianbao Sun","doi":"10.1002/mabi.202400409","DOIUrl":"https://doi.org/10.1002/mabi.202400409","url":null,"abstract":"<p><p>Self-assembling peptide-based materials with ordered nanostructures possess advantages such as good biocompatibility and biodegradability, superior controllability, and ease of chemical modification. Through covalent conjugation or non-covalent encapsulation, photosensitizers (PSs) can be carried by self-assembling peptide-based nanomaterials for targeted delivery towards tumor tissues. This improves the stability, solubility, and tumor accumulation of PSs, as well as reduces their dark toxicity. More importantly, these nanomaterials can be tailored with responsiveness to tumor microenvironment, which enables smart release of PSs for precise and enhanced photodynamic therapy (PDT). In this review, the self-assembly of peptide from the perspective of driving forces is first described, and various self-assembling peptide materials with zero to 3D nanostructures are subsequently highlighted for PDT of cancers in recent years. Finally, an outlook in this field is provided to motivate fabrication of advanced PDT nanomaterials.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400409"},"PeriodicalIF":4.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topical Application of Dexamethasone-Loaded Core-Multishell Nanocarriers Against Oral Mucosal Inflammation. 局部应用地塞米松内核多壳纳米载体对抗口腔黏膜炎症
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1002/mabi.202400286
Cynthia V Yapto, Keerthana Rajes, Antonia Inselmann, Sven Staufenbiel, Kim N Stolte, Maren Witt, Rainer Haag, Henrik Dommisch, Kerstin Danker

Topical treatment of oral inflammatory diseases is challenging due to the intrinsic physicochemical barriers of the mucosa and the continuous flow of saliva, which dilute drugs and limit their bioavailability. Nanocarrier technology can be an innovative approach to circumvent these problems and thus improve the efficacy of topical drug delivery to the mucosa. Core-multishell (CMS) nanocarriers are putative delivery systems with high biocompatibility and the ability to adhere to and penetrate the oral mucosa. Ester-based CMS nanocarriers release the anti-inflammatory compound dexamethasone (Dx) more efficiently than a conventional cream. Mussel-inspired functionalization of a CMS nanocarrier with catechol further improves the adhesion of the nanocarrier and may enhance the efficacy of the loaded drugs. In the present study, the properties of the ester-based CMS 10-E-15-350 nanocarrier (CMS-NC) are further evaluated in comparison to the catechol-functionalized variant (CMS-C0.08). While the mucoadhesion of CMS-NC is inhibited by saliva, CMS-C0.08 exhibits better mucoadhesion in the presence of saliva. Due to the improved adhesion properties, CMS-C0.08 loaded with dexamethasone (Dx-CMS-C0.08) shows a better anti-inflammatory effect than Dx-CMS-NC when applied dynamically. These results highlight the superiority of CMS-C0.08 over CMS-NC as an innovative drug delivery system (DDS) for the treatment of oral mucosal diseases.

由于口腔黏膜固有的理化屏障和唾液的持续流动会稀释药物并限制其生物利用度,因此口腔炎症性疾病的局部治疗具有挑战性。纳米载体技术可以作为一种创新方法来规避这些问题,从而提高粘膜局部给药的效果。核-多壳(CMS)纳米载体是一种具有高生物相容性、能粘附并穿透口腔粘膜的潜在给药系统。与传统乳膏相比,酯基 CMS 纳米载体能更有效地释放消炎化合物地塞米松(Dx)。贻贝启发的儿茶酚功能化可进一步提高 CMS 纳米载体的粘附性,并可增强所负载药物的功效。在本研究中,将酯基 CMS 10-E-15-350 纳米载体(CMS-NC)与儿茶酚功能化变体(CMS-C0.08)进行比较,进一步评估其特性。CMS-NC 的粘附性受到唾液的抑制,而 CMS-C0.08 在有唾液的情况下表现出更好的粘附性。由于粘附性得到改善,负载地塞米松的 CMS-C0.08 (Dx-CMS-C0.08)在动态应用时比 Dx-CMS-NC 显示出更好的抗炎效果。这些结果凸显了 CMS-C0.08 作为治疗口腔黏膜疾病的创新药物递送系统 (DDS) 比 CMS-NC 的优越性。
{"title":"Topical Application of Dexamethasone-Loaded Core-Multishell Nanocarriers Against Oral Mucosal Inflammation.","authors":"Cynthia V Yapto, Keerthana Rajes, Antonia Inselmann, Sven Staufenbiel, Kim N Stolte, Maren Witt, Rainer Haag, Henrik Dommisch, Kerstin Danker","doi":"10.1002/mabi.202400286","DOIUrl":"https://doi.org/10.1002/mabi.202400286","url":null,"abstract":"<p><p>Topical treatment of oral inflammatory diseases is challenging due to the intrinsic physicochemical barriers of the mucosa and the continuous flow of saliva, which dilute drugs and limit their bioavailability. Nanocarrier technology can be an innovative approach to circumvent these problems and thus improve the efficacy of topical drug delivery to the mucosa. Core-multishell (CMS) nanocarriers are putative delivery systems with high biocompatibility and the ability to adhere to and penetrate the oral mucosa. Ester-based CMS nanocarriers release the anti-inflammatory compound dexamethasone (Dx) more efficiently than a conventional cream. Mussel-inspired functionalization of a CMS nanocarrier with catechol further improves the adhesion of the nanocarrier and may enhance the efficacy of the loaded drugs. In the present study, the properties of the ester-based CMS 10-E-15-350 nanocarrier (CMS-NC) are further evaluated in comparison to the catechol-functionalized variant (CMS-C<sub>0.08</sub>). While the mucoadhesion of CMS-NC is inhibited by saliva, CMS-C<sub>0.08</sub> exhibits better mucoadhesion in the presence of saliva. Due to the improved adhesion properties, CMS-C<sub>0.08</sub> loaded with dexamethasone (Dx-CMS-C<sub>0.08</sub>) shows a better anti-inflammatory effect than Dx-CMS-NC when applied dynamically. These results highlight the superiority of CMS-C<sub>0.08</sub> over CMS-NC as an innovative drug delivery system (DDS) for the treatment of oral mucosal diseases.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400286"},"PeriodicalIF":4.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Impact of Pore Size and Specification on Soft Tissue Ingrowth in 3D-Printed PEEK Material. 研究三维打印 PEEK 材料中孔隙大小和规格对软组织生长的影响
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-30 DOI: 10.1002/mabi.202400278
Zibo Zhang, Zenghuai Li, Donglai Wang, Jiangang Feng, Qi Feng

Bone pelvis tumor resection and reconstruction is a complex surgical procedure that poses challenges in soft tissue reconstruction despite advancements in stabilizing pelvic structure. This study aims to investigate the potential of using Polyetheretherketone (PEEK) material in repairing and reconstructing soft tissues surrounding pelvic implants. Specifically, the study focuses on exploring the effectiveness of 3D printed porous PEEK material in promoting cell growth and adhesion. The interaction between PEEK materials with different pore sizes (200, 400, 600 µm) and different specifications (through-hole (T)/non-through-hole (C)) is evaluated by cell experiments and animal experiments. The soft tissue ingrowth potential of PEEK materials is evaluated by cell growth and adhesion observation. The findings indicate that PEEK material, particularly the T400 variant, exhibits stronger interaction with muscle tissue compared to its interaction with bone and fibrous tissue. The moderately sized pores present in the T400 material facilitate enhanced cell adhesion and penetration, thereby promoting cell growth and differentiation. PEEK materials with through-hole structures show promise for applications involving the repair and reconstruction of soft tissues and muscle tissue. The study provides valuable insights into the development and application of biomedical materials, specifically PEEK, contributing to the advancement of pelvic tumor resection and reconstruction techniques.

骨盆肿瘤切除和重建是一项复杂的外科手术,尽管在稳定骨盆结构方面取得了进步,但在软组织重建方面仍存在挑战。本研究旨在探讨使用聚醚醚酮(PEEK)材料修复和重建骨盆植入物周围软组织的潜力。具体来说,研究重点是探索 3D 打印多孔 PEEK 材料在促进细胞生长和粘附方面的有效性。通过细胞实验和动物实验评估了不同孔径(200、400、600 微米)和不同规格(通孔(T)/非通孔(C))的 PEEK 材料之间的相互作用。通过细胞生长和粘附观察评估了 PEEK 材料的软组织生长潜力。研究结果表明,PEEK 材料,尤其是 T400 变体,与肌肉组织的相互作用强于与骨骼和纤维组织的相互作用。T400 材料中存在的大小适中的孔有利于增强细胞粘附和渗透,从而促进细胞生长和分化。具有通孔结构的 PEEK 材料有望应用于软组织和肌肉组织的修复和重建。这项研究为生物医学材料(尤其是 PEEK)的开发和应用提供了宝贵的见解,有助于盆腔肿瘤切除和重建技术的进步。
{"title":"Investigating the Impact of Pore Size and Specification on Soft Tissue Ingrowth in 3D-Printed PEEK Material.","authors":"Zibo Zhang, Zenghuai Li, Donglai Wang, Jiangang Feng, Qi Feng","doi":"10.1002/mabi.202400278","DOIUrl":"https://doi.org/10.1002/mabi.202400278","url":null,"abstract":"<p><p>Bone pelvis tumor resection and reconstruction is a complex surgical procedure that poses challenges in soft tissue reconstruction despite advancements in stabilizing pelvic structure. This study aims to investigate the potential of using Polyetheretherketone (PEEK) material in repairing and reconstructing soft tissues surrounding pelvic implants. Specifically, the study focuses on exploring the effectiveness of 3D printed porous PEEK material in promoting cell growth and adhesion. The interaction between PEEK materials with different pore sizes (200, 400, 600 µm) and different specifications (through-hole (T)/non-through-hole (C)) is evaluated by cell experiments and animal experiments. The soft tissue ingrowth potential of PEEK materials is evaluated by cell growth and adhesion observation. The findings indicate that PEEK material, particularly the T400 variant, exhibits stronger interaction with muscle tissue compared to its interaction with bone and fibrous tissue. The moderately sized pores present in the T400 material facilitate enhanced cell adhesion and penetration, thereby promoting cell growth and differentiation. PEEK materials with through-hole structures show promise for applications involving the repair and reconstruction of soft tissues and muscle tissue. The study provides valuable insights into the development and application of biomedical materials, specifically PEEK, contributing to the advancement of pelvic tumor resection and reconstruction techniques.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400278"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders. 深入了解神经组织损伤和神经退行性疾病生物材料的进展和应用。
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-30 DOI: 10.1002/mabi.202400150
Varsha Pai, Bhisham Narayan Singh, Abhishek Kumar Singh

The incidence of nerve tissue injuries, such as peripheral nerve injury, spinal cord injury, traumatic brain injury, and various neurodegenerative diseases (NDs), is continuously increasing because of stress, physical and chemical trauma, and the aging population worldwide. Restoration of the damaged nervous system is challenging because of its structural and functional complexity and limited regenerative ability. Additionally, there is no cure available for NDs except for medications that provide symptomatic relief. Stem cells offer an alternative approach for promoting damage repair, but their efficacy is limited by a compromised survival rate and neurogenesis process. To address these challenges, neural tissue engineering has emerged as a promising strategy in which stem cells are seeded or encapsulated within a suitable biomaterial construct, increasing cell survival and neurogenesis. Numerous biomaterials are utilized to create different types of constructs for this purpose. Researchers are trying to develop ideal scaffolds that combine biomaterials, cells, and molecules that exactly mimic the biological and mechanical properties of the tissue to achieve functional recovery associated with neurological dysfunction. This review focuses on exploring the development and applications of different biomaterials for their potential use in the diagnosis, therapy, nerve tissue regeneration, and treatment of neurological disorders.

由于压力、物理和化学创伤以及全球人口老龄化,神经组织损伤,如周围神经损伤、脊髓损伤、创伤性脑损伤和各种神经退行性疾病(NDs)的发病率不断上升。由于神经系统结构和功能的复杂性以及再生能力的有限性,修复受损的神经系统具有挑战性。此外,除了缓解症状的药物外,目前还没有治疗 NDs 的方法。干细胞为促进损伤修复提供了另一种方法,但由于其存活率和神经发生过程受到影响,其疗效受到限制。为了应对这些挑战,神经组织工程已成为一种前景广阔的策略。在这种策略中,干细胞被播种或封装在合适的生物材料结构中,从而提高了细胞存活率和神经发生率。为此,许多生物材料被用于制造不同类型的构建物。研究人员正试图开发理想的支架,将生物材料、细胞和分子结合起来,精确模拟组织的生物和机械特性,以实现与神经功能障碍相关的功能恢复。本综述将重点探讨不同生物材料的开发和应用,以了解它们在诊断、治疗、神经组织再生和治疗神经系统疾病方面的潜在用途。
{"title":"Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders.","authors":"Varsha Pai, Bhisham Narayan Singh, Abhishek Kumar Singh","doi":"10.1002/mabi.202400150","DOIUrl":"https://doi.org/10.1002/mabi.202400150","url":null,"abstract":"<p><p>The incidence of nerve tissue injuries, such as peripheral nerve injury, spinal cord injury, traumatic brain injury, and various neurodegenerative diseases (NDs), is continuously increasing because of stress, physical and chemical trauma, and the aging population worldwide. Restoration of the damaged nervous system is challenging because of its structural and functional complexity and limited regenerative ability. Additionally, there is no cure available for NDs except for medications that provide symptomatic relief. Stem cells offer an alternative approach for promoting damage repair, but their efficacy is limited by a compromised survival rate and neurogenesis process. To address these challenges, neural tissue engineering has emerged as a promising strategy in which stem cells are seeded or encapsulated within a suitable biomaterial construct, increasing cell survival and neurogenesis. Numerous biomaterials are utilized to create different types of constructs for this purpose. Researchers are trying to develop ideal scaffolds that combine biomaterials, cells, and molecules that exactly mimic the biological and mechanical properties of the tissue to achieve functional recovery associated with neurological dysfunction. This review focuses on exploring the development and applications of different biomaterials for their potential use in the diagnosis, therapy, nerve tissue regeneration, and treatment of neurological disorders.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400150"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responding to Hitch in Fighting Mycobacterium Tuberculosis Through Arginine Multi Functionalized Mucoadhesive SNEDDS of Rifampicin. 通过精氨酸多功能黏附性 SNEDDS(利福平 SNEDDS)抗击结核分枝杆菌。
IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-25 DOI: 10.1002/mabi.202400288
Sana Saeed, Muhammad Farooq, Rabia Arshad, Sherjeel Adnan, Hammad Ahmad, Zeeshan Masood, Abdul Malik, Ayesha Saeed, Tanveer A Tabish

The study aimed to develop thiolated pluronic-based self-emulsifying drug delivery system (SNEDDS) targeted delivery of Rifampicin coated by arginine for enhanced drug loading, mucoadhesion, muco penetration, site-specific delivery, stabilized delivery against intracellular mycobacterium tuberculosis (M. tb), decreased bacterial burden and production by intracellular targeting. Oleic oil, PEG 200 and Tween 80 are selected as oil, co-surfactant and surfactant based on solubilizing capacity and pseudo ternary diagram region. Coating of thiolated polymer on SNEDDS with ligand arginine (Arg-Th-F407 SNEDDDS) decreased bacterial burden and production by intracellular targeting in macrophages. Formulation are evaluated through scanning electron microscope (SEM), EDAX analysis, diffraction laser scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and thermal analysis (DSC & TGA). Hydrodynamic diameter of thiolated polymeric SNEDDS (Th-F407 SNEDDS) and Arg-Th-F407 SNEDDS is observed to be 148.4 and 188.5 nm with low PDI of 0.4 and 0.3, respectively. Invitro drug release study from Arg-Th-F407 SNEDDS indicates 80% sustained release in 72 h under controlled conditions. Arg-Th-F407 SNEDDDS shows excellent capability of killing M.tb strains in macrophages even at low dose as compared to traditional rifampicin (RIF) and is found biocompatible, non-cytotoxic, and hemocompatible. Therefore, Arg-Th-F407 SNEDDDS of RIF proved ideal for targeting and treating M.tb strains within macrophages.

该研究旨在开发硫醇化聚钚基自乳化给药系统(SNEDDS),通过细胞内靶向给药增强药物载量、粘附性、粘液渗透性、位点特异性、针对细胞内结核分枝杆菌(M. tb)的稳定给药,减少细菌负担和产生。根据溶解能力和假三元图区域,选择油酸油、PEG 200 和吐温 80 作为油、助表面活性剂和表面活性剂。在含配体精氨酸的 SNEDDS 上涂覆硫醇化聚合物(Arg-Th-F407 SNEDDDS),可通过巨噬细胞的细胞内靶向作用减少细菌的负担和产生。通过扫描电子显微镜(SEM)、EDAX 分析、衍射激光散射(DLS)、傅立叶变换红外光谱(FTIR)和热分析(DSC 和 TGA)对配方进行了评估。硫醇化聚合物 SNEDDS(Th-F407 SNEDDS)和 Arg-Th-F407 SNEDDS 的流体力学直径分别为 148.4 纳米和 188.5 纳米,PDI 分别为 0.4 和 0.3。Arg-Th-F407 SNEDDS 的体外药物释放研究表明,在受控条件下,72 小时内 80% 的药物持续释放。与传统的利福平(RIF)相比,Arg-Th-F407 SNEDDDS 即使在低剂量下也能杀死巨噬细胞中的 M.tb 菌株,而且具有良好的生物相容性、无细胞毒性和血液相容性。因此,RIF 的 Arg-Th-F407 SNEDDDS 被证明是靶向治疗巨噬细胞内 M.tb 菌株的理想药物。
{"title":"Responding to Hitch in Fighting Mycobacterium Tuberculosis Through Arginine Multi Functionalized Mucoadhesive SNEDDS of Rifampicin.","authors":"Sana Saeed, Muhammad Farooq, Rabia Arshad, Sherjeel Adnan, Hammad Ahmad, Zeeshan Masood, Abdul Malik, Ayesha Saeed, Tanveer A Tabish","doi":"10.1002/mabi.202400288","DOIUrl":"https://doi.org/10.1002/mabi.202400288","url":null,"abstract":"<p><p>The study aimed to develop thiolated pluronic-based self-emulsifying drug delivery system (SNEDDS) targeted delivery of Rifampicin coated by arginine for enhanced drug loading, mucoadhesion, muco penetration, site-specific delivery, stabilized delivery against intracellular mycobacterium tuberculosis (M. tb), decreased bacterial burden and production by intracellular targeting. Oleic oil, PEG 200 and Tween 80 are selected as oil, co-surfactant and surfactant based on solubilizing capacity and pseudo ternary diagram region. Coating of thiolated polymer on SNEDDS with ligand arginine (Arg-Th-F407 SNEDDDS) decreased bacterial burden and production by intracellular targeting in macrophages. Formulation are evaluated through scanning electron microscope (SEM), EDAX analysis, diffraction laser scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and thermal analysis (DSC & TGA). Hydrodynamic diameter of thiolated polymeric SNEDDS (Th-F407 SNEDDS) and Arg-Th-F407 SNEDDS is observed to be 148.4 and 188.5 nm with low PDI of 0.4 and 0.3, respectively. Invitro drug release study from Arg-Th-F407 SNEDDS indicates 80% sustained release in 72 h under controlled conditions. Arg-Th-F407 SNEDDDS shows excellent capability of killing M.tb strains in macrophages even at low dose as compared to traditional rifampicin (RIF) and is found biocompatible, non-cytotoxic, and hemocompatible. Therefore, Arg-Th-F407 SNEDDDS of RIF proved ideal for targeting and treating M.tb strains within macrophages.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400288"},"PeriodicalIF":4.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible, Electrochemical Skin‐Like Platform for Inflammatory Biomarker Monitoring 用于炎症生物标记物监测的灵活电化学类肤平台
IF 4.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-18 DOI: 10.1002/mabi.202400287
Carolina Lourenço, Felismina Moreira, Rui Igreja, Gabriela Martins
Addressing global challenges in wound management has greatly encouraged the emergence of home diagnosis and monitoring devices. This technological shift has accelerated the development of new skin patch sensors for continuous health monitoring. A key requirement is the creation of flexible platforms capable of mimicking human skin features. Here, for the first time, an innovative, highly adaptable electrochemical biosensor with molecularly imprinted polymers (MIPs) is customized for the detection of the inflammatory biomarker interleukin‐6 (IL‐6). The 3‐electrode gold pattern is geometrically standardized onto a 6 µm thick polyimide flexible membrane, an optically transparent, and biocompatible polymeric substrate. Subsequently, a biomimetic sensing layer specifically designed for the detection of IL‐6 target is produced on these transducers. The obtained MIP biosensor shows a good linear response within the concentration range 50 pg mL−1‐50 ng mL−1, with a low limit of detection (8 pg mL−1). X‐ray photoelectron spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations confirm the modifications of the flexible gold transducer. After optimization, the biosensing device shows remarkable potential in terms of sensitivity, selectivity, and reproducibility. Overall, the integration of a low‐cost electrochemical sensor on biocompatible flexible polymers opens the way for a new generation of monitoring tools with higher accuracy, less invasiveness, and greater patient comfort.
应对全球伤口管理方面的挑战极大地促进了家庭诊断和监测设备的出现。这一技术转变加速了用于持续健康监测的新型皮肤贴片传感器的开发。一个关键的要求是创建能够模仿人体皮肤特征的灵活平台。在这里,我们首次利用分子印迹聚合物(MIPs)定制了一种创新的、适应性强的电化学生物传感器,用于检测炎症生物标志物白细胞介素-6(IL-6)。在 6 微米厚的聚酰亚胺柔性膜(一种光学透明、生物兼容的聚合物基底)上,对 3 个电极的金图案进行了几何标准化。随后,在这些传感器上制作了专为检测 IL-6 目标而设计的仿生物传感层。获得的 MIP 生物传感器在 50 pg mL-1-50 ng mL-1 的浓度范围内显示出良好的线性响应,检测限低(8 pg mL-1)。X 射线光电子能谱、扫描电子显微镜和傅立叶变换红外光谱表征证实了柔性金传感器的改性。经过优化后,该生物传感装置在灵敏度、选择性和再现性方面都显示出显著的潜力。总之,在生物相容性柔性聚合物上集成低成本电化学传感器,为开发新一代监测工具开辟了道路,这种监测工具具有更高的准确性、更低的侵入性和更高的病人舒适度。
{"title":"Flexible, Electrochemical Skin‐Like Platform for Inflammatory Biomarker Monitoring","authors":"Carolina Lourenço, Felismina Moreira, Rui Igreja, Gabriela Martins","doi":"10.1002/mabi.202400287","DOIUrl":"https://doi.org/10.1002/mabi.202400287","url":null,"abstract":"Addressing global challenges in wound management has greatly encouraged the emergence of home diagnosis and monitoring devices. This technological shift has accelerated the development of new skin patch sensors for continuous health monitoring. A key requirement is the creation of flexible platforms capable of mimicking human skin features. Here, for the first time, an innovative, highly adaptable electrochemical biosensor with molecularly imprinted polymers (MIPs) is customized for the detection of the inflammatory biomarker interleukin‐6 (IL‐6). The 3‐electrode gold pattern is geometrically standardized onto a 6 µm thick polyimide flexible membrane, an optically transparent, and biocompatible polymeric substrate. Subsequently, a biomimetic sensing layer specifically designed for the detection of IL‐6 target is produced on these transducers. The obtained MIP biosensor shows a good linear response within the concentration range 50 pg mL<jats:sup>−1</jats:sup>‐50 ng mL<jats:sup>−1</jats:sup>, with a low limit of detection (8 pg mL<jats:sup>−1</jats:sup>). X‐ray photoelectron spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations confirm the modifications of the flexible gold transducer. After optimization, the biosensing device shows remarkable potential in terms of sensitivity, selectivity, and reproducibility. Overall, the integration of a low‐cost electrochemical sensor on biocompatible flexible polymers opens the way for a new generation of monitoring tools with higher accuracy, less invasiveness, and greater patient comfort.","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"195 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Macromolecular bioscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1