Pub Date : 2024-01-12DOI: 10.2113/2024/lithosphere_2023_233
Chen Zuo, Chen Guo, Shi Dong, Longhai Yang, Haoyue Zhang
Three-dimensional (3D) microstructure reconstruction is a key approach to exploring the relationship between pore characteristics and physical properties. Viewing the training image as a prior model, multiple-point statistics (MPS) focus on reproducing spatial patterns in the simulation grid. However, it is challenging to efficiently generate 3D nonstationary models with varying microstructures. In this work, we propose column-oriented simulation (ColSIM) to achieve the stochastic reconstruction of 3D porous media. A heterogeneous system is understood as a spatially evolving process that consists of frequent transitions of small magnitude and abrupt changes of large magnitude. First, a training image selection step is suggested to find representative microstructures. Our program applies modified Hausdorff distance, t-distributed stochastic neighboring embedding, and spectral clustering to organize two-dimensional (2D) candidate images. The medoid of each group is applied to guide the following programs. Second, we introduce column-oriented searching into MPS. To save simulation time, a subset of conditioning points is checked to find desired instances. Our program suggests an early stopping strategy to address complex microstructures. Third, a contrastive loss term is designed to create 3D models from 2D slice. To automatically calibrate the volume fraction and simplify parameter specification, the computer consistently monitors the difference between the present model and the target. The performance of ColSIM is examined by 3D multiphase material modeling and 3D heterogeneous shale simulation. To achieve quantitative evaluation, we compute various statistical functions and physical descriptors on simulated realizations. The proposed ColSIM exhibits competitive performance in terms of calculation efficiency, microstructure reproduction, and spatial uncertainty.Microstructure models are increasingly recognized as a fundamental component in various geological and geophysical applications. Recent research in computational mineral physics has highlighted the need for high-quality realizations to express the microstructure of interest [1]. Compared with the traditional experiment analysis, computational methods provide a low-cost way to build the bridge between spatial structure and physical property [2]. In petroleum exploration, three-dimensional (3D) digital rock becomes an essential tool to study the pore connectivity and permeability [3]. With the development of imaging devices, computed tomography (CT), magnetic resonance imaging (MRI), and focused ion beam have become important sources for directly presenting 3D microstructure of porous media [4, 5]. However, randomness and uncertainty are key concepts in the subsurface system. Only a few accurate models cannot completely represent the variability during microstructure synthesis and evolution. Therefore, stochastic microstructure reconstruction is gaining popularity [6]. Based on a prior image,
{"title":"Stochastic Reconstruction of 3D Heterogeneous Microstructure Using a Column-Oriented Multiple-Point Statistics Program","authors":"Chen Zuo, Chen Guo, Shi Dong, Longhai Yang, Haoyue Zhang","doi":"10.2113/2024/lithosphere_2023_233","DOIUrl":"https://doi.org/10.2113/2024/lithosphere_2023_233","url":null,"abstract":"Three-dimensional (3D) microstructure reconstruction is a key approach to exploring the relationship between pore characteristics and physical properties. Viewing the training image as a prior model, multiple-point statistics (MPS) focus on reproducing spatial patterns in the simulation grid. However, it is challenging to efficiently generate 3D nonstationary models with varying microstructures. In this work, we propose column-oriented simulation (ColSIM) to achieve the stochastic reconstruction of 3D porous media. A heterogeneous system is understood as a spatially evolving process that consists of frequent transitions of small magnitude and abrupt changes of large magnitude. First, a training image selection step is suggested to find representative microstructures. Our program applies modified Hausdorff distance, t-distributed stochastic neighboring embedding, and spectral clustering to organize two-dimensional (2D) candidate images. The medoid of each group is applied to guide the following programs. Second, we introduce column-oriented searching into MPS. To save simulation time, a subset of conditioning points is checked to find desired instances. Our program suggests an early stopping strategy to address complex microstructures. Third, a contrastive loss term is designed to create 3D models from 2D slice. To automatically calibrate the volume fraction and simplify parameter specification, the computer consistently monitors the difference between the present model and the target. The performance of ColSIM is examined by 3D multiphase material modeling and 3D heterogeneous shale simulation. To achieve quantitative evaluation, we compute various statistical functions and physical descriptors on simulated realizations. The proposed ColSIM exhibits competitive performance in terms of calculation efficiency, microstructure reproduction, and spatial uncertainty.Microstructure models are increasingly recognized as a fundamental component in various geological and geophysical applications. Recent research in computational mineral physics has highlighted the need for high-quality realizations to express the microstructure of interest [1]. Compared with the traditional experiment analysis, computational methods provide a low-cost way to build the bridge between spatial structure and physical property [2]. In petroleum exploration, three-dimensional (3D) digital rock becomes an essential tool to study the pore connectivity and permeability [3]. With the development of imaging devices, computed tomography (CT), magnetic resonance imaging (MRI), and focused ion beam have become important sources for directly presenting 3D microstructure of porous media [4, 5]. However, randomness and uncertainty are key concepts in the subsurface system. Only a few accurate models cannot completely represent the variability during microstructure synthesis and evolution. Therefore, stochastic microstructure reconstruction is gaining popularity [6]. Based on a prior image,","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The implementation of the multicluster fracturing technique in horizontal wells is crucial to the economic development of shale gas reservoirs. The stress shadow area generated by them suppresses the effective expansion of fractures, leading to lower construction quality. Numerous well logging and production data indicate that dynamic flow allocation is also an important mechanism restricting oil and gas production. To reveal the mechanism of multifracture synchronous competitive expansion, a multifracture expansion finite element model considering fluid-solid coupling in porous media was established. A wellbore model was built to characterize the fluid pressure drop, incorporating pipe flow and fluid connection elements to emulate fluid flow within the wellbore, and the influence of various factors on the balanced expansion of fractures was investigated. The results show that high porosity, uniform perforation, and high elastic modulus of sweet spots are favorable for the balanced expansion of multiple fractures when using high-volume and low-viscosity fracturing fluids. When the spacing is small and the porosity is low with nonuniform perforation, the threshold generated by perforation friction will dominate the balanced fluid injection and expansion of each fracture. The horizontal well fracturing plan in a certain area of southwest China was optimized using this model. After optimization, when the spacing is less than 15 m, the total number of perforations is 32, and the average injection rate per cluster will be increased by 0.125 m3/min, with a coefficient of variation of 3.9% among clusters. When the perforations are nonuniformly distributed, the average injection rate per cluster will be increased by 0.101 m3/min, the fluid inflow difference coefficient of each cluster is 4.1%, and multiclusters will have a uniformly developed fracture network. This study has certain guiding significance and reference value for the balanced expansion of multifractures in horizontal wells.
{"title":"Study on the Impact of Flow Dynamic Allocation Mechanism on the Balanced Propagation of Multicluster Fractures in Horizontal Wells","authors":"Qi Chen, Hao Huang, Xiangwei Kong, Bing Liu, Fubin Xin","doi":"10.2113/2023/lithosphere_2023_167","DOIUrl":"https://doi.org/10.2113/2023/lithosphere_2023_167","url":null,"abstract":"\u0000 The implementation of the multicluster fracturing technique in horizontal wells is crucial to the economic development of shale gas reservoirs. The stress shadow area generated by them suppresses the effective expansion of fractures, leading to lower construction quality. Numerous well logging and production data indicate that dynamic flow allocation is also an important mechanism restricting oil and gas production. To reveal the mechanism of multifracture synchronous competitive expansion, a multifracture expansion finite element model considering fluid-solid coupling in porous media was established. A wellbore model was built to characterize the fluid pressure drop, incorporating pipe flow and fluid connection elements to emulate fluid flow within the wellbore, and the influence of various factors on the balanced expansion of fractures was investigated. The results show that high porosity, uniform perforation, and high elastic modulus of sweet spots are favorable for the balanced expansion of multiple fractures when using high-volume and low-viscosity fracturing fluids. When the spacing is small and the porosity is low with nonuniform perforation, the threshold generated by perforation friction will dominate the balanced fluid injection and expansion of each fracture. The horizontal well fracturing plan in a certain area of southwest China was optimized using this model. After optimization, when the spacing is less than 15 m, the total number of perforations is 32, and the average injection rate per cluster will be increased by 0.125 m3/min, with a coefficient of variation of 3.9% among clusters. When the perforations are nonuniformly distributed, the average injection rate per cluster will be increased by 0.101 m3/min, the fluid inflow difference coefficient of each cluster is 4.1%, and multiclusters will have a uniformly developed fracture network. This study has certain guiding significance and reference value for the balanced expansion of multifractures in horizontal wells.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"47 14","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.2113/2023/lithosphere_2023_206
Ming Cao, Meng Wang, Youxin Chen, Xianzhi Pei, Zuochen Li, Jinjiang Zhang, Bo Zhang, Zhian Bao, Da Xu
Despite extensive research work that has been done, whether the northern margin of the Yili Block (YB) is still an active continental margin during the early Carboniferous period is still in debate. Herein, we conducted zircon U–Pb geochronology, geochemistry, and zircon Lu–Hf isotope studies on the Qulihai pluton in the northern margin of the YB to constrain the petrogenesis and dynamic process. The Qulihai pluton is a granitoid complex that is composed of quartz diorite, quartz monzonite, and syenogranite. The zircon U–Pb dating results revealed that the pluton was formed and emplaced between 346 and 342 Ma. The three different Qulihai pluton rock types had comparable εHf(t) values, ranging from +3 to +8. The corresponding two-stage model ages of 817–1182 Ma indicated their potential derivation from the Meso-Neoproterozoic juvenile crust. The Qulihai pluton typically features medium-to-high SiO2, K2O, and Al2O3 contents and low MgO and Fe2O3T contents. The quartz diorite and quartz monzonite samples had Mg# values of 43–47, indicating the input of mantle-derived melts in the source area. In contrast, the source region of syenogranite was purely crustal material. The Qulihai pluton is mainly characterized as strong metaluminous moderate-to-high-K cal-alkaline rocks of the I-type granite series, which are enriched in large-ion lithophile elements and depleted in high field strength elements while exhibiting active continental margin island arc magmatism. Our findings, combined with the comprehensive analysis of previous studies, suggest that the Qulihai pluton formation resulted from the subduction of the North Tianshan oceanic crust beneath the YB during the early Carboniferous period, contemporary with the tectonic regime transition from subduction advance to subduction retreat.
{"title":"Petrogenesis and Tectonic Implications of the Qulihai Pluton in the Northern Margin of the Yili Block, NW China","authors":"Ming Cao, Meng Wang, Youxin Chen, Xianzhi Pei, Zuochen Li, Jinjiang Zhang, Bo Zhang, Zhian Bao, Da Xu","doi":"10.2113/2023/lithosphere_2023_206","DOIUrl":"https://doi.org/10.2113/2023/lithosphere_2023_206","url":null,"abstract":"\u0000 Despite extensive research work that has been done, whether the northern margin of the Yili Block (YB) is still an active continental margin during the early Carboniferous period is still in debate. Herein, we conducted zircon U–Pb geochronology, geochemistry, and zircon Lu–Hf isotope studies on the Qulihai pluton in the northern margin of the YB to constrain the petrogenesis and dynamic process. The Qulihai pluton is a granitoid complex that is composed of quartz diorite, quartz monzonite, and syenogranite. The zircon U–Pb dating results revealed that the pluton was formed and emplaced between 346 and 342 Ma. The three different Qulihai pluton rock types had comparable εHf(t) values, ranging from +3 to +8. The corresponding two-stage model ages of 817–1182 Ma indicated their potential derivation from the Meso-Neoproterozoic juvenile crust. The Qulihai pluton typically features medium-to-high SiO2, K2O, and Al2O3 contents and low MgO and Fe2O3T contents. The quartz diorite and quartz monzonite samples had Mg# values of 43–47, indicating the input of mantle-derived melts in the source area. In contrast, the source region of syenogranite was purely crustal material. The Qulihai pluton is mainly characterized as strong metaluminous moderate-to-high-K cal-alkaline rocks of the I-type granite series, which are enriched in large-ion lithophile elements and depleted in high field strength elements while exhibiting active continental margin island arc magmatism. Our findings, combined with the comprehensive analysis of previous studies, suggest that the Qulihai pluton formation resulted from the subduction of the North Tianshan oceanic crust beneath the YB during the early Carboniferous period, contemporary with the tectonic regime transition from subduction advance to subduction retreat.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"33 19","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.2113/2023/lithosphere_2023_254
Zong-Yong Yang, X. Bi, Jing-Jing Zhu, Ruizhong Hu, P. Hollings, Ali Sholeh, Li-Chuan Pan, Mingliang Huang
The subduction of continental crust in orogenic belts that are not associated with high-pressure metamorphism is still poorly understood. The Late Triassic postcollisional granitic rocks of NE Iran are related to the convergence between the Central Iran terrane and the Turan terrane on the southern margin of the Eurasian continent. They intruded into the Paleo-Tethyan suture between the Central Iran and Turan terranes. Granitoids of the Torbat-e-Jam pluton were emplaced at ca. 217 Ma, and their moderately high SiO2 (>64 wt. %), low MgO contents (mostly <2 wt. %), slightly depleted Sr-Nd, and zircon Hf isotopes suggest partial melting of a juvenile crust. Granodiorites from NW and SE Mashhad were emplaced at ca. 217 and 200 Ma, and their geochemical features and enriched Sr-Nd and zircon Hf isotopes suggest melting of continental crust. Inherited zircon cores in both the NW and SE Mashhad intrusions have dominant age peaks of ca. 540 and 770 Ma, similar to the age spectrum of adjacent Paleozoic sediments derived from the Central Iran terrane, but distinct from Triassic sediments sourced from the Turan terrane. The inherited zircon cores cannot be explained by crustal contamination during magma ascent, rather the age pattern of inherited zircon cores coincides with major magmatic events in the Central Iran terrane and fingerprint their source, suggesting partial melting of the subducted Central Iran continental crust. This study suggests that the melting of subducted continental crust can occur in simple collisional belts, rather than being confined to ultrahigh-pressure metamorphic orogenic belts.
{"title":"Melting of Subducted Continental Crust in the Cimmerian Collisional Orogenic Belt, NE Iran","authors":"Zong-Yong Yang, X. Bi, Jing-Jing Zhu, Ruizhong Hu, P. Hollings, Ali Sholeh, Li-Chuan Pan, Mingliang Huang","doi":"10.2113/2023/lithosphere_2023_254","DOIUrl":"https://doi.org/10.2113/2023/lithosphere_2023_254","url":null,"abstract":"\u0000 The subduction of continental crust in orogenic belts that are not associated with high-pressure metamorphism is still poorly understood. The Late Triassic postcollisional granitic rocks of NE Iran are related to the convergence between the Central Iran terrane and the Turan terrane on the southern margin of the Eurasian continent. They intruded into the Paleo-Tethyan suture between the Central Iran and Turan terranes. Granitoids of the Torbat-e-Jam pluton were emplaced at ca. 217 Ma, and their moderately high SiO2 (>64 wt. %), low MgO contents (mostly <2 wt. %), slightly depleted Sr-Nd, and zircon Hf isotopes suggest partial melting of a juvenile crust. Granodiorites from NW and SE Mashhad were emplaced at ca. 217 and 200 Ma, and their geochemical features and enriched Sr-Nd and zircon Hf isotopes suggest melting of continental crust. Inherited zircon cores in both the NW and SE Mashhad intrusions have dominant age peaks of ca. 540 and 770 Ma, similar to the age spectrum of adjacent Paleozoic sediments derived from the Central Iran terrane, but distinct from Triassic sediments sourced from the Turan terrane. The inherited zircon cores cannot be explained by crustal contamination during magma ascent, rather the age pattern of inherited zircon cores coincides with major magmatic events in the Central Iran terrane and fingerprint their source, suggesting partial melting of the subducted Central Iran continental crust. This study suggests that the melting of subducted continental crust can occur in simple collisional belts, rather than being confined to ultrahigh-pressure metamorphic orogenic belts.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"42 50","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-14DOI: 10.2113/2023/lithosphere_2023_227
Jiaxin Huang, Gang Gao, Xiaoming Li, Yonggen Li, Zhixian Gui
Abstract Transverse wave velocity plays an important role in seismic exploration and reservoir assessment in the oil and gas industry. Due to the lack of transverse wave velocity data from actual production activities, it is necessary to predict transverse wave velocity based on longitudinal wave velocity and other reservoir parameters. This paper proposes a fusion network based on spatiotemporal attention mechanism and gated recurrent unit (STAGRU) due to the significant correlation between the transverse wave velocity and reservoir parameters in the spatiotemporal domain. In the case of tight sandstone reservoirs in the Junggar Basin, the intersection plot technique is used to select four well logging parameters that are sensitive to transverse wave velocity: longitudinal wave velocity, density, natural gamma, and neutron porosity. The autocorrelation technique is employed to analyze the depth-related correlation of well logging curves. The relationship between the spatiotemporal characteristics of these well logging data and the network attention weights is also examined to validate the rationale behind incorporating the spatiotemporal attention mechanism. Finally, the actual measurement data from multiple wells are utilized to analyze the performance of the training set and test set separately. The results indicate that the predictive accuracy and generalization ability of the proposed STAGRU method are superior to the single-parameter fitting method, multiparameter fitting method, Xu-White model method, GRU network, and 2DCNN-GRU hybrid network. This demonstrates the feasibility of the transverse wave velocity prediction method based on the spatiotemporal attention mechanism in the study of rock physics modeling for tight sandstone reservoirs.
{"title":"Method for Predicting Transverse Wave Velocity Using a Gated Recurrent Unit Based on Spatiotemporal Attention Mechanism","authors":"Jiaxin Huang, Gang Gao, Xiaoming Li, Yonggen Li, Zhixian Gui","doi":"10.2113/2023/lithosphere_2023_227","DOIUrl":"https://doi.org/10.2113/2023/lithosphere_2023_227","url":null,"abstract":"Abstract Transverse wave velocity plays an important role in seismic exploration and reservoir assessment in the oil and gas industry. Due to the lack of transverse wave velocity data from actual production activities, it is necessary to predict transverse wave velocity based on longitudinal wave velocity and other reservoir parameters. This paper proposes a fusion network based on spatiotemporal attention mechanism and gated recurrent unit (STAGRU) due to the significant correlation between the transverse wave velocity and reservoir parameters in the spatiotemporal domain. In the case of tight sandstone reservoirs in the Junggar Basin, the intersection plot technique is used to select four well logging parameters that are sensitive to transverse wave velocity: longitudinal wave velocity, density, natural gamma, and neutron porosity. The autocorrelation technique is employed to analyze the depth-related correlation of well logging curves. The relationship between the spatiotemporal characteristics of these well logging data and the network attention weights is also examined to validate the rationale behind incorporating the spatiotemporal attention mechanism. Finally, the actual measurement data from multiple wells are utilized to analyze the performance of the training set and test set separately. The results indicate that the predictive accuracy and generalization ability of the proposed STAGRU method are superior to the single-parameter fitting method, multiparameter fitting method, Xu-White model method, GRU network, and 2DCNN-GRU hybrid network. This demonstrates the feasibility of the transverse wave velocity prediction method based on the spatiotemporal attention mechanism in the study of rock physics modeling for tight sandstone reservoirs.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"5 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134991981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract There has been a long debate regarding the timing of the final amalgamation of the North China Craton, which is considered to have occurred either during the Neoarchean or Paleoproterozoic era. One major point of contention is whether there existed a long-lived subduction lasting through the Neoarchean to Paleoproterozoic. The Lüliang Complex contains multiphases of magmatism and thus represents the most viable region to address this controversy. In this study, we carried geochronological and geochemical analysis on the representative granitoids. Secondary ion mass spectrometry U–Pb dating revealed four distinct granitoid groups emplaced at 2531 ± 4, 2189–2173, 2027 ± 25, and 1852 ± 41 Ma, respectively. Notably, the 2531 Ma granitic gneiss was identified for the first time in this region. Based on the geochemical characteristics, the granitoids can be divided into two types. The 2531 and 2027 Ma groups display I-type features, while the 2189–2173 and 1852 Ma groups exhibit A-type geochemical affinities. Both I-type groups exhibit enrichment in Rb, depletion in Nb, Ta, and Ti, moderate fractionated REE patterns, substantial negative Eu anomalies, low Sr/Y ratios, and positive εHf(t) (+3.51 to +5.53 and +5.59 to +7.32, respectively), indicating that they were generated from partial melting of the juvenile mafic crust. In contrast, the 2189–2173 Ma granitoids belong to A2-type and were most likely generated by the partial melting of felsic rocks in the back-arc region, while the 1852 Ma granitoids belong to A1-type and were most possibly the result of partial melting of mafic-intermediate rocks during the post-collisional stage. Based on the records of A-type granitic magmatism and the ~1950 Ma peak metamorphism throughout the Trans-North China Orogen, we propose that a long-lived subduction process (2531–1950 Ma) can mostly explain the existing geological phenomena. It is likely that the subduction between the Eastern and Western Blocks should have commenced at ~2531 Ma, followed by a long-lived subduction. The two blocks ultimately collided with each other to form the North China Craton at ~1950 Ma, which triggered post-collisional exhumation and partial melting at ~1852 Ma.
{"title":"A Long-Lived Accretionary Process during the Amalgamation of the North China Craton: Insights from Neoarchean–Paleoproterozoic Polyphase Magmatism in the Lüliang Complex","authors":"Xinyuan Yu, Jian Zhang, Jin Liu, Changqing Yin, Ying Chen, Minjie Guo, Jiahui Qian, Peng Gao, Changquan Cheng","doi":"10.2113/2023/lithosphere_2023_229","DOIUrl":"https://doi.org/10.2113/2023/lithosphere_2023_229","url":null,"abstract":"Abstract There has been a long debate regarding the timing of the final amalgamation of the North China Craton, which is considered to have occurred either during the Neoarchean or Paleoproterozoic era. One major point of contention is whether there existed a long-lived subduction lasting through the Neoarchean to Paleoproterozoic. The Lüliang Complex contains multiphases of magmatism and thus represents the most viable region to address this controversy. In this study, we carried geochronological and geochemical analysis on the representative granitoids. Secondary ion mass spectrometry U–Pb dating revealed four distinct granitoid groups emplaced at 2531 ± 4, 2189–2173, 2027 ± 25, and 1852 ± 41 Ma, respectively. Notably, the 2531 Ma granitic gneiss was identified for the first time in this region. Based on the geochemical characteristics, the granitoids can be divided into two types. The 2531 and 2027 Ma groups display I-type features, while the 2189–2173 and 1852 Ma groups exhibit A-type geochemical affinities. Both I-type groups exhibit enrichment in Rb, depletion in Nb, Ta, and Ti, moderate fractionated REE patterns, substantial negative Eu anomalies, low Sr/Y ratios, and positive εHf(t) (+3.51 to +5.53 and +5.59 to +7.32, respectively), indicating that they were generated from partial melting of the juvenile mafic crust. In contrast, the 2189–2173 Ma granitoids belong to A2-type and were most likely generated by the partial melting of felsic rocks in the back-arc region, while the 1852 Ma granitoids belong to A1-type and were most possibly the result of partial melting of mafic-intermediate rocks during the post-collisional stage. Based on the records of A-type granitic magmatism and the ~1950 Ma peak metamorphism throughout the Trans-North China Orogen, we propose that a long-lived subduction process (2531–1950 Ma) can mostly explain the existing geological phenomena. It is likely that the subduction between the Eastern and Western Blocks should have commenced at ~2531 Ma, followed by a long-lived subduction. The two blocks ultimately collided with each other to form the North China Craton at ~1950 Ma, which triggered post-collisional exhumation and partial melting at ~1852 Ma.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"38 34","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134953641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The H formation of the Y gas field in the X depression belongs to a low-permeability tight sandstone reservoir affected by sedimentation, diagenesis, and cementation. The lithology and pore structure of the target layer are complex, with strong physical heterogeneity and complex pore-permeability relationships. Conventional core pore permeability regression and nuclear magnetic resonance software-defined radio methods do not satisfy the requirements for precise evaluation in terms of permeability calculation accuracy. Based on the principle of the flow zone index (FZI) method, this study analyzed the influence of pore structure on permeability and extracted three pore structure characterization parameters, namely, the maximum pore throat radius (Rmax), displacement pressure (Pd), and average throat radius (R), from the mercury injection capillary pressure curve. The relationship between the FZI and pore structure is clarified. Therefore, the FZI in this area can characterize the permeability differences within different flow units. Based on the flow unit theory, a refined evaluation model for three types of reservoirs was established in the study area. By analyzing the response characteristics and correlation of conventional logging curves using machine learning, three optimization combination curves were selected, and a multiparameter fitting equation for the FZI was established, which was applied to predict the permeability of new wells. The results showed that the calculated permeability was highly consistent with the core analysis results, thereby providing a theoretical basis for the precise evaluation of low-permeability tight reservoirs.
{"title":"A Method for Evaluating Reservoir Permeability Based on Machine Learning Flow Unit Index","authors":"Xincai Cheng, Bin Zhao, Chuqiao Gao, Ying Gao","doi":"10.2113/2022/5505516","DOIUrl":"https://doi.org/10.2113/2022/5505516","url":null,"abstract":"Abstract The H formation of the Y gas field in the X depression belongs to a low-permeability tight sandstone reservoir affected by sedimentation, diagenesis, and cementation. The lithology and pore structure of the target layer are complex, with strong physical heterogeneity and complex pore-permeability relationships. Conventional core pore permeability regression and nuclear magnetic resonance software-defined radio methods do not satisfy the requirements for precise evaluation in terms of permeability calculation accuracy. Based on the principle of the flow zone index (FZI) method, this study analyzed the influence of pore structure on permeability and extracted three pore structure characterization parameters, namely, the maximum pore throat radius (Rmax), displacement pressure (Pd), and average throat radius (R), from the mercury injection capillary pressure curve. The relationship between the FZI and pore structure is clarified. Therefore, the FZI in this area can characterize the permeability differences within different flow units. Based on the flow unit theory, a refined evaluation model for three types of reservoirs was established in the study area. By analyzing the response characteristics and correlation of conventional logging curves using machine learning, three optimization combination curves were selected, and a multiparameter fitting equation for the FZI was established, which was applied to predict the permeability of new wells. The results showed that the calculated permeability was highly consistent with the core analysis results, thereby providing a theoretical basis for the precise evaluation of low-permeability tight reservoirs.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"40 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134954073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.2113/2023/lithosphere_2023_208
Yi Liang, Hangfei Ge, Qiuming Pei, Haonan Huang, Kenichi Hoshino
Abstract The 3D plotting of gold solubility and gold fineness aims to illustrate how to quantify their correlations with ore-forming conditions in hydrothermal gold deposits. The thermodynamic calculation of the Au-Ag solid solutions in Mathematica and the 3D plotting in MATLAB are used to build isopleths of gold solubility and gold fineness at different temperatures (200℃, 400℃), pressures (0.1, 5 kbar), salinities (1, 40 wt% NaCl eq.), and sulfur concentrations (0.01, 0.5 mol/kg). The plot indicates that the ore-forming conditions have different correlations with gold solubility and gold fineness. Average rates of change for the correlations are quantified, showing distinct values in the four pH-logfO2 fields of (I) HSO4−, (II) SO42−, (III) H2S, and (IV) HS−, where dominant gold and silver complexes have different dependencies on the conditions. The quantification of the plots illustrates that a decrease in gold solubility by one order of magnitude is possibly caused by a decrease in temperature of ≥40℃, the salinity of ≥9.6 wt% NaCl eq. or sulfur concentration of ≥0.14 mol/kg, or an increase in pressure of ≥3 kbar, while a decrease in gold fineness by 100 units is possibly caused by a decrease in temperature of ≥14 ℃, pressure of ≥1.4 kbar, or salinity of ≥4 wt% NaCl eq., or an increase in sulfur concentration of ≥0.07 mol/kg. Quantification results suggest that a sharp decrease in temperature may result in large-scale gold mineralization and a great variation in gold fineness. In addition, the quantification reveals that the correlation between gold solubility and gold fineness can be expressed by a function, providing a rapid method for 3D plotting.
{"title":"3D Plotting of Gold Solubility and Gold Fineness: Quantitative Analysis of Ore-Forming Conditions in Hydrothermal Gold Deposits","authors":"Yi Liang, Hangfei Ge, Qiuming Pei, Haonan Huang, Kenichi Hoshino","doi":"10.2113/2023/lithosphere_2023_208","DOIUrl":"https://doi.org/10.2113/2023/lithosphere_2023_208","url":null,"abstract":"Abstract The 3D plotting of gold solubility and gold fineness aims to illustrate how to quantify their correlations with ore-forming conditions in hydrothermal gold deposits. The thermodynamic calculation of the Au-Ag solid solutions in Mathematica and the 3D plotting in MATLAB are used to build isopleths of gold solubility and gold fineness at different temperatures (200℃, 400℃), pressures (0.1, 5 kbar), salinities (1, 40 wt% NaCl eq.), and sulfur concentrations (0.01, 0.5 mol/kg). The plot indicates that the ore-forming conditions have different correlations with gold solubility and gold fineness. Average rates of change for the correlations are quantified, showing distinct values in the four pH-logfO2 fields of (I) HSO4−, (II) SO42−, (III) H2S, and (IV) HS−, where dominant gold and silver complexes have different dependencies on the conditions. The quantification of the plots illustrates that a decrease in gold solubility by one order of magnitude is possibly caused by a decrease in temperature of ≥40℃, the salinity of ≥9.6 wt% NaCl eq. or sulfur concentration of ≥0.14 mol/kg, or an increase in pressure of ≥3 kbar, while a decrease in gold fineness by 100 units is possibly caused by a decrease in temperature of ≥14 ℃, pressure of ≥1.4 kbar, or salinity of ≥4 wt% NaCl eq., or an increase in sulfur concentration of ≥0.07 mol/kg. Quantification results suggest that a sharp decrease in temperature may result in large-scale gold mineralization and a great variation in gold fineness. In addition, the quantification reveals that the correlation between gold solubility and gold fineness can be expressed by a function, providing a rapid method for 3D plotting.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"25 30","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feifan Gu, Jianping Chen, Qi Zhang, Chun Tan, Yansong Zhang, Qing Wang
Abstract Rock masses are very important materials in geotechnical engineering. In engineering rock mass, fracture is the relatively weak part of mechanical strength in rock mass and is the most important factor controlling the deformation, damage, and permeability of rock mass. Therefore, investigating fractures is very important for characterizing rock mass. This paper proposed a new approach by using uniformly equidistant orthogonal scanlines. Within the study context, the solution formula of fracture size is derived by establishing the space intersection model of arbitrary fracture and scanline, rectangular window, and a rectangular box with a rectangular window. Then, fractures were randomly generated in a certain size cube and compared with the traditional Kulatilake trace length integral evaluation method. The study results have shown that the proposed method is more reasonable and accurate. Then, this method was applied to an adit of Songta Hydropower Station. Finally, a new fracture diameter probability density estimation method was proposed, the fracture diameter of the normal distribution was verified, and the parameters of the probability density function obtained by the scanlines method were in agreement with the initial set parameters. In summary, the proposed scanlines method can well estimate the mean value of the fracture diameter and the probability density function of the fracture size.
{"title":"Estimation of Fracture Size and Probability Density Function by Setting Scanlines in Rectangular Sampling Window","authors":"Feifan Gu, Jianping Chen, Qi Zhang, Chun Tan, Yansong Zhang, Qing Wang","doi":"10.2113/2023/4448590","DOIUrl":"https://doi.org/10.2113/2023/4448590","url":null,"abstract":"Abstract Rock masses are very important materials in geotechnical engineering. In engineering rock mass, fracture is the relatively weak part of mechanical strength in rock mass and is the most important factor controlling the deformation, damage, and permeability of rock mass. Therefore, investigating fractures is very important for characterizing rock mass. This paper proposed a new approach by using uniformly equidistant orthogonal scanlines. Within the study context, the solution formula of fracture size is derived by establishing the space intersection model of arbitrary fracture and scanline, rectangular window, and a rectangular box with a rectangular window. Then, fractures were randomly generated in a certain size cube and compared with the traditional Kulatilake trace length integral evaluation method. The study results have shown that the proposed method is more reasonable and accurate. Then, this method was applied to an adit of Songta Hydropower Station. Finally, a new fracture diameter probability density estimation method was proposed, the fracture diameter of the normal distribution was verified, and the parameters of the probability density function obtained by the scanlines method were in agreement with the initial set parameters. In summary, the proposed scanlines method can well estimate the mean value of the fracture diameter and the probability density function of the fracture size.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"26 18","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.2113/2023/lithosphere_2023_122
Xiaochao Shu, Fanwei Meng, Rui Tao, Kun Wang
Abstract Carbonatites possess the highest rare earth element (REE) concentrations among all magmatic rocks, yet the mechanisms governing the enrichment of REEs in carbonatites remain enigmatic. Carbonatite-hosted calcites provide crucial mineralogical and geochemical insights into addressing this matter. In this study, we present a dataset comprising major and trace elemental geochemistry, as well as in-situ Sr isotopic data, for two types of calcites from the Dalucao carbonatite complex in Sichuan Province, China. Our primary objective is to shed light on the origin of fertile carbonatites. These calcites are believed to have originated at different stages of carbonatitic evolution. Type I calcites, characterized by a euhedral granular texture and a homogeneous surface, crystallized at the early stage of carbonatite magmatism. In contrast, type II calcites, closely associated with bastnäsite in a paragenesis, formed within a fluid setting of hydrothermal overprinting. Both calcite types exhibit highly radiogenic (87Sr/86Sr)i ratios, ranging from 0.7059 to 0.7060 for type I calcites and 0.7059 to 0.7068 for type II calcites. The high Sr concentrations (3646–7315 µg/g for type I calcites and 6566–13,427 µg/g for type II calcites) and uniform Pb isotopic compositions (206Pb/204Pb ratios of 18.23–18.27) in the Dalucao calcites refute the hypothesis of crustal assimilation as their genetic source. Instead, the radiogenic Sr isotopic compositions suggest that subducted marine sediments have contaminated the lithospheric mantle that generated the carbonatitic magma. Mineralogical evidence indicating the presence of abundant silicate minerals in the Dalucao carbonatites, combined with a compilation of published C-O isotopic data, suggests that these carbonatites may have resulted from low-degree partial melting (melting proportion <1%) of a metasomatized lithospheric mantle. Finally, we propose a comprehensive model for REE enrichment in the Dalucao carbonatite complex and explore the significance of tectonism in the genesis of fertile carbonatites.
{"title":"Mantle Metasomatism and REE Enrichment in the Genetic Source of the Dalucao Carbonatite Complex (Sichuan, China): Insights from Elemental Geochemistry and In-Situ Sr Isotopes of Two Calcite Types","authors":"Xiaochao Shu, Fanwei Meng, Rui Tao, Kun Wang","doi":"10.2113/2023/lithosphere_2023_122","DOIUrl":"https://doi.org/10.2113/2023/lithosphere_2023_122","url":null,"abstract":"Abstract Carbonatites possess the highest rare earth element (REE) concentrations among all magmatic rocks, yet the mechanisms governing the enrichment of REEs in carbonatites remain enigmatic. Carbonatite-hosted calcites provide crucial mineralogical and geochemical insights into addressing this matter. In this study, we present a dataset comprising major and trace elemental geochemistry, as well as in-situ Sr isotopic data, for two types of calcites from the Dalucao carbonatite complex in Sichuan Province, China. Our primary objective is to shed light on the origin of fertile carbonatites. These calcites are believed to have originated at different stages of carbonatitic evolution. Type I calcites, characterized by a euhedral granular texture and a homogeneous surface, crystallized at the early stage of carbonatite magmatism. In contrast, type II calcites, closely associated with bastnäsite in a paragenesis, formed within a fluid setting of hydrothermal overprinting. Both calcite types exhibit highly radiogenic (87Sr/86Sr)i ratios, ranging from 0.7059 to 0.7060 for type I calcites and 0.7059 to 0.7068 for type II calcites. The high Sr concentrations (3646–7315 µg/g for type I calcites and 6566–13,427 µg/g for type II calcites) and uniform Pb isotopic compositions (206Pb/204Pb ratios of 18.23–18.27) in the Dalucao calcites refute the hypothesis of crustal assimilation as their genetic source. Instead, the radiogenic Sr isotopic compositions suggest that subducted marine sediments have contaminated the lithospheric mantle that generated the carbonatitic magma. Mineralogical evidence indicating the presence of abundant silicate minerals in the Dalucao carbonatites, combined with a compilation of published C-O isotopic data, suggests that these carbonatites may have resulted from low-degree partial melting (melting proportion &lt;1%) of a metasomatized lithospheric mantle. Finally, we propose a comprehensive model for REE enrichment in the Dalucao carbonatite complex and explore the significance of tectonism in the genesis of fertile carbonatites.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":"220 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135341483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}