The present review focuses on the most recent advances in liquid-phase NMR of asphaltenes, leaving apart an overwhelming amount of publications dealing with solid-state NMR investigations in this field. Owing to the complexity of the coal-derived products, and in particular, asphaltenes, their 1H and 13C NMR spectra consist of a number of overlapping signals belonging to different hydrocarbon types. Comprehensive studies of asphaltenes by means of NMR reveal the characteristic functional groups of their fractions together with the spectral regions in which they resonate. NMR studies of asphaltenes provide a straightforward guideline for their chemical composition and that of the related coal-derived products.
{"title":"Liquid-phase NMR of asphaltenes","authors":"Leonid B. Krivdin","doi":"10.1002/mrc.5454","DOIUrl":"10.1002/mrc.5454","url":null,"abstract":"<p>The present review focuses on the most recent advances in liquid-phase NMR of asphaltenes, leaving apart an overwhelming amount of publications dealing with solid-state NMR investigations in this field. Owing to the complexity of the coal-derived products, and in particular, asphaltenes, their <sup>1</sup>H and <sup>13</sup>C NMR spectra consist of a number of overlapping signals belonging to different hydrocarbon types. Comprehensive studies of asphaltenes by means of NMR reveal the characteristic functional groups of their fractions together with the spectral regions in which they resonate. NMR studies of asphaltenes provide a straightforward guideline for their chemical composition and that of the related coal-derived products.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 9","pages":"670-685"},"PeriodicalIF":1.9,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emine Sager, Pavleta Tzvetkova, Andreas Lingel, Alvar D. Gossert, Burkhard Luy
The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which 1DCH residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.
根据在手性聚-γ-苄基-L-谷氨酸(PBLG)中配位获得的残余各向异性参数来区分对映体,是高分辨率核磁共振光谱中最有效的方法之一。然而,在不同溶质之间经常观察到对映体差异的巨大差异。一种假设认为,溶质与 PBLG 之间形成的氢键对区分对映体非常重要。通过测量 1DCH 残余偶极耦合,我们系统地解决了这一问题:龙脑含有一个可作为氢键供体的官能团,樟脑有一个可作为氢键受体的官能团,而奎尼丁醇既可作为氢键供体,也可作为氢键受体。结果是明确的:虽然樟脑在 PBLG 和配位中显示出较低的对映体差异,纯立体 TRAMITE 方法也能很好地预测对映体差异,但其他对映体对的对映体差异显著较高,其配位特性除立体配位外还必须涉及特定的相互作用。
{"title":"Hydrogen bond formation may enhance RDC-based discrimination of enantiomers","authors":"Emine Sager, Pavleta Tzvetkova, Andreas Lingel, Alvar D. Gossert, Burkhard Luy","doi":"10.1002/mrc.5448","DOIUrl":"10.1002/mrc.5448","url":null,"abstract":"<p>The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which <sup>1</sup><i>D</i><sub>CH</sub> residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 9","pages":"639-647"},"PeriodicalIF":1.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5448","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The spatial magnetic properties (through-space NMR shieldings—TSNMRSs—actually the ring current effect in 1H NMR spectroscopy) of the recently synthesized infinitene (the helically twisted [12]circulene) have been calculated using the GIAO perturbation method employing the nucleus-independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. Both 1H and 13C chemical shifts of infinitene and the aromaticity of this esthetically very appealing molecule have been studied subject to the ring current effect thus obtained. This spatial magnetic response property of TSNMRSs dominates the different magnitude of 1H and 13C chemical shifts, especially in the cross-over section of infinitene, which is unequivocally classified as an aromatic molecule based on the deshielding belt of its ring current effect. Differences in aromaticity of infinitene compared with isolated benzene can also be qualified and quantified on the magnetic criterion.
{"title":"1H and 13C NMR spectra of infinitene and the ring current effect of the aromatic molecule","authors":"Erich Kleinpeter, Andreas Koch","doi":"10.1002/mrc.5467","DOIUrl":"10.1002/mrc.5467","url":null,"abstract":"<p>The spatial magnetic properties (through-space NMR shieldings—TSNMRSs—actually the ring current effect in <sup>1</sup>H NMR spectroscopy) of the recently synthesized infinitene (the helically twisted [12]circulene) have been calculated using the GIAO perturbation method employing the nucleus-independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. Both <sup>1</sup>H and <sup>13</sup>C chemical shifts of infinitene and the aromaticity of this esthetically very appealing molecule have been studied subject to the ring current effect thus obtained. This spatial magnetic response property of TSNMRSs dominates the different magnitude of <sup>1</sup>H and <sup>13</sup>C chemical shifts, especially in the cross-over section of infinitene, which is unequivocally classified as an aromatic molecule based on the deshielding belt of its ring current effect. Differences in aromaticity of infinitene compared with isolated benzene can also be qualified and quantified on the magnetic criterion.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 9","pages":"686-693"},"PeriodicalIF":1.9,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5467","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}