首页 > 最新文献

Magnetic Resonance in Chemistry最新文献

英文 中文
Measuring and modeling anisotropy in the NMR of solids 测量和模拟固体核磁共振的各向异性。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-11 DOI: 10.1002/mrc.5435
James K. Harper, Joshua D. Hartman
{"title":"Measuring and modeling anisotropy in the NMR of solids","authors":"James K. Harper, Joshua D. Hartman","doi":"10.1002/mrc.5435","DOIUrl":"10.1002/mrc.5435","url":null,"abstract":"","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 3","pages":"124"},"PeriodicalIF":2.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supporting the assignment of NMR spectra with variable-temperature experiments 通过变温实验支持核磁共振光谱的分配
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1002/mrc.5433
Ewa K. Nawrocka, Michał Jadwiszczak, Piotr J. Leszczyński, Krzysztof Kazimierczuk

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools in analytical chemistry. An important step in the analysis of NMR data is the assignment of resonance frequencies to the corresponding atoms in the molecule being investigated. The traditional approach considers the spectrum's characteristic parameters: chemical shift values, internuclear couplings, and peak intensities. In this paper, we show how to support the process of assigning a series of spectra of similar organic compounds by using temperature coefficients, that is, the rates of change in chemical shift values associated with given changes in temperature.

核磁共振 (NMR) 光谱是分析化学中最强大的工具之一。分析 NMR 数据的一个重要步骤是为所研究分子中的相应原子分配共振频率。传统方法考虑的是光谱的特征参数:化学位移值、核间耦合和峰强度。在本文中,我们展示了如何利用温度系数(即与给定温度变化相关的化学位移值变化率)来支持一系列类似有机化合物光谱的分配过程。
{"title":"Supporting the assignment of NMR spectra with variable-temperature experiments","authors":"Ewa K. Nawrocka,&nbsp;Michał Jadwiszczak,&nbsp;Piotr J. Leszczyński,&nbsp;Krzysztof Kazimierczuk","doi":"10.1002/mrc.5433","DOIUrl":"10.1002/mrc.5433","url":null,"abstract":"<p>Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools in analytical chemistry. An important step in the analysis of NMR data is the assignment of resonance frequencies to the corresponding atoms in the molecule being investigated. The traditional approach considers the spectrum's characteristic parameters: chemical shift values, internuclear couplings, and peak intensities. In this paper, we show how to support the process of assigning a series of spectra of similar organic compounds by using temperature coefficients, that is, the rates of change in chemical shift values associated with given changes in temperature.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 7","pages":"479-485"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139662675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slice through the water—Exploring the fundamental challenge of water suppression for benchtop NMR systems 从水中切片--探索台式 NMR 系统抑制水分的基本挑战。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-28 DOI: 10.1002/mrc.5431
Jacob Pellizzari, Ronald Soong, Katelyn Downey, Rajshree Ghosh Biswas, Flavio C. Kock, Katrina Steiner, Benjamin Goerling, Agnes Haber, Venita Decker, Falko Busse, Myrna Simpson, Andre Simpson

Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in 1H NMR in order to recover sample information. However, due to the significant reduction in chemical shift dispersion in benchtop NMR systems, the sample signals are much closer to the water resonance compared to those in a corresponding high-field NMR spectrum. Therefore, simply translating solvent suppression experiments intended for high-field NMR instruments to benchtop NMR systems without careful consideration can be problematic. In this study, the effectiveness of several popular water suppression schemes was evaluated for benchtop NMR applications. Emphasis is placed on pulse sequences with no, or few, adjustable parameters making them easy to implement. These fall into two main categories: (1) those based on Pre-SAT including Pre-SAT, PURGE, NOESY-PR, and g-NOESY-PR and (2) those based on binomial inversion including JRS and W5-WATERGATE. Among these schemes, solvent suppression sequences based on Pre-SAT offer a general approach for easy solvent suppression for samples with higher analyte concentrations (sucrose standard and Redbull™). However, for human urine, binomial-like sequences were required. In summary, it is demonstrated that highly efficient water suppression approaches can be implemented on benchtop NMR systems in a simple manner, despite the limited spectral dispersion, further illustrating the potential for widespread implementation of these approaches in education and research.

台式 NMR 在成本、空间和专业技术方面提供了更好的便利性。这反过来又鼓励新用户进入 NMR 光谱领域。遗憾的是,从啤酒到全血,教育和研究中许多有趣的样本都含有大量水分,需要在 1 H NMR 中加以抑制,以恢复样本信息。然而,由于台式 NMR 系统的化学位移色散显著降低,与相应的高场 NMR 光谱中的信号相比,样品信号更接近于水共振。因此,未经仔细考虑就将用于高场 NMR 仪器的溶剂抑制实验简单地转换到台式 NMR 系统可能会出现问题。本研究评估了几种常用的水抑制方案在台式 NMR 应用中的有效性。重点放在没有或只有很少可调参数的脉冲序列上,使其易于实施。这些方案主要分为两类:(1) 基于 Pre-SAT(包括 Pre-SAT、PURGE、NOESY-PR 和 g-NOESY-PR)的方案;(2) 基于二项式反转(包括 JRS 和 W5-WATERGATE)的方案。在这些方案中,基于 Pre-SAT 的溶剂抑制序列为分析物浓度较高的样品(蔗糖标准和 Redbull™)提供了一种易于溶剂抑制的通用方法。然而,对于人体尿液,则需要类似二项式的序列。总之,尽管光谱弥散有限,但高效的水抑制方法可以在台式 NMR 系统上以简单的方式实施,这进一步说明了这些方法在教育和研究中广泛实施的潜力。
{"title":"Slice through the water—Exploring the fundamental challenge of water suppression for benchtop NMR systems","authors":"Jacob Pellizzari,&nbsp;Ronald Soong,&nbsp;Katelyn Downey,&nbsp;Rajshree Ghosh Biswas,&nbsp;Flavio C. Kock,&nbsp;Katrina Steiner,&nbsp;Benjamin Goerling,&nbsp;Agnes Haber,&nbsp;Venita Decker,&nbsp;Falko Busse,&nbsp;Myrna Simpson,&nbsp;Andre Simpson","doi":"10.1002/mrc.5431","DOIUrl":"10.1002/mrc.5431","url":null,"abstract":"<p>Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in <sup>1</sup>H NMR in order to recover sample information. However, due to the significant reduction in chemical shift dispersion in benchtop NMR systems, the sample signals are much closer to the water resonance compared to those in a corresponding high-field NMR spectrum. Therefore, simply translating solvent suppression experiments intended for high-field NMR instruments to benchtop NMR systems without careful consideration can be problematic. In this study, the effectiveness of several popular water suppression schemes was evaluated for benchtop NMR applications. Emphasis is placed on pulse sequences with no, or few, adjustable parameters making them easy to implement. These fall into two main categories: (1) those based on Pre-SAT including Pre-SAT, PURGE, NOESY-PR, and g-NOESY-PR and (2) those based on binomial inversion including JRS and W5-WATERGATE. Among these schemes, solvent suppression sequences based on Pre-SAT offer a general approach for easy solvent suppression for samples with higher analyte concentrations (sucrose standard and Redbull™). However, for human urine, binomial-like sequences were required. In summary, it is demonstrated that highly efficient water suppression approaches can be implemented on benchtop NMR systems in a simple manner, despite the limited spectral dispersion, further illustrating the potential for widespread implementation of these approaches in education and research.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 6","pages":"463-473"},"PeriodicalIF":2.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming NMR line broadening of nitrogen containing compounds: A simple solution 克服含氮化合物的 NMR 线宽:简单的解决方案
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-23 DOI: 10.1002/mrc.5432
Junhe Ma, Qingmei Ye, Rebecca A. Green, John Gurak, Sloan Ayers, Yande Huang, Scott A. Miller

This study presents a straightforward solution to the challenge of elucidating the structures of nitrogen containing compounds undergoing isomerization. When spectral line broadening occurs related to isomerization, be it prototropic tautomerism or bond rotations, this poses a significant obstacle to structural elucidation. By adding acids, we demonstrate a simple approach to overcome this issue and effectively sharpen NMR signals for acid stable prototropic tautomers as well as the conformational isomers containing a morpholine or piperazine ring.

这项研究为阐明发生异构化的含氮化合物的结构提出了一个直接的解决方案。当发生与异构化相关的谱线展宽时,无论是原向同分异构还是键旋转,都会对结构阐释构成重大障碍。通过添加酸,我们展示了克服这一问题的简单方法,并有效地锐化了酸稳定原向同分异构体以及含有吗啉或哌嗪环的构象异构体的 NMR 信号。
{"title":"Overcoming NMR line broadening of nitrogen containing compounds: A simple solution","authors":"Junhe Ma,&nbsp;Qingmei Ye,&nbsp;Rebecca A. Green,&nbsp;John Gurak,&nbsp;Sloan Ayers,&nbsp;Yande Huang,&nbsp;Scott A. Miller","doi":"10.1002/mrc.5432","DOIUrl":"10.1002/mrc.5432","url":null,"abstract":"<p>This study presents a straightforward solution to the challenge of elucidating the structures of nitrogen containing compounds undergoing isomerization. When spectral line broadening occurs related to isomerization, be it prototropic tautomerism or bond rotations, this poses a significant obstacle to structural elucidation. By adding acids, we demonstrate a simple approach to overcome this issue and effectively sharpen NMR signals for acid stable prototropic tautomers as well as the conformational isomers containing a morpholine or piperazine ring.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 3","pages":"198-207"},"PeriodicalIF":2.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
13C NMR as an analytical tool for the detection of carbonic acid and pKa determination 13 C NMR 作为检测碳酸和确定 pKa 的分析工具。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-23 DOI: 10.1002/mrc.5430
Daniel Rossado Oliveira, Eric Tavares da Costa, Leonardo Araujo Schenberg, Lucas Colucci Ducati, Claudimir Lucio do Lago

NMR spectroscopy has become a standard technique in studies both on carbon capture and storage. 13C NMR allows the detection of two peaks for carbonated aqueous samples: one for CO2(aq) and another one for the species H2CO3, HCO3, and CO32−—herein collectively named HxCO3x-2. The chemical shift of this second peak depends on the molar fraction of the three species in equilibrium and has been used to assess the equilibrium between HCO3 and CO32−. The detection of H2CO3 at low pH solutions is hindered, because of the concurrent liberation of CO2 when the medium is acidified. Herein, a valved NMR tube facilitates the detection of the HxCO3x-2 peak across a wide pH range, even at pH 1.8 where the dominant species is H2CO3. The method employed the formation of frozen layers of NaH13CO3 and acid solutions within the tube, which are mixed as the tube reaches room temperature. At this point, the tube is already securely sealed, preventing any loss of CO2 to the atmosphere. A spectrophotometry approach allowed the measurement of the actual pH inside the pressurized NMR tube. The chemical shift for H2CO3 was determined as 160.33 ± 0.03 ppm, which is in good agreement with value obtained by DFT calculations combined with Car–Parrinello molecular dynamics. The H2CO3 pKa value determined by the present method was 3.41 ± 0.03, for 15% D2O aqueous medium and 0.8 mol/L ionic strength. The proposed method can be extended to studies about analogs such as alkyl carbonic and carbamic acids.

核磁共振光谱已成为碳捕获和碳封存研究的标准技术。13 C NMR 可以检测碳酸化水溶液样品的两个峰值:一个是 CO2(aq)峰值,另一个是 H2 CO3、HCO3 - 和 CO3 2 峰值,因此统称为 Hx CO3 x-2。第二个峰的化学位移取决于处于平衡状态的三个物种的摩尔分数,并被用于评估 HCO3 - 和 CO3 2 - 之间的平衡。在 pH 值较低的溶液中检测 H2 CO3 会受到阻碍,因为当介质酸化时会同时释放出 CO2。在此,带阀 NMR 管有助于在较宽的 pH 值范围内检测 Hx CO3 x-2 峰,甚至在 pH 值为 1.8 时也能检测到,因为此时的主要物种是 H2 CO3。该方法采用在管内形成 NaH13 CO3 和酸溶液的冷冻层,并在管达到室温时进行混合。此时,试管已被牢牢密封,防止任何二氧化碳流失到大气中。采用分光光度法可测量加压 NMR 管内的实际 pH 值。H2 CO3 的化学位移被测定为 160.33 ± 0.03 ppm,与结合 Car-Parrinello 分子动力学的 DFT 计算值十分吻合。在 15% D2 O 水介质和 0.8 mol/L 离子强度条件下,本方法测定的 H2 CO3 pKa 值为 3.41 ± 0.03。所提出的方法可扩展到烷基碳酸和氨基甲酸等类似物的研究。
{"title":"13C NMR as an analytical tool for the detection of carbonic acid and pKa determination","authors":"Daniel Rossado Oliveira,&nbsp;Eric Tavares da Costa,&nbsp;Leonardo Araujo Schenberg,&nbsp;Lucas Colucci Ducati,&nbsp;Claudimir Lucio do Lago","doi":"10.1002/mrc.5430","DOIUrl":"10.1002/mrc.5430","url":null,"abstract":"<p>NMR spectroscopy has become a standard technique in studies both on carbon capture and storage. <sup>13</sup>C NMR allows the detection of two peaks for carbonated aqueous samples: one for CO<sub>2(aq)</sub> and another one for the species H<sub>2</sub>CO<sub>3</sub>, HCO<sub>3</sub><sup>−</sup>, and CO<sub>3</sub><sup>2−</sup>—herein collectively named H<sub>x</sub>CO<sub>3</sub><sup>x-2</sup>. The chemical shift of this second peak depends on the molar fraction of the three species in equilibrium and has been used to assess the equilibrium between HCO<sub>3</sub><sup>−</sup> and CO<sub>3</sub><sup>2−</sup>. The detection of H<sub>2</sub>CO<sub>3</sub> at low pH solutions is hindered, because of the concurrent liberation of CO<sub>2</sub> when the medium is acidified. Herein, a valved NMR tube facilitates the detection of the H<sub>x</sub>CO<sub>3</sub><sup>x-2</sup> peak across a wide pH range, even at pH 1.8 where the dominant species is H<sub>2</sub>CO<sub>3</sub>. The method employed the formation of frozen layers of NaH<sup>13</sup>CO<sub>3</sub> and acid solutions within the tube, which are mixed as the tube reaches room temperature. At this point, the tube is already securely sealed, preventing any loss of CO<sub>2</sub> to the atmosphere. A spectrophotometry approach allowed the measurement of the actual pH inside the pressurized NMR tube. The chemical shift for H<sub>2</sub>CO<sub>3</sub> was determined as 160.33 ± 0.03 ppm, which is in good agreement with value obtained by DFT calculations combined with Car–Parrinello molecular dynamics. The H<sub>2</sub>CO<sub>3</sub> p<i>K</i><sub><i>a</i></sub> value determined by the present method was 3.41 ± 0.03, for 15% D<sub>2</sub>O aqueous medium and 0.8 mol/L ionic strength. The proposed method can be extended to studies about analogs such as alkyl carbonic and carbamic acids.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 2","pages":"114-120"},"PeriodicalIF":2.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combination of inorganic phosphate and pyrophosphate 31P-NMR for the electrodeless pH determination in the 5–12 range 结合无机磷酸盐和焦磷酸盐 31 P-NMR 进行 5-12 范围内的无电极 pH 值测定。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-20 DOI: 10.1002/mrc.5429
Paola Carta, Mariano Andrea Scorciapino

Potentiometry is the primary pH measurement method, but alternatives are sought beyond glass electrodes operative limitations. In nuclear magnetic resonance (NMR) experiments, electrodeless pH sensing is important to track changes along titrations, during chemical reactions or inside compartmentalized environments inaccessible to electrodes, for instance. Although several interesting NMR pH indicators have been already presented, the potential of inorganic phosphate is overlooked, despite its common presence in NMR samples as the buffer main component. Its use for electrodeless pH determination can be expanded by exploiting all its three proton dissociations. This study was aimed at verifying the use of inorganic phosphate 31P chemical shift to sense pH variations, and at exploring the complementary use of pyrophosphate ions to cover a wide pH range. A simple set of equations is presented to utilize both phosphate and pyrophosphate 31P chemical shift in combination for accurate pH determination without a glass electrode over the 5–12 pH range, and without affecting the spectrum of other nuclei. The present study demonstrated an average deviation of 0.09 (maximum <0.2) pH unit from glass electrode measurements. The trimethylphosphate can be used as a suitable chemical shift reference for both 31P and 1H (also 13C), with its hydrolysis being significant only at pH > 12. The method was also demonstrated by determining the pKa of three distinct molecules in a mixture and by comparing the results to those obtained when the glass electrode was used to measure the pH. The approach shown here can be easily tuned to different experimental conditions.

电位计是测量 pH 值的主要方法,但除了玻璃电极的操作限制外,人们还在寻求其他方法。在核磁共振(NMR)实验中,无电极 pH 值感应对于跟踪滴定过程、化学反应过程或电极无法进入的分隔环境中的变化非常重要。尽管已经介绍了几种有趣的核磁共振 pH 指示剂,但无机磷酸盐的潜力却被忽视了,尽管它作为缓冲剂的主要成分普遍存在于核磁共振样品中。通过利用无机磷酸盐的三种质子解离,可以扩大其在无电极 pH 值测定中的应用。本研究旨在验证利用无机磷酸盐 31 P 化学位移来感知 pH 值变化,并探索焦磷酸离子的互补使用,以覆盖较宽的 pH 值范围。本研究提出了一套简单的方程,结合使用磷酸盐和焦磷酸 31 P 化学位移,在 5-12 pH 范围内无需玻璃电极即可准确测定 pH 值,且不会影响其他核素的光谱。本研究表明,该方法的平均偏差为 0.09(31 P 和 1 H(也包括 13 C)的最大值),其水解作用仅在 pH 值大于 12 时才显著。通过测定混合物中三种不同分子的 pKa,并将结果与使用玻璃电极测量 pH 值时的结果进行比较,也证明了该方法的有效性。这里展示的方法很容易根据不同的实验条件进行调整。
{"title":"The combination of inorganic phosphate and pyrophosphate 31P-NMR for the electrodeless pH determination in the 5–12 range","authors":"Paola Carta,&nbsp;Mariano Andrea Scorciapino","doi":"10.1002/mrc.5429","DOIUrl":"10.1002/mrc.5429","url":null,"abstract":"<p>Potentiometry is the primary pH measurement method, but alternatives are sought beyond glass electrodes operative limitations. In nuclear magnetic resonance (NMR) experiments, electrodeless pH sensing is important to track changes along titrations, during chemical reactions or inside compartmentalized environments inaccessible to electrodes, for instance. Although several interesting NMR pH indicators have been already presented, the potential of inorganic phosphate is overlooked, despite its common presence in NMR samples as the buffer main component. Its use for electrodeless pH determination can be expanded by exploiting all its three proton dissociations. This study was aimed at verifying the use of inorganic phosphate <sup>31</sup>P chemical shift to sense pH variations, and at exploring the complementary use of pyrophosphate ions to cover a wide pH range. A simple set of equations is presented to utilize both phosphate and pyrophosphate <sup>31</sup>P chemical shift in combination for accurate pH determination without a glass electrode over the 5–12 pH range, and without affecting the spectrum of other nuclei. The present study demonstrated an average deviation of 0.09 (maximum &lt;0.2) pH unit from glass electrode measurements. The trimethylphosphate can be used as a suitable chemical shift reference for both <sup>31</sup>P and <sup>1</sup>H (also <sup>13</sup>C), with its hydrolysis being significant only at pH &gt; 12. The method was also demonstrated by determining the pKa of three distinct molecules in a mixture and by comparing the results to those obtained when the glass electrode was used to measure the pH. The approach shown here can be easily tuned to different experimental conditions.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 2","pages":"101-113"},"PeriodicalIF":2.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative at-line monitoring of enzymatic hydrolysis using benchtop diffusion nuclear magnetic resonance spectroscopy 利用台式扩散核磁共振光谱对酶水解进行在线定量监测。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.1002/mrc.5427
Evan R. McCarney, Kenneth A. Kristoffersen, Kathryn E. Anderssen

Benchtop diffusion nuclear magnetic resonance (NMR) spectroscopy was used to perform quantitative monitoring of enzymatic hydrolysis. The study aimed to test the feasibility of the technology to characterize enzymatic hydrolysis processes in real time. Diffusion ordered spectroscopy (DOSY) was used to measure the signal intensity and apparent self-diffusion constant of solubilized protein in hydrolysate. The NMR technique was tested on an enzymatic hydrolysis reaction of red cod, a lean white fish, by the endopeptidase alcalase at 50°C. Hydrolysate samples were manually transferred from the reaction vessel to the NMR equipment. Measurement time was approximately 3 min per time point. The signal intensity from the DOSY experiment was used to measure protein concentration and the apparent self-diffusion constant was converted into an average molecular weight and an estimated degree of hydrolysis. These values were plotted as a function of time and both the rate of solubilization and the rate of protein breakdown could be calculated. In addition to being rapid and noninvasive, DOSY using benchtop NMR spectroscopy has an advantage compared with other enzymatic hydrolysis characterization methods as it gives a direct measure of average protein size; many functional properties of proteins are strongly influenced by protein size. Therefore, a method to give protein concentration and average size in real time will allow operators to more tightly control production from enzymatic hydrolysis. Although only one type of material was tested, it is anticipated that the method should be applicable to a broad variety of enzymatic hydrolysis feedstocks.

利用台式扩散核磁共振 (NMR) 光谱对酶水解过程进行定量监测。该研究旨在测试该技术实时表征酶水解过程的可行性。扩散有序光谱(DOSY)用于测量水解物中溶解蛋白质的信号强度和表观自扩散常数。核磁共振技术在红鳕鱼(一种瘦的白鱼)的酶水解反应中进行了测试,该反应是由内肽酶在 50°C 下进行的。水解物样品由人工从反应容器转移到 NMR 设备。每个时间点的测量时间约为 3 分钟。DOSY 实验的信号强度用于测量蛋白质浓度,表观自扩散常数被转换成平均分子量和估计的水解程度。将这些值绘制成时间函数图,就可以计算出溶解速率和蛋白质分解速率。与其他酶水解表征方法相比,使用台式核磁共振光谱的 DOSY 除了快速、非侵入性之外,还有一个优势,即它可以直接测量蛋白质的平均大小;蛋白质的许多功能特性受蛋白质大小的影响很大。因此,一种能实时提供蛋白质浓度和平均大小的方法将使操作人员能够更严格地控制酶水解的生产。虽然只测试了一种原料,但预计该方法应适用于多种酶水解原料。
{"title":"Quantitative at-line monitoring of enzymatic hydrolysis using benchtop diffusion nuclear magnetic resonance spectroscopy","authors":"Evan R. McCarney,&nbsp;Kenneth A. Kristoffersen,&nbsp;Kathryn E. Anderssen","doi":"10.1002/mrc.5427","DOIUrl":"10.1002/mrc.5427","url":null,"abstract":"<p>Benchtop diffusion nuclear magnetic resonance (NMR) spectroscopy was used to perform quantitative monitoring of enzymatic hydrolysis. The study aimed to test the feasibility of the technology to characterize enzymatic hydrolysis processes in real time. Diffusion ordered spectroscopy (DOSY) was used to measure the signal intensity and apparent self-diffusion constant of solubilized protein in hydrolysate. The NMR technique was tested on an enzymatic hydrolysis reaction of red cod, a lean white fish, by the endopeptidase alcalase at 50°C. Hydrolysate samples were manually transferred from the reaction vessel to the NMR equipment. Measurement time was approximately 3 min per time point. The signal intensity from the DOSY experiment was used to measure protein concentration and the apparent self-diffusion constant was converted into an average molecular weight and an estimated degree of hydrolysis. These values were plotted as a function of time and both the rate of solubilization and the rate of protein breakdown could be calculated. In addition to being rapid and noninvasive, DOSY using benchtop NMR spectroscopy has an advantage compared with other enzymatic hydrolysis characterization methods as it gives a direct measure of average protein size; many functional properties of proteins are strongly influenced by protein size. Therefore, a method to give protein concentration and average size in real time will allow operators to more tightly control production from enzymatic hydrolysis. Although only one type of material was tested, it is anticipated that the method should be applicable to a broad variety of enzymatic hydrolysis feedstocks.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 6","pages":"452-462"},"PeriodicalIF":2.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5427","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR characterization of uniformly 13C- and/or 15N-labeled, unsulfated chondroitins with high molecular weights 统一 13 C 和/或 15 N 标记的高分子量非硫酸化软骨素的核磁共振特征。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.1002/mrc.5426
Megumi Ichikawa, Yuya Otsuka, Toshikazu Minamisawa, Noriyoshi Manabe, Yoshiki Yamaguchi

Solution nuclear magnetic resonance (NMR) analysis of polysaccharides can provide valuable information not only on their primary structures but also on their conformation, dynamics, and interactions under physiological conditions. One of the main problems is that non-anomeric 1H signals typically overlap, and this often hinders detailed NMR analysis. Isotope enrichment, such as with 13C and 15N, will add a new dimension to the NMR spectra of polysaccharides, and spectral analysis can be performed with enhanced sensitivity using isolated peaks. For this purpose, here we have prepared uniformly 13C- and/or 15N-labeled chondroitin polysaccharides –4)-β-D-glucuronopyranosyl-(1–3)-2-acetamido-2-deoxy-β-D-galactopyranosyl-(1– with molecular weights in the range from 310 to 460 k by bacterial fermentation. The enrichment ratios for 13C and 15N were 98.9 and 99.8%, respectively, based on the mass spectrometric analysis of the constituent chondroitin disaccharides. 1H and 13C NMR signals were assigned mainly based on HSQC and 13C-detection experiments including INADEQUATE, HETCOR, and HETCOR-TOCSY. The carbonyl carbon signal of the N-acetyl-β-D-galactosamine residue was unambiguously distinguished from the C6 carbon of the β-D-glucuronic acid residue by the observation of 13C peak splitting due to 1JCN coupling in 13C- and 15N-labeled chondroitin. The T2* and T1 were measured and indicate that both rigid and mobile sites are present in the long sequence of chondroitin. The conformation, dynamics, and interactions of chondroitin and its derivatives will be further analyzed based on the results obtained in this study.

多糖的溶液核磁共振(NMR)分析不仅能提供有关多糖一级结构的宝贵信息,还能提供有关多糖在生理条件下的构象、动力学和相互作用的宝贵信息。主要问题之一是非同分异构体的 1 H 信号通常会重叠,这往往会妨碍详细的 NMR 分析。同位素富集(如 13 C 和 15 N)将为多糖的 NMR 图谱增添新的维度,利用分离峰可提高光谱分析的灵敏度。为此,我们通过细菌发酵制备了分子量在 310 至 460 k 范围内的 13 C 和/或 15 N 标记的软骨素多糖-4)-β-D-吡喃葡萄糖基-(1-3)-2-乙酰氨基-2-脱氧-β-D-吡喃半乳糖基-(1-)。根据对组成软骨素二糖的质谱分析,13 C 和 15 N 的富集率分别为 98.9% 和 99.8%。1 H 和 13 C NMR 信号的分配主要基于 HSQC 和 13 C 检测实验,包括 INADEQUATE、HETCOR 和 HETCOR-TOCSY。通过观察 13 C 和 15 N 标记软骨素中 1 JCN 耦合导致的 13 C 峰分裂,可以明确区分 N-乙酰基-β-D-半乳糖胺残基的羰基碳信号和 β-D- 葡糖醛酸残基的 C6 碳信号。对 T2 * 和 T1 的测量表明,软骨素的长序列中既有刚性位点,也有移动位点。根据本研究的结果,我们将进一步分析软骨素及其衍生物的构象、动力学和相互作用。
{"title":"NMR characterization of uniformly 13C- and/or 15N-labeled, unsulfated chondroitins with high molecular weights","authors":"Megumi Ichikawa,&nbsp;Yuya Otsuka,&nbsp;Toshikazu Minamisawa,&nbsp;Noriyoshi Manabe,&nbsp;Yoshiki Yamaguchi","doi":"10.1002/mrc.5426","DOIUrl":"10.1002/mrc.5426","url":null,"abstract":"<p>Solution nuclear magnetic resonance (NMR) analysis of polysaccharides can provide valuable information not only on their primary structures but also on their conformation, dynamics, and interactions under physiological conditions. One of the main problems is that non-anomeric <sup>1</sup>H signals typically overlap, and this often hinders detailed NMR analysis. Isotope enrichment, such as with <sup>13</sup>C and <sup>15</sup>N, will add a new dimension to the NMR spectra of polysaccharides, and spectral analysis can be performed with enhanced sensitivity using isolated peaks. For this purpose, here we have prepared uniformly <sup>13</sup>C- and/or <sup>15</sup>N-labeled chondroitin polysaccharides –4)-β-D-glucuronopyranosyl-(1–3)-2-acetamido-2-deoxy-β-D-galactopyranosyl-(1– with molecular weights in the range from 310 to 460 k by bacterial fermentation. The enrichment ratios for <sup>13</sup>C and <sup>15</sup>N were 98.9 and 99.8%, respectively, based on the mass spectrometric analysis of the constituent chondroitin disaccharides. <sup>1</sup>H and <sup>13</sup>C NMR signals were assigned mainly based on HSQC and <sup>13</sup>C-detection experiments including INADEQUATE, HETCOR, and HETCOR-TOCSY. The carbonyl carbon signal of the <i>N</i>-acetyl-β-D-galactosamine residue was unambiguously distinguished from the C6 carbon of the β-D-glucuronic acid residue by the observation of <sup>13</sup>C peak splitting due to <sup>1</sup><i>J</i><sub>CN</sub> coupling in <sup>13</sup>C- and <sup>15</sup>N-labeled chondroitin. The <i>T</i><sub>2</sub>* and <i>T</i><sub>1</sub> were measured and indicate that both rigid and mobile sites are present in the long sequence of chondroitin. The conformation, dynamics, and interactions of chondroitin and its derivatives will be further analyzed based on the results obtained in this study.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 6","pages":"439-451"},"PeriodicalIF":2.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139484262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing between COOH, COO−, and hydrogen disordered COOH sites in solids with 13C chemical shift anisotropy and T1 measurements 利用 13 C 化学位移各向异性和 T1 测量区分固体中的 COOH、COO- 和氢无序 COOH 位点。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.1002/mrc.5425
Ryan Toomey, Jacob Powell, Jacob Cheever, James K. Harper

Since 1993, it has been known that 13C chemical shift tensor (i.e., δ11, δ22, and δ33) provides information sufficient to distinguish between COOH and COO sites. Herein, four previously unreported metrics are proposed for differentiating COOH/COO moieties. A new relationship is also introduced that correlates the asymmetry (i.e., δ11–δ22) of COOH sites to the proximity of hydrogen bond donating partners within 2.6 Å with high accuracy (±0.05 Å). Conversely, a limitation to all proposed metrics is that they fail to distinguish between COO and hydrogen disordered COOH sites. To reconcile this omission, a new approach is proposed based on T1 measurements of both 1H and 13C. The 13C T1 values are particularly sensitive with the T1 for hydrogen disordered COOH moieties found to be nearly six times smaller than T1's from COO sites.

自 1993 年以来,人们就知道 13 C 化学位移张量(即 δ11 、 δ22 和 δ33 )提供的信息足以区分 COOH 和 COO- 位点。在此,我们提出了四种以前未报道过的用于区分 COOH/COO- 分子的指标。此外,还引入了一种新的关系,将 COOH 位点的不对称性(即 δ11 -δ22 )与氢键捐赠伙伴在 2.6 Å 范围内的接近程度相关联,且精确度极高(±0.05 Å)。相反,所有提出的度量方法都有一个局限性,那就是它们无法区分 COO-和氢键无序的 COOH 位点。13 C T1 值特别敏感,发现氢无序 COOH 分子的 T1 比 COO- 位点的 T1 小近六倍。
{"title":"Distinguishing between COOH, COO−, and hydrogen disordered COOH sites in solids with 13C chemical shift anisotropy and T1 measurements","authors":"Ryan Toomey,&nbsp;Jacob Powell,&nbsp;Jacob Cheever,&nbsp;James K. Harper","doi":"10.1002/mrc.5425","DOIUrl":"10.1002/mrc.5425","url":null,"abstract":"<p>Since 1993, it has been known that <sup>13</sup>C chemical shift tensor (i.e., δ<sub>11</sub>, δ<sub>22</sub>, and δ<sub>33</sub>) provides information sufficient to distinguish between COOH and COO<sup>−</sup> sites. Herein, four previously unreported metrics are proposed for differentiating COOH/COO<sup>−</sup> moieties. A new relationship is also introduced that correlates the asymmetry (i.e., δ<sub>11</sub>–δ<sub>22</sub>) of COOH sites to the proximity of hydrogen bond donating partners within 2.6 Å with high accuracy (±0.05 Å). Conversely, a limitation to all proposed metrics is that they fail to distinguish between COO<sup>−</sup> and hydrogen disordered COOH sites. To reconcile this omission, a new approach is proposed based on <i>T</i><sub>1</sub> measurements of both <sup>1</sup>H and <sup>13</sup>C. The <sup>13</sup>C <i>T</i><sub>1</sub> values are particularly sensitive with the <i>T</i><sub>1</sub> for hydrogen disordered COOH moieties found to be nearly six times smaller than <i>T</i><sub>1</sub>'s from COO<sup>−</sup> sites.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 3","pages":"190-197"},"PeriodicalIF":2.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brewing alcohol 101: An undergraduate experiment utilizing benchtop NMR for quantification and process monitoring 酿造酒精 101:利用台式 NMR 进行定量和过程监控的本科生实验。
IF 2 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-01-17 DOI: 10.1002/mrc.5428
Amy Jenne, Ronald Soong, Katelyn Downey, Rajshree Ghosh Biswas, Venita Decker, Falko Busse, Benjamin Goerling, Agnes Haber, Myrna J. Simpson, Andre J. Simpson

In recent years there has been a renewed interest in benchtop NMR. Given their lower cost of ownership, smaller footprint, and ease of use, they are especially suited as an educational tool. Here, a new experiment targeted at upper-year undergraduates and first-year graduate students follows the conversion of D-glucose into ethanol at low-field. First, high and low-field data on D-glucose are compared and students learn both the Hz and ppm scales and how J-coupling is field-independent. The students then acquire their own quantitative NMR datasets and perform the quantification using an Electronic Reference To Access In Vivo Concentration (ERETIC) technique. To our knowledge ERETIC is not currently taught at the undergraduate level, but has an advantage in that internal standards are not required; ideal for following processes or with future use in flow-based benchtop monitoring. Using this quantitative data, students can relate a simple chemical process (fermentation) back to more complex topics such as reaction kinetics, bridging the gaps between analytical and physical chemistry. When asked to reflect on the experiment, students had an overwhelmingly positive experience, citing agreement with learning objectives, ease of understanding the protocol, and enjoyment. Each of the respondents recommended this experiment as a learning tool for others. This experiment has been outlined for other instructors to utilize in their own courses across institutions, with the hope that a continued expansion of low-field NMR will increase accessibility and learning opportunities at the undergraduate level.

近年来,人们对台式 NMR 重新产生了兴趣。由于台式 NMR 的拥有成本较低、占地面积较小且易于使用,因此特别适合用作教育工具。在此,我们针对高年级本科生和一年级研究生开展了一项新实验,跟踪 D-葡萄糖在低场下转化为乙醇的过程。首先,对 D-葡萄糖的高场和低场数据进行比较,让学生了解赫兹和 ppm 尺度以及 J 耦合与场无关的原理。然后,学生们获取自己的定量 NMR 数据集,并使用电子参考获取体内浓度 (ERETIC) 技术进行定量。据我们所知,ERETIC 目前尚未在本科阶段教授,但其优点是不需要内部标准;非常适合跟踪过程或将来用于基于流动的台式监测。利用这些定量数据,学生可以将简单的化学过程(发酵)与反应动力学等更复杂的课题联系起来,从而缩小分析化学与物理化学之间的差距。当被要求对实验进行反思时,学生们的体验非常积极,他们认为实验与学习目标一致, 实验方案易于理解,而且学生们乐在其中。每个受访者都推荐将此实验作为学习工具。本实验已被概述,供其他教师在各院校的课程中使用,希望低场核磁共振的不断扩展能增加本科生的学习机会。
{"title":"Brewing alcohol 101: An undergraduate experiment utilizing benchtop NMR for quantification and process monitoring","authors":"Amy Jenne,&nbsp;Ronald Soong,&nbsp;Katelyn Downey,&nbsp;Rajshree Ghosh Biswas,&nbsp;Venita Decker,&nbsp;Falko Busse,&nbsp;Benjamin Goerling,&nbsp;Agnes Haber,&nbsp;Myrna J. Simpson,&nbsp;Andre J. Simpson","doi":"10.1002/mrc.5428","DOIUrl":"10.1002/mrc.5428","url":null,"abstract":"<p>In recent years there has been a renewed interest in benchtop NMR. Given their lower cost of ownership, smaller footprint, and ease of use, they are especially suited as an educational tool. Here, a new experiment targeted at upper-year undergraduates and first-year graduate students follows the conversion of D-glucose into ethanol at low-field. First, high and low-field data on D-glucose are compared and students learn both the Hz and ppm scales and how J-coupling is field-independent. The students then acquire their own quantitative NMR datasets and perform the quantification using an Electronic Reference To Access In Vivo Concentration (ERETIC) technique. To our knowledge ERETIC is not currently taught at the undergraduate level, but has an advantage in that internal standards are not required; ideal for following processes or with future use in flow-based benchtop monitoring. Using this quantitative data, students can relate a simple chemical process (fermentation) back to more complex topics such as reaction kinetics, bridging the gaps between analytical and physical chemistry. When asked to reflect on the experiment, students had an overwhelmingly positive experience, citing agreement with learning objectives, ease of understanding the protocol, and enjoyment. Each of the respondents recommended this experiment as a learning tool for others. This experiment has been outlined for other instructors to utilize in their own courses across institutions, with the hope that a continued expansion of low-field NMR will increase accessibility and learning opportunities at the undergraduate level.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 6","pages":"429-438"},"PeriodicalIF":2.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5428","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Magnetic Resonance in Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1