首页 > 最新文献

Macromolecular Theory and Simulations最新文献

英文 中文
Simulation on Critical Frequency of Polymer in Electrostrictive Properties 模拟电致伸缩特性中聚合物的临界频率
IF 1.4 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-07-24 DOI: 10.1002/mats.202400045
Yulong Wang, Tong Liu, Meng Wang, Lili Li, Junguo Gao, Ning Guo, Defeng Zang, Ji Liu
The critical frequency and the relaxation time are analyzed through deformation and displacement during electrostriction which is induced by the electrical field at different frequencies. First, when the frequency is 50 Hz and the field strength is 2.5 kV mm−1, the electrostrictive displacement of polyethylene is 6.72 × 10−4 mm. After the data fitting, it is found that the displacement increases linearly with the square of field strength and that the proportional coefficient of 50 Hz is 1.08 × 10−4. Second, due to the influence of relaxation polarization and power loss, with the increase of frequency, the displacement and the proportional coefficient first increases then decreases, and when the frequency is 10 kHz, the displacement of 2.20 × 10−6 mm and the proportional coefficient of 3.51 × 10−7 have minimum values, which are 99.67% and 99.68% lower than that of 50 Hz, respectively. There is the critical frequency. Finally, based on the characteristic of anomalous dispersion, the relaxation time of polyethylene is 9.19 × 10−6s, which is in the time range of thermionic relaxation polarization and consistent with the actual situation. This analysis confirms the quantitative relationship between electrostrictive characteristics, field strength, and polarization. In addition, the relationship between frequency and strain is discussed, and the critical frequency in polymer and the relaxation time are confirmed.
通过电场在不同频率下引起的电致伸缩过程中的变形和位移,分析了临界频率和弛豫时间。首先,当频率为 50 Hz,电场强度为 2.5 kV mm-1 时,聚乙烯的电致伸缩位移为 6.72 × 10-4 mm。数据拟合后发现,位移与场强的平方成线性增长,50 Hz 时的比例系数为 1.08 × 10-4。其次,由于弛豫极化和功率损耗的影响,随着频率的增加,位移和比例系数先增大后减小,当频率为 10 kHz 时,位移为 2.20 × 10-6 mm,比例系数为 3.51 × 10-7 ,均为最小值,分别比 50 Hz 低 99.67% 和 99.68%。这就是临界频率。最后,根据反常色散的特征,聚乙烯的弛豫时间为 9.19 × 10-6s,处于热离子弛豫极化的时间范围内,与实际情况相符。这一分析证实了电致伸缩特性、场强和极化之间的定量关系。此外,还讨论了频率与应变之间的关系,并确认了聚合物中的临界频率和弛豫时间。
{"title":"Simulation on Critical Frequency of Polymer in Electrostrictive Properties","authors":"Yulong Wang, Tong Liu, Meng Wang, Lili Li, Junguo Gao, Ning Guo, Defeng Zang, Ji Liu","doi":"10.1002/mats.202400045","DOIUrl":"https://doi.org/10.1002/mats.202400045","url":null,"abstract":"The critical frequency and the relaxation time are analyzed through deformation and displacement during electrostriction which is induced by the electrical field at different frequencies. First, when the frequency is 50 Hz and the field strength is 2.5 kV mm<jats:sup>−1</jats:sup>, the electrostrictive displacement of polyethylene is 6.72 × 10<jats:sup>−4</jats:sup> mm. After the data fitting, it is found that the displacement increases linearly with the square of field strength and that the proportional coefficient of 50 Hz is 1.08 × 10<jats:sup>−4</jats:sup>. Second, due to the influence of relaxation polarization and power loss, with the increase of frequency, the displacement and the proportional coefficient first increases then decreases, and when the frequency is 10 kHz, the displacement of 2.20 × 10<jats:sup>−6</jats:sup> mm and the proportional coefficient of 3.51 × 10<jats:sup>−7</jats:sup> have minimum values, which are 99.67% and 99.68% lower than that of 50 Hz, respectively. There is the critical frequency. Finally, based on the characteristic of anomalous dispersion, the relaxation time of polyethylene is 9.19 × 10<jats:sup>−6</jats:sup>s, which is in the time range of thermionic relaxation polarization and consistent with the actual situation. This analysis confirms the quantitative relationship between electrostrictive characteristics, field strength, and polarization. In addition, the relationship between frequency and strain is discussed, and the critical frequency in polymer and the relaxation time are confirmed.","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"18 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Algorithm for Computing Entanglements in an Ensemble of Linear Polymers 计算线性聚合物集合中纠缠的算法
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-07-22 DOI: 10.1002/mats.202400035
Pramod Kumar Patel, Sumit Basu

The entanglement length plays a key role in deciding many important properties of thermoplastics. A number of computational techniques exist for the determination of entanglement length. In Ahmad et al.,[1] a method is proposed that treats a macromolecular chain as a 1D open curve and identifies entanglements by computing the linking number between two such interacting curves. If the curves wind around each other, a topological entanglement is detected. However, the entanglement length that is measured in experiments is assumed to be between rheological entanglements, which are clusters of such topological entanglements that collectively anchor the interacting chains strongly. In this article, the method of clustering topological entanglements into rheological ones is further elaborated and the robustness of the method is assessed. It is shown that this method estimates an entanglement length that depends on the forcefield chosen and is reasonably constant for chain lengths longer than the entanglement length. For shorter chain lengths, the method returns an infinite value of entanglement length indicating that the sample is unentangled. Moreover, in spite of using a geometry-based algorithm for clustering topological entanglements, the estimated entanglement length retains known empirical connections with physical attributes associated with the ensemble.

缠结长度在决定热塑性塑料的许多重要特性方面起着关键作用。有许多计算技术可用于确定缠结长度。Ahmad 等人[1] 提出了一种方法,将大分子链视为一维开放曲线,通过计算两条相互作用曲线之间的连接数来识别纠缠。如果两条曲线相互缠绕,就能检测到拓扑纠缠。然而,实验中测量到的纠缠长度被假定为流变纠缠之间的长度,而流变纠缠是此类拓扑纠缠的集群,它们共同将相互作用的链牢固地固定在一起。本文进一步阐述了将拓扑纠缠聚类为流变纠缠的方法,并评估了该方法的稳健性。研究表明,该方法估算出的纠缠长度取决于所选择的力场,对于长度大于纠缠长度的链而言,纠缠长度是合理恒定的。对于较短的链长,该方法返回的纠缠长度值为无穷大,表明样本未被纠缠。此外,尽管使用了基于几何的算法对拓扑纠缠进行聚类,但估计的纠缠长度仍保留了已知的与集合相关物理属性的经验联系。
{"title":"An Algorithm for Computing Entanglements in an Ensemble of Linear Polymers","authors":"Pramod Kumar Patel,&nbsp;Sumit Basu","doi":"10.1002/mats.202400035","DOIUrl":"10.1002/mats.202400035","url":null,"abstract":"<p>The entanglement length plays a key role in deciding many important properties of thermoplastics. A number of computational techniques exist for the determination of entanglement length. In Ahmad et al.,<sup>[1]</sup> a method is proposed that treats a macromolecular chain as a 1D open curve and identifies entanglements by computing the linking number between two such interacting curves. If the curves wind around each other, a topological entanglement is detected. However, the entanglement length that is measured in experiments is assumed to be between rheological entanglements, which are clusters of such topological entanglements that collectively anchor the interacting chains strongly. In this article, the method of clustering topological entanglements into rheological ones is further elaborated and the robustness of the method is assessed. It is shown that this method estimates an entanglement length that depends on the forcefield chosen and is reasonably constant for chain lengths longer than the entanglement length. For shorter chain lengths, the method returns an infinite value of entanglement length indicating that the sample is unentangled. Moreover, in spite of using a geometry-based algorithm for clustering topological entanglements, the estimated entanglement length retains known empirical connections with physical attributes associated with the ensemble.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Macromol. Theory Simul. 4/2024 封面:Macromol.理论模拟4/2024
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-07-18 DOI: 10.1002/mats.202470007
{"title":"Front Cover: Macromol. Theory Simul. 4/2024","authors":"","doi":"10.1002/mats.202470007","DOIUrl":"https://doi.org/10.1002/mats.202470007","url":null,"abstract":"","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202470007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Macromol. Theory Simul. 4/2024 刊头:Macromol.理论模拟4/2024
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-07-18 DOI: 10.1002/mats.202470008
{"title":"Masthead: Macromol. Theory Simul. 4/2024","authors":"","doi":"10.1002/mats.202470008","DOIUrl":"https://doi.org/10.1002/mats.202470008","url":null,"abstract":"","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202470008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Step-Growth Polymerized Systems of type “A3 + A1”: A Method to Calculate the Bivariate (Molecular size) × (Square Radius of Gyration) Number Distribution A3 + A1 "型阶跃生长聚合体系:计算双变量(分子大小)×(平方回旋半径)数量分布的方法
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-06-17 DOI: 10.1002/mats.202400016
L.Tom Hillegers, Johan J. M. Slot

Step-growth polymerized systems of type “A3 + A1” are considered. The monomers bear, respectively, 3 or 1 reactive A group. During the reaction, an A group on one monomeric unit might react with an A group on another such unit, thus chemically coupling the two units involved. Complexly structured polymeric molecules are formed. The A3's act as branching points; the A1's as end cappers. At the end of the reaction, the population of molecules present in the reactor vessel varies in size and branching structure. A method is presented to calculate the bivariate (molecular size) × (square radius of gyration) number distribution. It is shown that within the class of molecules of the same size, their square radius of gyration follows a shifted gamma distribution. Two new molecular parameters are introduced: the D index and the G index. The method uses bivariate generating functions.

我们考虑的是 "A3 + A1 "型阶跃生长聚合体系。这些单体分别带有 3 个或 1 个活性 A 基团。在反应过程中,一个单体单元上的 A 基团可能会与另一个单体单元上的 A 基团发生反应,从而使两个单元发生化学耦合。这样就形成了结构复杂的聚合物分子。A3 起支化作用,A1 起末端封端作用。反应结束时,反应容器中的分子大小和分支结构各不相同。本文提出了一种计算二元(分子大小)×(平方回转半径)数量分布的方法。结果表明,在大小相同的一类分子中,它们的平方回旋半径遵循移动伽马分布。引入了两个新的分子参数:D 指数和 G 指数。该方法使用双变量生成函数。
{"title":"Step-Growth Polymerized Systems of type “A3 + A1”: A Method to Calculate the Bivariate (Molecular size) × (Square Radius of Gyration) Number Distribution","authors":"L.Tom Hillegers,&nbsp;Johan J. M. Slot","doi":"10.1002/mats.202400016","DOIUrl":"https://doi.org/10.1002/mats.202400016","url":null,"abstract":"<p>Step-growth polymerized systems of type “A3 + A1” are considered. The monomers bear, respectively, 3 or 1 reactive A group. During the reaction, an A group on one monomeric unit might react with an A group on another such unit, thus chemically coupling the two units involved. Complexly structured polymeric molecules are formed. The A3's act as branching points; the A1's as end cappers. At the end of the reaction, the population of molecules present in the reactor vessel varies in size and branching structure. A method is presented to calculate the bivariate (molecular size) × (square radius of gyration) number distribution. It is shown that within the class of molecules of the same size, their square radius of gyration follows a shifted gamma distribution. Two new molecular parameters are introduced: the D index and the G index. The method uses bivariate generating functions.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time–Temperature-Transformation (TTT) Cure Diagram of an Epoxy–Amine System 环氧胺体系的时间-温度-转化(TTT)固化示意图
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-06-15 DOI: 10.1002/mats.202400039
Claire Strasser, Elena Moukhina, Jürgen Hartmann

A time–temperature-transformation diagram is created for the curing reaction of a diglycidylether bisphenol A (DGEBA)-based epoxy resin. It results from a kinetic analysis performed by means of dynamical differential scanning calorimetry (DSC) measurements; a gelation curve determined with isothermal and dynamical rheological tests; and a vitrification curve obtained from temperature-modulated dynamic DSC measurements. The resulting diagram is validated by comparison of isothermal measurements with the corresponding calculated curves.

为一种基于 DGEBA 的环氧树脂的固化反应绘制了时间-温度-转变(TTT)图。该图由以下部分组成:通过动态 DSC 测量进行的动力学分析;通过等温和动态流变测试确定的凝胶化曲线;以及通过温度调制动态 DSC 测量获得的玻璃化曲线。通过将等温测量结果与相应的计算曲线进行比较,验证了得出的图表。本文受版权保护。
{"title":"Time–Temperature-Transformation (TTT) Cure Diagram of an Epoxy–Amine System","authors":"Claire Strasser,&nbsp;Elena Moukhina,&nbsp;Jürgen Hartmann","doi":"10.1002/mats.202400039","DOIUrl":"10.1002/mats.202400039","url":null,"abstract":"<p>A time–temperature-transformation diagram is created for the curing reaction of a diglycidylether bisphenol A (DGEBA)-based epoxy resin. It results from a kinetic analysis performed by means of dynamical differential scanning calorimetry (DSC) measurements; a gelation curve determined with isothermal and dynamical rheological tests; and a vitrification curve obtained from temperature-modulated dynamic DSC measurements. The resulting diagram is validated by comparison of isothermal measurements with the corresponding calculated curves.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignin-Based Multilamellar Aggregates for Removing Ofloxacin Antibiotic: A Dissipative Particle Dynamics Simulation Study 去除氧氟沙星抗生素的木质素基多胶束聚集体:耗散粒子动力学模拟研究
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-06-15 DOI: 10.1002/mats.202400042
Guodian Zhu, Jingqi Shang, Shaoqu Xie, Yuanyuan Li, Lisha Zhao, Guoqiang Yin

Lignin, a renewable aromatic polymer, has great potential as a synthetic building block for functional materials. The effects of quaternary ammonic methylation of alkali lignin (AL) on the morphologies and ofloxacin antibiotic (OA) removal application from water are investigated by using the dissipative particle dynamics (DPD) simulation method. Untreated AL can form spherical aggregates, but the phenylpropane units of untreated AL and loaded broad-spectrum OA molecules are randomly distributed in aggregates. However, if quaternary ammonic groups are grafted onto all orthopositions of the phenolic hydroxyl groups (100-QAMAL), then multilamellar spherical aggregates are obtained and OA molecules are entrapped in the aggregates. To prepare multilamellar spherical aggregates with an ordered and regular layered structure, <15 v% of 100-QAMAL and low molecular weights of AL (≈4700–9400 Da) are suggested to be used. Lignin-based multilamellar spherical aggregates can be adopted as potential functional carriers for removing pollutant OA from water.

木质素是一种可再生的芳香族聚合物,作为功能材料的合成构件具有巨大的潜力。本研究采用耗散颗粒动力学(DPD)模拟方法研究了碱木素(AL)季铵甲基化对其形态和从水中去除氧氟沙星抗生素(OA)的影响。未处理的 AL 可以形成球形聚集体,但未处理的 AL 和负载的广谱 OA 分子的苯基丙烷单元在聚集体中随机分布。然而,如果在酚羟基的所有正交位置上接枝季铵基(100-QAMAL),则可获得多胶束球形聚集体,并在聚集体中夹带 OA 分子。为了制备具有有序和规则分层结构的多胶束球形聚集体,建议使用小于 15 v% 的 100-QAMAL 和低分子量的 AL(∼4700 - ∼9400 Da)。木质素基多胶束球形聚集体可作为潜在的功能载体,用于去除水中的污染物 OA。本文受版权保护。
{"title":"Lignin-Based Multilamellar Aggregates for Removing Ofloxacin Antibiotic: A Dissipative Particle Dynamics Simulation Study","authors":"Guodian Zhu,&nbsp;Jingqi Shang,&nbsp;Shaoqu Xie,&nbsp;Yuanyuan Li,&nbsp;Lisha Zhao,&nbsp;Guoqiang Yin","doi":"10.1002/mats.202400042","DOIUrl":"10.1002/mats.202400042","url":null,"abstract":"<p>Lignin, a renewable aromatic polymer, has great potential as a synthetic building block for functional materials. The effects of quaternary ammonic methylation of alkali lignin (AL) on the morphologies and ofloxacin antibiotic (OA) removal application from water are investigated by using the dissipative particle dynamics (DPD) simulation method. Untreated AL can form spherical aggregates, but the phenylpropane units of untreated AL and loaded broad-spectrum OA molecules are randomly distributed in aggregates. However, if quaternary ammonic groups are grafted onto all orthopositions of the phenolic hydroxyl groups (100-QAMAL), then multilamellar spherical aggregates are obtained and OA molecules are entrapped in the aggregates. To prepare multilamellar spherical aggregates with an ordered and regular layered structure, &lt;15 v% of 100-QAMAL and low molecular weights of AL (≈4700–9400 Da) are suggested to be used. Lignin-based multilamellar spherical aggregates can be adopted as potential functional carriers for removing pollutant OA from water.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and Dynamics of Ions in a Poly(ethylene oxide) Matrix Near a Graphite Surface 石墨表面附近聚(环氧乙烷)基质中离子的结构和动力学特性
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-06-06 DOI: 10.1002/mats.202400029
Adegbola Balogun, Rajesh Khare

Solid polymer electrolytes are being explored as replacements for organic electrolytes in lithium-ion batteries due to their less flammable nature and high mechanical strength. However, challenges remain, such as low ionic conductivity, and significant interfacial impedance with electrodes. Understanding the structure and dynamics of ions within polymer electrolytes and near the anode is crucial for enhancing battery performance and safety. In this study, the structural and dynamic properties of lithium cation (Li+) and bis(trifluoromethane sulfonyl)imide anion (TFSI) in poly(ethylene oxide) matrix are examined in bulk PEO-LiTFSI electrolyte and in the presence of a graphite surface using molecular dynamics simulations. The findings suggest that the presence of graphite surface does not affect the coordination of oxygen atoms around the Li+ ions. Results also show that the dynamics of the ions and ether oxygen is hindered near the graphite surface compared to the region away from the graphite surface.

固体聚合物电解质具有不易燃、机械强度高等特点,因此正在被探索用于替代锂离子电池中的有机电解质。然而,挑战依然存在,例如离子电导率低以及与电极之间存在明显的界面阻抗。了解聚合物电解质内和阳极附近离子的结构和动力学对于提高电池性能和安全性至关重要。在本研究中,我们利用分子动力学模拟研究了锂阳离子(Li+)和双(三氟甲烷磺酰基)阴离子(TFSI-)在聚(环氧乙烷)基质中的结构和动态特性。研究结果表明,石墨表面的存在不会影响 Li+ 离子周围氧原子的配位。结果还表明,与远离石墨表面的区域相比,离子和醚氧在石墨表面附近的动力学受阻。本文受版权保护。
{"title":"Structure and Dynamics of Ions in a Poly(ethylene oxide) Matrix Near a Graphite Surface","authors":"Adegbola Balogun,&nbsp;Rajesh Khare","doi":"10.1002/mats.202400029","DOIUrl":"10.1002/mats.202400029","url":null,"abstract":"<p>Solid polymer electrolytes are being explored as replacements for organic electrolytes in lithium-ion batteries due to their less flammable nature and high mechanical strength. However, challenges remain, such as low ionic conductivity, and significant interfacial impedance with electrodes. Understanding the structure and dynamics of ions within polymer electrolytes and near the anode is crucial for enhancing battery performance and safety. In this study, the structural and dynamic properties of lithium cation (Li<sup>+</sup>) and bis(trifluoromethane sulfonyl)imide anion (TFSI<sup>−</sup>) in poly(ethylene oxide) matrix are examined in bulk PEO-LiTFSI electrolyte and in the presence of a graphite surface using molecular dynamics simulations. The findings suggest that the presence of graphite surface does not affect the coordination of oxygen atoms around the Li<sup>+</sup> ions. Results also show that the dynamics of the ions and ether oxygen is hindered near the graphite surface compared to the region away from the graphite surface.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141378160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Effect of Rheological Parameter Ratios on the Mixing Properties of TPU Blends 研究流变参数比对热塑性聚氨酯混合物混合性能的影响
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-05-30 DOI: 10.1002/mats.202400031
Yiwen Zheng, Jiankang Wang, Chenyang Wang, Zhijun Li, Zuliang Yang

In order to investigate the effect of rheological parameter of blends on mixing performance of dynamic mixers, the flow of virtual material (VM)/thermoplastic polyurethanes (TPU) with high and low viscosities in it are simulated. The effect of rheological parameter ratios, including zero shear viscosity ratio (η0VM/η0TPU), relaxation time ratio (λVM/λTPU) and non-Newtonian index ratio (NVM/NTPU) on pressure drop (Δp), segregation scale (S), and power consumption (P) are analyzed using Taguchi Orthogonal Method, and the effects of rotation speed (n) of the rotor and flow rate ratio (QVM/QTPU) are studied using single factor method. The results indicate η0VM/η0TPU is the most significant factor affecting Δp, S, and P. When η0VM/η0TPU = 1, λVM/λTPU = 1, NVM/NTPU = 1, S of blends reach the minimum value. With n increasing, the influences of QVM/QTPU and viscosity of TPU on S are reduced.

为了研究混合物流变参数对动态混合器混合性能的影响,模拟了高粘度和低粘度虚拟材料(VM)/热塑性聚氨酯(TPU)在动态混合器中的流动。采用田口正交法分析了零剪切粘度比(η0VM/η0TPU)、松弛时间比(λVM/λTPU)和非牛顿指数比(NVM/NTPU)等流变参数比对压降(Δp)、偏析尺度(S)和功耗(P)的影响,并采用单因素法研究了转子转速(n)和流速比(QVM/QTPU)的影响。结果表明,η0VM/η0TPU 是影响 Δp、S 和 P 的最重要因素。当 η0VM/η0TPU = 1、λVM/λTPU = 1、NVM/NTPU = 1 时,混合料的 S 达到最小值。随着 n 的增加,QVM/QTPU 和热塑性聚氨酯粘度对 S 的影响减小。本文受版权保护。
{"title":"Investigating the Effect of Rheological Parameter Ratios on the Mixing Properties of TPU Blends","authors":"Yiwen Zheng,&nbsp;Jiankang Wang,&nbsp;Chenyang Wang,&nbsp;Zhijun Li,&nbsp;Zuliang Yang","doi":"10.1002/mats.202400031","DOIUrl":"10.1002/mats.202400031","url":null,"abstract":"<p>In order to investigate the effect of rheological parameter of blends on mixing performance of dynamic mixers, the flow of virtual material (VM)/thermoplastic polyurethanes (TPU) with high and low viscosities in it are simulated. The effect of rheological parameter ratios, including zero shear viscosity ratio (<i>η</i><sub>0VM</sub>/<i>η</i><sub>0TPU</sub>), relaxation time ratio (<i>λ</i><sub>VM</sub>/<i>λ</i><sub>TPU</sub>) and non-Newtonian index ratio (<i>N</i><sub>VM</sub>/<i>N</i><sub>TPU</sub>) on pressure drop (Δ<i>p</i>), segregation scale (<i>S</i>), and power consumption (<i>P</i>) are analyzed using Taguchi Orthogonal Method, and the effects of rotation speed (<i>n</i>) of the rotor and flow rate ratio (<i>Q</i><sub>VM</sub>/<i>Q</i><sub>TPU</sub>) are studied using single factor method. The results indicate <i>η</i><sub>0VM</sub>/<i>η</i><sub>0TPU</sub> is the most significant factor affecting Δ<i>p</i>, <i>S</i>, and <i>P</i>. When <i>η</i><sub>0VM</sub>/<i>η</i><sub>0TPU</sub> = 1, <i>λ</i><sub>VM</sub>/<i>λ</i><sub>TPU</sub> = 1, <i>N</i><sub>VM</sub>/<i>N</i><sub>TPU</sub> = 1, <i>S</i> of blends reach the minimum value. With <i>n</i> increasing, the influences of <i>Q</i><sub>VM</sub>/<i>Q</i><sub>TPU</sub> and viscosity of TPU on <i>S</i> are reduced.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural Simulations of Polymer Composites by a Viscoelastic Spring Lattice Model 用粘弹性弹簧网格模型模拟聚合物复合材料的微观结构
IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2024-05-27 DOI: 10.1002/mats.202400025
Zhuoran Xu, Xu Hu, Yongmin Huang

An improved viscoelastic spring lattice model is used to analyze the mechanical properties of polymer composites containing different microstructures, as exemplified by hydroxyl-terminated polybutadiene-based solid propellants. A drop-on-demand structural model is programmed using the C language to simulate the real solid propellant microstructure. The results show that increasing the particle content has a positive effect on the tensile strength of the propellant, but is detrimental to the ductility. The increase in particle size decreases the maximum tensile strength of the material, reflecting the importance of the dewetting process in the microstructure analysis. Finally, the model accurately predicts that initial defects have a destructive effect on the mechanical properties of the material.

使用改进的粘弹性弹簧晶格模型分析了含有不同微结构的聚合物复合材料的机械性能,以 HTPB 类固体推进剂为例。使用 C 语言编制了一个按需滴落结构模型,以模拟真实的固体推进剂微观结构。结果表明,增加颗粒含量对推进剂的拉伸强度有积极影响,但对延展性不利。颗粒尺寸的增加会降低材料的最大拉伸强度,这反映了微观结构分析中脱湿过程的重要性。最后,该模型准确预测了初始缺陷对材料力学性能的破坏性影响。保留所有权利
{"title":"Microstructural Simulations of Polymer Composites by a Viscoelastic Spring Lattice Model","authors":"Zhuoran Xu,&nbsp;Xu Hu,&nbsp;Yongmin Huang","doi":"10.1002/mats.202400025","DOIUrl":"10.1002/mats.202400025","url":null,"abstract":"<p>An improved viscoelastic spring lattice model is used to analyze the mechanical properties of polymer composites containing different microstructures, as exemplified by hydroxyl-terminated polybutadiene-based solid propellants. A drop-on-demand structural model is programmed using the C language to simulate the real solid propellant microstructure. The results show that increasing the particle content has a positive effect on the tensile strength of the propellant, but is detrimental to the ductility. The increase in particle size decreases the maximum tensile strength of the material, reflecting the importance of the dewetting process in the microstructure analysis. Finally, the model accurately predicts that initial defects have a destructive effect on the mechanical properties of the material.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Macromolecular Theory and Simulations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1