Francesca Passannanti, Marianna Gallo, Giulia Lentini, Rosa Colucci Cante, Federica Nigro, Roberto Nigro, Andrea Budelli
Alginate is a natural polysaccharide commonly obtained from brown algae and is usually used in the food industry as an additive, specifically as a thickening, gelling, and emulsifying agent. Due to its polyanionic nature, it can crosslink in the presence of divalent or trivalent cations. This crosslinking process involves the formation of chemical bonds between the carboxylic groups of parallel chains, resulting in a solid structure. In this way, compounds of interest can be enclosed in a capsule or a bead. Thanks to this ability, possible applications of alginate capsules are countless: it is possible to range from the pharmaceutical to the nutritional fields, from the agri-food industry to the textile or cosmetic sectors. These capsules can protect the encapsulated ingredients, promote their delivery or controlled release, or be imagined as small-scale reactors. The present review describes the main techniques used to produce alginate capsules, and several examples of possible application fields are shown.
{"title":"Alginate Capsules: Versatile Applications and Production Techniques","authors":"Francesca Passannanti, Marianna Gallo, Giulia Lentini, Rosa Colucci Cante, Federica Nigro, Roberto Nigro, Andrea Budelli","doi":"10.1002/mabi.202400202","DOIUrl":"10.1002/mabi.202400202","url":null,"abstract":"<p>Alginate is a natural polysaccharide commonly obtained from brown algae and is usually used in the food industry as an additive, specifically as a thickening, gelling, and emulsifying agent. Due to its polyanionic nature, it can crosslink in the presence of divalent or trivalent cations. This crosslinking process involves the formation of chemical bonds between the carboxylic groups of parallel chains, resulting in a solid structure. In this way, compounds of interest can be enclosed in a capsule or a bead. Thanks to this ability, possible applications of alginate capsules are countless: it is possible to range from the pharmaceutical to the nutritional fields, from the agri-food industry to the textile or cosmetic sectors. These capsules can protect the encapsulated ingredients, promote their delivery or controlled release, or be imagined as small-scale reactors. The present review describes the main techniques used to produce alginate capsules, and several examples of possible application fields are shown.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Vostatek, Elettra Verin, Marvin Tamm, Mario Rothbauer, Stefan Toegel, Francesco Moscato
The attributes of implant surfaces are pivotal for successful osseointegration. Among surface engineering strategies, microtopography stands out as a promising approach to promote early cellular interactions. This study aims to design and craft a novel biomimetic osteon-like surface modification and to compare its impact on human mesenchymal stem cells (hMSCs) with four established topographies: blank, inverted pyramids, protrusions, and grooves. Poly-ε-caprolactone samples are fabricated using 2-photon-polymerization and soft lithography, prior to analysis via scanning electron microscopy (SEM), water contact angle (WCA), and protein adsorption assays. Additionally, cellular responses including cell attachment, proliferation, morphology, cytoskeletal organization, and osteogenic differentiation potential are evaluated. SEM confirms the successful fabrication of microtopographies, with minimal effect on WCA and protein adsorption. Cell attachment experiments demonstrate a significant increase on the osteon-like structure, being three times higher than on the blank. Proliferation assays indicate a fourfold increase with osteon-like microtopography compared to the blank, while ALP activity is notably elevated with osteon-like microtopography at days 7 (threefold increase over blank) and 14 (fivefold increase over blank). In conclusion, the novel biomimetic osteon-like structure demonstrates favorable responses from hMSCs, suggesting potential for promoting successful implant integration in vivo.
{"title":"Bone-Mimetic Osteon Microtopographies on Poly-ε-Caprolactone Enhance the Osteogenic Potential of Human Mesenchymal Stem Cells.","authors":"Matthias Vostatek, Elettra Verin, Marvin Tamm, Mario Rothbauer, Stefan Toegel, Francesco Moscato","doi":"10.1002/mabi.202400311","DOIUrl":"https://doi.org/10.1002/mabi.202400311","url":null,"abstract":"<p><p>The attributes of implant surfaces are pivotal for successful osseointegration. Among surface engineering strategies, microtopography stands out as a promising approach to promote early cellular interactions. This study aims to design and craft a novel biomimetic osteon-like surface modification and to compare its impact on human mesenchymal stem cells (hMSCs) with four established topographies: blank, inverted pyramids, protrusions, and grooves. Poly-ε-caprolactone samples are fabricated using 2-photon-polymerization and soft lithography, prior to analysis via scanning electron microscopy (SEM), water contact angle (WCA), and protein adsorption assays. Additionally, cellular responses including cell attachment, proliferation, morphology, cytoskeletal organization, and osteogenic differentiation potential are evaluated. SEM confirms the successful fabrication of microtopographies, with minimal effect on WCA and protein adsorption. Cell attachment experiments demonstrate a significant increase on the osteon-like structure, being three times higher than on the blank. Proliferation assays indicate a fourfold increase with osteon-like microtopography compared to the blank, while ALP activity is notably elevated with osteon-like microtopography at days 7 (threefold increase over blank) and 14 (fivefold increase over blank). In conclusion, the novel biomimetic osteon-like structure demonstrates favorable responses from hMSCs, suggesting potential for promoting successful implant integration in vivo.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400311"},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wound dressings play a crucial role in wound management by providing a protective barrier and creating an optimal environment for healing. Photocrosslinkable hydrogels, such as gelatin methacrylate (GelMA), have gained attention for their unique properties but often lack antimicrobial activity. To enhance their effectiveness, researchers are exploring methods to incorporate antimicrobial agents into photocrosslinkable hydrogel dressings. Immobilization of antimicrobial peptides (AMPs) onto hydrogel matrices may be achieved through physical or chemical methods. Although, chemical immobilization, using techniques like EDC/NHS chemistry, has shown promise in enhancing antimicrobial properties of hydrogels, the capacity for immobilization may be limited by the structure of hydrogel. Physical methods, such as immersing, offer alternatives but may have different efficacy and biocompatibility. The study aims to chemically immobilize GelMA with P9-4 AMP by photoinduced conjugation and EDC/NHS chemistry and compare its antimicrobial efficacy with a physical immobilization method. Chemical immobilization by EDC/NHS chemistry significantly enhances the antimicrobial effect of GelMA hydrogels against multi-drug resistant Psuedomonas aeruginosa (MDR P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) while maintaining favorable biocompatibility. Study highlights the potential of AMP-functionalized GelMA as advanced wound dressings for reducing infections caused by antibiotic-resistant bacteria and offers a promising approach for future research in wound management.
{"title":"The Effect of Immobilization Methods of P9-4 Antimicrobial Peptide Onto Gelatin Methacrylate on Multidrug-Resistant Bacteria: A Comparative Study","authors":"Günnur Pulat, Nisa Nilsu Çelebi, Eda Bilgiç","doi":"10.1002/mabi.202400324","DOIUrl":"10.1002/mabi.202400324","url":null,"abstract":"<p>Wound dressings play a crucial role in wound management by providing a protective barrier and creating an optimal environment for healing. Photocrosslinkable hydrogels, such as gelatin methacrylate (GelMA), have gained attention for their unique properties but often lack antimicrobial activity. To enhance their effectiveness, researchers are exploring methods to incorporate antimicrobial agents into photocrosslinkable hydrogel dressings. Immobilization of antimicrobial peptides (AMPs) onto hydrogel matrices may be achieved through physical or chemical methods. Although, chemical immobilization, using techniques like EDC/NHS chemistry, has shown promise in enhancing antimicrobial properties of hydrogels, the capacity for immobilization may be limited by the structure of hydrogel. Physical methods, such as immersing, offer alternatives but may have different efficacy and biocompatibility. The study aims to chemically immobilize GelMA with P9-4 AMP by photoinduced conjugation and EDC/NHS chemistry and compare its antimicrobial efficacy with a physical immobilization method. Chemical immobilization by EDC/NHS chemistry significantly enhances the antimicrobial effect of GelMA hydrogels against multi-drug resistant <i>Psuedomonas aeruginosa</i> (MDR <i>P. aeruginosa</i>) and methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) while maintaining favorable biocompatibility. Study highlights the potential of AMP-functionalized GelMA as advanced wound dressings for reducing infections caused by antibiotic-resistant bacteria and offers a promising approach for future research in wound management.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo Alarcón-Guijo, Víctor Garcés, Ana González, José M Delgado-López, Ruh Ullah, Vipul Bansal, Jose M Dominguez-Vera
Certain aerobic bacteria produce bacterial cellulose (BC) to protect themselves from UV radiation. Inspired by this natural function, the UV-filtering capacity of wet BC film (BC) and dried BC (BC-Dried) is evaluated and it is concluded that both samples hardly filter UVA, but filter UVB to some extent, especially BC-Dried. Moreover, this filtering capacity does not diminish but significantly increases with time, with efficiencies in the 145-160 min time range equal to or greater than most UV filters of the market. This increase in efficiency is due to the fact that the BC structure is modified by prolonged exposure to UVB radiation. Specifically, UVB causes sintering of the cellulose fibers, making the structure denser and increasing its reflection and scattering of UVB radiation. Remarkably, this UVB filtering ability of BC allows it to protect key skin probiotics, Lactobacillus fermentum (L. fermentum) and Cutibacterium acnes (C. acnes), against UVB damage. While the protection of healthy skin microbiota is not currently a regulatory requirement for sunscreens with UV filters, it may become a key differentiator for future UV filters given the increasing evidence on the role of skin microbiota in health.
某些需氧细菌会产生细菌纤维素(BC)来保护自己免受紫外线辐射。受这一天然功能的启发,我们对湿的 BC 薄膜(BC)和干的 BC(BC-Dried)的紫外线过滤能力进行了评估,结论是这两种样品几乎不能过滤 UVA,但能在一定程度上过滤 UVB,尤其是干的 BC。此外,这种过滤能力不会随着时间的推移而减弱,反而会显著增强,在 145-160 分钟的时间范围内,过滤效率等于或高于市场上的大多数紫外线过滤器。效率的提高是由于 BC 结构在长期暴露于 UVB 辐射下发生了改变。具体来说,紫外线会导致纤维素纤维烧结,使结构更加致密,增加对紫外线辐射的反射和散射。值得注意的是,碱性纤维素对紫外线的过滤能力使其能够保护关键的皮肤益生菌--发酵乳杆菌(L. fermentum)和痤疮棒状杆菌(C. acnes)免受紫外线的伤害。虽然保护健康的皮肤微生物群目前还不是紫外线过滤防晒霜的监管要求,但鉴于越来越多的证据表明皮肤微生物群在健康中的作用,它可能成为未来紫外线过滤产品的一个关键差异化因素。
{"title":"Bacterial Cellulose as a UVB Filter to Protect the Skin Microbiota.","authors":"Pablo Alarcón-Guijo, Víctor Garcés, Ana González, José M Delgado-López, Ruh Ullah, Vipul Bansal, Jose M Dominguez-Vera","doi":"10.1002/mabi.202400269","DOIUrl":"https://doi.org/10.1002/mabi.202400269","url":null,"abstract":"<p><p>Certain aerobic bacteria produce bacterial cellulose (BC) to protect themselves from UV radiation. Inspired by this natural function, the UV-filtering capacity of wet BC film (BC) and dried BC (BC-Dried) is evaluated and it is concluded that both samples hardly filter UVA, but filter UVB to some extent, especially BC-Dried. Moreover, this filtering capacity does not diminish but significantly increases with time, with efficiencies in the 145-160 min time range equal to or greater than most UV filters of the market. This increase in efficiency is due to the fact that the BC structure is modified by prolonged exposure to UVB radiation. Specifically, UVB causes sintering of the cellulose fibers, making the structure denser and increasing its reflection and scattering of UVB radiation. Remarkably, this UVB filtering ability of BC allows it to protect key skin probiotics, Lactobacillus fermentum (L. fermentum) and Cutibacterium acnes (C. acnes), against UVB damage. While the protection of healthy skin microbiota is not currently a regulatory requirement for sunscreens with UV filters, it may become a key differentiator for future UV filters given the increasing evidence on the role of skin microbiota in health.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400269"},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selay Tornaci, Merve Erginer, Umut Bulut, Beste Sener, Elifsu Persilioglu, İsmail Bergutay Kalaycilar, Emine Guler Celik, Hasret Yardibi, Pinar Siyah, Oguzhan Karakurt, Ali Cirpan, Baris Gokalsin, Ahmet Murat Senisik, Firat Baris Barlas
Cancer is anticipated to become the pioneer reason of disease-related deaths worldwide in the next two decades, underscoring the urgent need for personalized and adaptive treatment strategies. These strategies are crucial due to the high variability in drug efficacy and the tendency of cancer cells to develop resistance. This study investigates the potential of theranostic nanotechnology using three innovative fluorescent polymers (FP-1, FP-2, and FP-3) encapsulated in niosomal carriers, combining therapy (chemotherapy and radiotherapy) with fluorescence imaging. These cargoes are assessed for their cytotoxic effects across three cancer cell lines (A549, MCF-7, and HOb), with further analysis to determine their capacity to augment the effects of radiotherapy using a Linear Accelerator (LINAC) at specific doses. Fluorescence microscopy is utilized to verify their uptake and localization in cancerous versus healthy cell lines. The results confirmed that these niosomal cargoes not only improved the antiproliferative effects of radiotherapy but also demonstrate the practical application of fluorescent polymers in in vitro imaging. This dual function underscores the importance of dose optimization to maximize therapeutic benefits while minimizing adverse effects, thereby enhancing the overall efficacy of cancer treatments.
{"title":"Innovative Fluorescent Polymers in Niosomal Carriers: A Novel Approach to Enhancing Cancer Therapy and Imaging","authors":"Selay Tornaci, Merve Erginer, Umut Bulut, Beste Sener, Elifsu Persilioglu, İsmail Bergutay Kalaycilar, Emine Guler Celik, Hasret Yardibi, Pinar Siyah, Oguzhan Karakurt, Ali Cirpan, Baris Gokalsin, Ahmet Murat Senisik, Firat Baris Barlas","doi":"10.1002/mabi.202400343","DOIUrl":"10.1002/mabi.202400343","url":null,"abstract":"<p>Cancer is anticipated to become the pioneer reason of disease-related deaths worldwide in the next two decades, underscoring the urgent need for personalized and adaptive treatment strategies. These strategies are crucial due to the high variability in drug efficacy and the tendency of cancer cells to develop resistance. This study investigates the potential of theranostic nanotechnology using three innovative fluorescent polymers (FP-1, FP-2, and FP-3) encapsulated in niosomal carriers, combining therapy (chemotherapy and radiotherapy) with fluorescence imaging. These cargoes are assessed for their cytotoxic effects across three cancer cell lines (A549, MCF-7, and HOb), with further analysis to determine their capacity to augment the effects of radiotherapy using a Linear Accelerator (LINAC) at specific doses. Fluorescence microscopy is utilized to verify their uptake and localization in cancerous versus healthy cell lines. The results confirmed that these niosomal cargoes not only improved the antiproliferative effects of radiotherapy but also demonstrate the practical application of fluorescent polymers in in vitro imaging. This dual function underscores the importance of dose optimization to maximize therapeutic benefits while minimizing adverse effects, thereby enhancing the overall efficacy of cancer treatments.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400343","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean Le Pennec, Amaury Guibert, Raviteja Gurram, Antoine Delon, Romain R. Vivès, Elisa Migliorini
Biomaterials are widely employed across diverse biomedical applications and represent an attractive strategy to explore how extracellular matrix components influence cellular response. In this study, the previously developed streptavidin platforms is aimed to use to investigate the role of glycosaminoglycans (GAGs) in bone morphogenetic protein 2 (BMP2) signaling. However, it is observed that the interpretation of findings is skewed due to the GAG-unrelated, non-specific binding of BMP2 on components of biomaterials. Non-specific adsorption of proteins is a recurrent and challenging issue for biomaterial studies. Despite the initial incorporation of anti-fouling polyethylene glycol (PEG) chains within biomaterials, the residual non-specific BMP2 adsorption still triggered BMP2 signaling within the same range as conditions of interest. The various options are explored to prevent BMP2 non-specific adsorption and a successful blocking condition involving a combination of bovine serum albumin and trehalose are identified. Furthermore, the effect of this blocking step improved when using gold platforms instead of glass, particularly with Chinese hamster ovary (CHO) cells. With this specific example, it is suggested that non-specific adsorption of BMPs on biomaterials may be a general concern – often undetected by classical surface-sensitive techniques – that needs to be addressed to better interpret cellular responses.
{"title":"BMP2 Binds Non-Specifically to PEG-Passivated Biomaterials and Induces pSMAD 1/5/9 Signalling","authors":"Jean Le Pennec, Amaury Guibert, Raviteja Gurram, Antoine Delon, Romain R. Vivès, Elisa Migliorini","doi":"10.1002/mabi.202400169","DOIUrl":"10.1002/mabi.202400169","url":null,"abstract":"<p>Biomaterials are widely employed across diverse biomedical applications and represent an attractive strategy to explore how extracellular matrix components influence cellular response. In this study, the previously developed streptavidin platforms is aimed to use to investigate the role of glycosaminoglycans (GAGs) in bone morphogenetic protein 2 (BMP2) signaling. However, it is observed that the interpretation of findings is skewed due to the GAG-unrelated, non-specific binding of BMP2 on components of biomaterials. Non-specific adsorption of proteins is a recurrent and challenging issue for biomaterial studies. Despite the initial incorporation of anti-fouling polyethylene glycol (PEG) chains within biomaterials, the residual non-specific BMP2 adsorption still triggered BMP2 signaling within the same range as conditions of interest. The various options are explored to prevent BMP2 non-specific adsorption and a successful blocking condition involving a combination of bovine serum albumin and trehalose are identified. Furthermore, the effect of this blocking step improved when using gold platforms instead of glass, particularly with Chinese hamster ovary (CHO) cells. With this specific example, it is suggested that non-specific adsorption of BMPs on biomaterials may be a general concern – often undetected by classical surface-sensitive techniques – that needs to be addressed to better interpret cellular responses.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phuong Le Thi, Quang Anh Tu, Dong Hwan Oh, Ki Dong Park
In situ forming and hydrogen peroxide (H2O2)-releasing hydrogels have been considered as attractive matrices for various biomedical applications. Particularly, horseradish peroxidase (HRP)-catalyzed crosslinking reaction serves efficient method to create in situ forming hydrogels due to its advantageous features, such as mild reaction conditions, rapid gelation rate, tunable mechanical strength, and excellent biocompatibility. Herein, a novel HRP-crosslinked hydrogel system is reported that can produce H2O2 in situ for long-term applications, using glucose oxidase-coated calcium peroxide nanoparticles (CaO2@GOx NPs). In this system, CaO2 gradually produced H2O2 to support the HRP-mediated hydrogelation, while GOx further catalyzed the oxidation of glucose for in situ H2O2 generation. As the hydrogel is formed rapidly is expected and the H2O2 release behavior is prolonged up to 10 days. Interestingly, hydrogels formed by HRP/CaO2@GOx-mediated crosslinking reaction provided a favorable 3D microenvironment to support the viability and proliferation of fibroblasts, compared to that of hydrogels formed by either HRP/H2O2 or HRP/CaO2/GOx-mediated crosslinking reaction. Furthermore, HRP/CaO2@GOx-crosslinked hydrogel enhanced the angiogenic activities of endothelial cells, which is demonstrated by the in vitro tube formation test and in ovo chicken chorioallantoic membrane model. Therefore, HRP/CaO2@GOx-catalyzed hydrogels is suggested as potential in situ H2O2-releasing materials for a wide range of biomedical applications.
{"title":"Glucose Oxidase-Coated Calcium Peroxide Nanoparticles as an Innovative Catalyst for In Situ H2O2-Releasing Hydrogels","authors":"Phuong Le Thi, Quang Anh Tu, Dong Hwan Oh, Ki Dong Park","doi":"10.1002/mabi.202400268","DOIUrl":"10.1002/mabi.202400268","url":null,"abstract":"<p>In situ forming and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-releasing hydrogels have been considered as attractive matrices for various biomedical applications. Particularly, horseradish peroxidase (HRP)-catalyzed crosslinking reaction serves efficient method to create in situ forming hydrogels due to its advantageous features, such as mild reaction conditions, rapid gelation rate, tunable mechanical strength, and excellent biocompatibility. Herein, a novel HRP-crosslinked hydrogel system is reported that can produce H<sub>2</sub>O<sub>2</sub> in situ for long-term applications, using glucose oxidase-coated calcium peroxide nanoparticles (CaO<sub>2</sub>@GOx NPs). In this system, CaO<sub>2</sub> gradually produced H<sub>2</sub>O<sub>2</sub> to support the HRP-mediated hydrogelation, while GOx further catalyzed the oxidation of glucose for in situ H<sub>2</sub>O<sub>2</sub> generation. As the hydrogel is formed rapidly is expected and the H<sub>2</sub>O<sub>2</sub> release behavior is prolonged up to 10 days. Interestingly, hydrogels formed by HRP/CaO<sub>2</sub>@GOx-mediated crosslinking reaction provided a favorable 3D microenvironment to support the viability and proliferation of fibroblasts, compared to that of hydrogels formed by either HRP/H<sub>2</sub>O<sub>2</sub> or HRP/CaO<sub>2</sub>/GOx-mediated crosslinking reaction. Furthermore, HRP/CaO<sub>2</sub>@GOx-crosslinked hydrogel enhanced the angiogenic activities of endothelial cells, which is demonstrated by the in vitro tube formation test and <i>in ovo</i> chicken chorioallantoic membrane model. Therefore, HRP/CaO<sub>2</sub>@GOx-catalyzed hydrogels is suggested as potential in situ H<sub>2</sub>O<sub>2</sub>-releasing materials for a wide range of biomedical applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The stratum corneum, which acts as a strong barrier against external agents, presents a significant challenge to transdermal drug delivery. In this regard, microneedle (MN) patches, designed as modern systems for drug delivery via permeation through the skin with the ability to pass through the stratum corneum, are known to be convenient, painless, and effective. In fact, MN have shown significant breakthroughs in transdermal drug delivery, and among the various types, hydrogel MN (HMNs) have demonstrated desirable inherent properties. Despite advancements, issues such as limited loading capacity, uncontrolled drug release rates, and non-uniform therapeutic approaches persist. Conversely, nanomaterials (NMs) have shown significant promise in medical applications, however, their efficacy and applicability are constrained by challenges including poor stability, low bioavailability, limited payload capacity, and rapid clearance by the immune system. Incorporation of NMs within HMNs offers new prospects to address the challenges associated with HMNs and NMs. This combination can provide a promising field of research for improved and effective delivery of therapeutic agents and mitigate certain adverse effects, addressing current clinical concerns. The current review highlights the use of NMs in HMNs for various therapeutic and diagnostic applications.
{"title":"The Synergistic Potential of Hydrogel Microneedles and Nanomaterials: Breaking Barriers in Transdermal Therapy","authors":"Atefeh Golshirazi, Mahsa Mohammadzadeh, Sheyda Labbaf","doi":"10.1002/mabi.202400228","DOIUrl":"10.1002/mabi.202400228","url":null,"abstract":"<p>The stratum corneum, which acts as a strong barrier against external agents, presents a significant challenge to transdermal drug delivery. In this regard, microneedle (MN) patches, designed as modern systems for drug delivery via permeation through the skin with the ability to pass through the stratum corneum, are known to be convenient, painless, and effective. In fact, MN have shown significant breakthroughs in transdermal drug delivery, and among the various types, hydrogel MN (HMNs) have demonstrated desirable inherent properties. Despite advancements, issues such as limited loading capacity, uncontrolled drug release rates, and non-uniform therapeutic approaches persist. Conversely, nanomaterials (NMs) have shown significant promise in medical applications, however, their efficacy and applicability are constrained by challenges including poor stability, low bioavailability, limited payload capacity, and rapid clearance by the immune system. Incorporation of NMs within HMNs offers new prospects to address the challenges associated with HMNs and NMs. This combination can provide a promising field of research for improved and effective delivery of therapeutic agents and mitigate certain adverse effects, addressing current clinical concerns. The current review highlights the use of NMs in HMNs for various therapeutic and diagnostic applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"25 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrospinning is a technique used to create nano/micro-fibrous materials from various polymers for biomedical uses. Polymers like polycaprolactone (PCL) are commonly used, but their hydrophobic properties can limit their applications. To enhance hydrophilicity, nonionic surfactants such as sorbitane monooleate (Span80) and poloxamer (P188) can be added to the PCL electrospinning solution without altering its net charge density. These additions enable the successful production of PCL/P188 and PCL/Span80 fibrous substrates. In this study, P188 and Span80 are incorporated into the PCL solutions; they are successfully electrospun into PCL/P188 and PCL/Span80 substrates, respectively. PCL/P188 substrates show that until a specific P188 concentration, fiber and pore sizes are similar to PCL substrates. However, exceeding 0.30% P188 concentration enlarges fibers, impacting fiber uniformity at higher concentrations. Conversely, higher concentrations of Span80 result in thicker, less uniform fibers, indicating potential disruptions in the electrospinning process. Notably, both surfactants significantly improve substrate hydrophilicity, enhancing the adhesion and proliferation of fibroblasts, endothelial cells, and smooth muscle cells. P188, in particular, shows superior efficacy in promoting cell adhesion and growth at concentrations optimized for different cell types. Therefore, precise surfactant concentrations in the electrospinning solution can lead to the optimization of electrospun substrates for tissue engineering applications.
{"title":"Substrates with Tunable Hydrophobicity for Optimal Cell Adhesion","authors":"Yuriy Snyder, Mary Todd, Soumen Jana","doi":"10.1002/mabi.202400196","DOIUrl":"10.1002/mabi.202400196","url":null,"abstract":"<p>Electrospinning is a technique used to create nano/micro-fibrous materials from various polymers for biomedical uses. Polymers like polycaprolactone (PCL) are commonly used, but their hydrophobic properties can limit their applications. To enhance hydrophilicity, nonionic surfactants such as sorbitane monooleate (Span80) and poloxamer (P188) can be added to the PCL electrospinning solution without altering its net charge density. These additions enable the successful production of PCL/P188 and PCL/Span80 fibrous substrates. In this study, P188 and Span80 are incorporated into the PCL solutions; they are successfully electrospun into PCL/P188 and PCL/Span80 substrates, respectively. PCL/P188 substrates show that until a specific P188 concentration, fiber and pore sizes are similar to PCL substrates. However, exceeding 0.30% P188 concentration enlarges fibers, impacting fiber uniformity at higher concentrations. Conversely, higher concentrations of Span80 result in thicker, less uniform fibers, indicating potential disruptions in the electrospinning process. Notably, both surfactants significantly improve substrate hydrophilicity, enhancing the adhesion and proliferation of fibroblasts, endothelial cells, and smooth muscle cells. P188, in particular, shows superior efficacy in promoting cell adhesion and growth at concentrations optimized for different cell types. Therefore, precise surfactant concentrations in the electrospinning solution can lead to the optimization of electrospun substrates for tissue engineering applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdumutolib A. Atakhanov, Nurbek Sh. Ashurov, Makhliyo M. Kuzieva, Burhon N. Mamadiyorov, Doniyor J. Ergashev, Sayyora Sh. Rashidova, Vitaliy V. Khutoryanskiy
In this work, three nanocellulose derivatives are synthesized with the aim of preparing new mucoadhesive materials. Nanocellulose is reacted with glycidyl methacrylate in dimethylsulphoxide, and with acryloyl and methacryloyl chloride in dimethylacetamide in the presence of 4-(N,N-dimethylamino)pyridine as a catalyst. These reactions are carried out under heterogeneous conditions, and the reaction products are characterized using various spectroscopic techniques, X-ray diffraction, atomic force microscopy, and thermogravimetric analysis. The Fourier-transform infrared spectra showed all the characteristic absorption bands typical for cellulose and also new peaks at 1720 cm−1 for the carbonyl group (C═O) and 1639, 812 cm−1 for the double bond (C═C). It is established that the crystal structure of the nanocellulose is slightly changed with derivatisation and the thermal stability of these derivatives increased. Mucoadhesive properties of nanocellulose and its derivatives is evaluated using the tensile test, rotating basket method, and fluorescence flow-through method. The retention of these polymers is evaluated on sheep oral mucosal tissue ex vivo using artificial saliva. Test results demonstrated that the new derivatives of nanocellulose have improved mucoadhesive properties compared to the parent nanocellulose.
{"title":"Novel Acryloylated and Methacryloylated Nanocellulose Derivatives with Improved Mucoadhesive Properties","authors":"Abdumutolib A. Atakhanov, Nurbek Sh. Ashurov, Makhliyo M. Kuzieva, Burhon N. Mamadiyorov, Doniyor J. Ergashev, Sayyora Sh. Rashidova, Vitaliy V. Khutoryanskiy","doi":"10.1002/mabi.202400183","DOIUrl":"10.1002/mabi.202400183","url":null,"abstract":"<p>In this work, three nanocellulose derivatives are synthesized with the aim of preparing new mucoadhesive materials. Nanocellulose is reacted with glycidyl methacrylate in dimethylsulphoxide, and with acryloyl and methacryloyl chloride in dimethylacetamide in the presence of 4-(N,N-dimethylamino)pyridine as a catalyst. These reactions are carried out under heterogeneous conditions, and the reaction products are characterized using various spectroscopic techniques, X-ray diffraction, atomic force microscopy, and thermogravimetric analysis. The Fourier-transform infrared spectra showed all the characteristic absorption bands typical for cellulose and also new peaks at 1720 cm<sup>−1</sup> for the carbonyl group (C═O) and 1639, 812 cm<sup>−1</sup> for the double bond (C═C). It is established that the crystal structure of the nanocellulose is slightly changed with derivatisation and the thermal stability of these derivatives increased. Mucoadhesive properties of nanocellulose and its derivatives is evaluated using the tensile test, rotating basket method, and fluorescence flow-through method. The retention of these polymers is evaluated on sheep oral mucosal tissue ex vivo using artificial saliva. Test results demonstrated that the new derivatives of nanocellulose have improved mucoadhesive properties compared to the parent nanocellulose.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}