首页 > 最新文献

Macromolecular Theory and Simulations最新文献

英文 中文
Fluid to Solid Transition in Colloidal Suspensions of Thermo Responsive Core–Shell Soft Particles Interacting through Multi-Hertzian Pair-Potential: A Monte Carlo Study 通过多赫兹对势相互作用的热响应核壳软颗粒胶状悬浮液中流体到固体的转变:蒙特卡罗研究
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-11-02 DOI: 10.1002/mats.202500080
Sivaram Vintha, Anoop Mutneja, Smarajit Karmakar, Manimaran P, B. V. R. Tata

Maxime J. Bergman et al. have proposed a Multi-Hertzian (MH) pair-potential by modeling the core–shell structure of thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) soft microgel particles, which are known to be soft and can be over-packed beyond a volume fraction ϕ > 0.68. There have been no studies in the literature on the applicability of the MH pair potential to understand the phase behavior and dynamics of dense PNIPAM microgels. We report here the results of Monte Carlo (MC) simulations on PNIPAM microgel suspensions interacting with MH potential over a wide range of volume fractions (ϕ = 0.3–0.68), under over-packed conditions (ϕ = 0.68–1.0), and also in the temperature range of T = 15°C–30°C. MC simulations show a fluid (liquid-like ordered) to solid (crystalline) transition as a function of increasing volume fraction, ϕ, and a solid to fluid transition upon increasing temperature, T, which are in accordance with experimental observation. We also studied the dynamics of PNIPAM particles by computing the mean square displacement (MSD) as a function of Monte Carlo (MC) time for different volume fractions and at various temperatures. Although our simulations predict the phase behavior of PNIPAM suspensions similar to that observed in experiments, but failed to predict the reported experimental observations under over-packed conditions, viz., the report of sub-diffusive dynamics at small time scales by Joshi et al., which indicates the existence of entanglement of dangling polymer chains between shells of the neighboring PNIPAM microgel particles. Our simulations suggest the need for improvements in the MH pair-potential to account for the dangling polymer chains.

Maxime J. Bergman等人通过模拟热响应性聚(n -异丙基丙烯酰胺)(PNIPAM)软微凝胶颗粒的核壳结构,提出了多赫兹(MH)对电势。已知软微凝胶颗粒是软的,并且可以超过体积分数φ >; 0.68。目前文献中还没有关于MH对电势在理解致密PNIPAM微凝胶相行为和动力学中的适用性的研究。我们在这里报告了蒙特卡罗(MC)模拟PNIPAM微凝胶悬浮液在广泛的体积分数(φ = 0.3-0.68),过度包装条件下(φ = 0.68-1.0)以及T = 15°C - 30°C的温度范围内与MH电位相互作用的结果。MC模拟显示,随着体积分数φ的增加,流体(类液体有序)向固体(结晶)转变;随着温度T的增加,固体向流体转变,这与实验观察一致。我们还通过计算不同体积分数和不同温度下PNIPAM颗粒的均方位移(MSD)作为蒙特卡罗(MC)时间的函数来研究PNIPAM颗粒的动力学。虽然我们的模拟预测了PNIPAM悬浮液的相行为与实验中观察到的相行为相似,但未能预测在过度填充条件下报道的实验观察结果,即Joshi等人在小时间尺度上报道的亚扩散动力学,这表明在邻近的PNIPAM微凝胶颗粒的壳之间存在悬垂聚合物链的纠缠。我们的模拟表明需要改进MH对电势来解释悬垂的聚合物链。
{"title":"Fluid to Solid Transition in Colloidal Suspensions of Thermo Responsive Core–Shell Soft Particles Interacting through Multi-Hertzian Pair-Potential: A Monte Carlo Study","authors":"Sivaram Vintha,&nbsp;Anoop Mutneja,&nbsp;Smarajit Karmakar,&nbsp;Manimaran P,&nbsp;B. V. R. Tata","doi":"10.1002/mats.202500080","DOIUrl":"https://doi.org/10.1002/mats.202500080","url":null,"abstract":"<p>Maxime J. Bergman et al. have proposed a Multi-Hertzian (MH) pair-potential by modeling the core–shell structure of thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) soft microgel particles, which are known to be soft and can be over-packed beyond a volume fraction <i>ϕ</i> &gt; 0.68. There have been no studies in the literature on the applicability of the MH pair potential to understand the phase behavior and dynamics of dense PNIPAM microgels. We report here the results of Monte Carlo (MC) simulations on PNIPAM microgel suspensions interacting with MH potential over a wide range of volume fractions (<i>ϕ</i> = 0.3–0.68), under over-packed conditions (<i>ϕ</i> = 0.68–1.0), and also in the temperature range of <i>T</i> = 15°C–30°C. MC simulations show a fluid (liquid-like ordered) to solid (crystalline) transition as a function of increasing volume fraction, <i>ϕ</i>, and a solid to fluid transition upon increasing temperature, <i>T</i>, which are in accordance with experimental observation. We also studied the dynamics of PNIPAM particles by computing the mean square displacement (MSD) as a function of Monte Carlo (MC) time for different volume fractions and at various temperatures. Although our simulations predict the phase behavior of PNIPAM suspensions similar to that observed in experiments, but failed to predict the reported experimental observations under over-packed conditions, viz., the report of sub-diffusive dynamics at small time scales by Joshi et al., which indicates the existence of entanglement of dangling polymer chains between shells of the neighboring PNIPAM microgel particles. Our simulations suggest the need for improvements in the MH pair-potential to account for the dangling polymer chains.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202500080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145963796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Optimization in Polymer Modeling: From Coarse-Graining Foundations to Autonomous Inverse Design 聚合物建模中的贝叶斯优化:从粗粒度基础到自主逆设计
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-10-27 DOI: 10.1002/mats.202500081
Zakiya Shireen

Coarse-graining (CG) is crucial for simulating polymers at extended scales, addressing the computational limitations of atomistic molecular dynamics. However, developing accurate and transferable CG force fields remains a formidable challenge, due to high-dimensional parameter spaces, conflicting objectives, and inherent noise. This review highlights Bayesian Optimization (BO) as a transformative, data-driven framework for automating the parameterization of CG force fields. BO leverages probabilistic Gaussian process surrogates and acquisition functions to navigate complex landscapes efficiently, minimizing expensive simulations while quantifying uncertainty. We survey BO's application in CG model development, from single- to multi-objective optimization for achieving structural, thermodynamic, and dynamic fidelity, and enhancing transferability across conditions. Key examples include CG models for electrolytes, block copolymers, and epoxy resins, often integrated with advanced machine learning techniques for learning potentials, optimal mappings, and active data acquisition. We also discuss emerging autonomous pipelines like SPACIER, RAPSIDY, CAMELOT, and PAL 2.0, which streamline the inverse design. Finally, we outline persistent challenges such as surrogate scalability, handling nonstationarity, and extending to reactive/multiscale systems, and envision BO as a cornerstone of future automated materials discovery, accelerating the design of novel polymeric materials.

粗粒化(CG)对于在扩展尺度上模拟聚合物是至关重要的,解决了原子分子动力学的计算限制。然而,由于高维参数空间、相互冲突的目标和固有的噪声,开发精确和可转移的CG力场仍然是一个艰巨的挑战。这篇综述强调了贝叶斯优化(BO)作为一个变革性的、数据驱动的框架,用于自动参数化CG力场。BO利用概率高斯过程替代和获取函数来有效地导航复杂的景观,在量化不确定性的同时最大限度地减少昂贵的模拟。我们调查了BO在CG模型开发中的应用,从单目标到多目标优化,以实现结构、热力学和动态保真度,并增强不同条件下的可转移性。关键的例子包括电解质、嵌段共聚物和环氧树脂的CG模型,这些模型通常与先进的机器学习技术相结合,用于学习电位、最佳映射和主动数据采集。我们还讨论了新兴的自主管道,如SPACIER, RAPSIDY, CAMELOT和PAL 2.0,它们简化了逆向设计。最后,我们概述了持续存在的挑战,如替代可扩展性,处理非平定性,以及扩展到反应/多尺度系统,并设想BO作为未来自动化材料发现的基石,加速新型聚合物材料的设计。
{"title":"Bayesian Optimization in Polymer Modeling: From Coarse-Graining Foundations to Autonomous Inverse Design","authors":"Zakiya Shireen","doi":"10.1002/mats.202500081","DOIUrl":"https://doi.org/10.1002/mats.202500081","url":null,"abstract":"<div>\u0000 \u0000 <p>Coarse-graining (CG) is crucial for simulating polymers at extended scales, addressing the computational limitations of atomistic molecular dynamics. However, developing accurate and transferable CG force fields remains a formidable challenge, due to high-dimensional parameter spaces, conflicting objectives, and inherent noise. This review highlights Bayesian Optimization (BO) as a transformative, data-driven framework for automating the parameterization of CG force fields. BO leverages probabilistic Gaussian process surrogates and acquisition functions to navigate complex landscapes efficiently, minimizing expensive simulations while quantifying uncertainty. We survey BO's application in CG model development, from single- to multi-objective optimization for achieving structural, thermodynamic, and dynamic fidelity, and enhancing transferability across conditions. Key examples include CG models for electrolytes, block copolymers, and epoxy resins, often integrated with advanced machine learning techniques for learning potentials, optimal mappings, and active data acquisition. We also discuss emerging autonomous pipelines like SPACIER, RAPSIDY, CAMELOT, and PAL 2.0, which streamline the inverse design. Finally, we outline persistent challenges such as surrogate scalability, handling nonstationarity, and extending to reactive/multiscale systems, and envision BO as a cornerstone of future automated materials discovery, accelerating the design of novel polymeric materials.</p>\u0000 </div>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Multi-Physics Finite Element Simulation of the Selective Laser Sintering Process for Polyamide 12: Effects of Laser Parameters on Melt Pool Formations and Sintering Quality 聚酰胺12选择性激光烧结过程的三维多物理场有限元模拟:激光参数对熔池形成和烧结质量的影响
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-10-23 DOI: 10.1002/mats.202500094
Oğulcan EREN

Selective Laser Sintering (SLS) is an additive manufacturing method that enables the rapid and cost-effective production of complex polymer parts with high strength and dimensional accuracy. However, achieving these improved properties depends on laser processing parameters, which significantly influence melt behavior, melt pool properties, and the overall quality of the components. Because empirical approach is both time-consuming and cost-intensive, finite element method (FEM)-based simulations have become a popular field of study. However, existing simulation models are often oversimplified and inadequate to fully understand the multi-physics nature of SLS. To address this gap, a comprehensive 3D multi-physics finite element model was developed to simulate the SLS processing of Polyamide 12 powder. This study incorporates multiple interacting physical phenomena, such as heat transfer, fluid flow dynamics, melt-solidification kinetics, and phase transformations, to provide a realistic depiction of the transient thermal and fluid behavior of the SLS process. The simulation systematically examined the influence of laser process parameters on molten pool formation, temperature distribution, and overall sintering quality. The results show that insufficient volumetric energy density (VED) or high scan speeds resulted in incomplete melting and porosity, whereas excessive energy input promoted overheating and material degradation.

选择性激光烧结(SLS)是一种增材制造方法,能够快速、经济地生产具有高强度和尺寸精度的复杂聚合物零件。然而,实现这些改进的性能取决于激光加工参数,这些参数会显著影响熔体行为、熔池性能和部件的整体质量。由于经验方法耗时且成本高,基于有限元法(FEM)的模拟已成为一个热门的研究领域。然而,现有的仿真模型往往过于简化,不足以充分理解SLS的多物理场特性。为了解决这一问题,开发了一个全面的三维多物理场有限元模型来模拟聚酰胺12粉末的SLS加工。该研究结合了多种相互作用的物理现象,如传热、流体流动动力学、熔体凝固动力学和相变,以提供对SLS过程的瞬态热行为和流体行为的真实描述。仿真系统地考察了激光工艺参数对熔池形成、温度分布和整体烧结质量的影响。结果表明,体积能量密度(VED)不足或扫描速度快会导致不完全熔化和多孔,而过多的能量输入会导致过热和材料降解。
{"title":"3D Multi-Physics Finite Element Simulation of the Selective Laser Sintering Process for Polyamide 12: Effects of Laser Parameters on Melt Pool Formations and Sintering Quality","authors":"Oğulcan EREN","doi":"10.1002/mats.202500094","DOIUrl":"https://doi.org/10.1002/mats.202500094","url":null,"abstract":"<div>\u0000 \u0000 <p>Selective Laser Sintering (SLS) is an additive manufacturing method that enables the rapid and cost-effective production of complex polymer parts with high strength and dimensional accuracy. However, achieving these improved properties depends on laser processing parameters, which significantly influence melt behavior, melt pool properties, and the overall quality of the components. Because empirical approach is both time-consuming and cost-intensive, finite element method (FEM)-based simulations have become a popular field of study. However, existing simulation models are often oversimplified and inadequate to fully understand the multi-physics nature of SLS. To address this gap, a comprehensive 3D multi-physics finite element model was developed to simulate the SLS processing of Polyamide 12 powder. This study incorporates multiple interacting physical phenomena, such as heat transfer, fluid flow dynamics, melt-solidification kinetics, and phase transformations, to provide a realistic depiction of the transient thermal and fluid behavior of the SLS process. The simulation systematically examined the influence of laser process parameters on molten pool formation, temperature distribution, and overall sintering quality. The results show that insufficient volumetric energy density (VED) or high scan speeds resulted in incomplete melting and porosity, whereas excessive energy input promoted overheating and material degradation.</p>\u0000 </div>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Macromol. Theory Simul. 5/2025 发布信息:Macromol。理论模拟。5/2025
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-09-18 DOI: 10.1002/mats.70023
{"title":"Issue Information: Macromol. Theory Simul. 5/2025","authors":"","doi":"10.1002/mats.70023","DOIUrl":"https://doi.org/10.1002/mats.70023","url":null,"abstract":"","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 5","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.70023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145102064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological and Thermal Behavior of Calendering Process of Hybrid Nanofluid: A Magnetohydrodynamic Thin Film Analysis 混合纳米流体压延过程流变和热行为:磁流体动力学薄膜分析
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-09-18 DOI: 10.1002/mats.202500088
Hasan Shahzad, Moataz Alosaimi

The current investigation reports the rheological implications on thin film production with magnetized hybrid nanofluid during the calendering process. Hybrid nanofluids are reported to have better rheological characteristics, improved mechanism of heat transfer in liquid, viscosity modification, and thermal conductivity enhancement as related to the usual unitary nanofluid. Lubrication Approximation Theory (LAT) is applied to simplify the respective system of non-dimensional equations and solved by employing analytical as well as numerical approaches to find velocity, temperature, pressure gradient, exiting film thickness, pressure, and other mechanical quantities. The graphical illustrations are thoroughly explained by providing physical reasoning for the obtained variations. Hybrid nanoparticle-based molten polymer modifies the fluid viscosity, enhancing pressure gradient and temperature distribution. The relation between film attachment and detachment point also varies under hybrid nanoparticle volume fraction and Hartmann number. Engineering quantities like separating force and power input are enhanced due to hybrid nanoparticles because of higher fluid viscosity and pressure distribution, but an opposite trend is detected due to MHD. The current investigation focuses on the rheology and controlling factors for the heat transfer mechanism and film thickness, without extensive experimentation to save project cost and precious time. It also helps improve product performance and quality in industrial thin film applications.

本研究报告了磁化混合纳米流体在压延过程中对薄膜生产的流变学影响。据报道,混合纳米流体与普通的单一纳米流体相比,具有更好的流变特性、改进的液体传热机制、粘度改性和导热性增强。润滑近似理论(LAT)用于简化各自的无量纲方程组,并采用解析和数值方法求解速度、温度、压力梯度、出膜厚度、压力和其他力学量。图形插图通过提供获得的变化的物理推理进行了彻底的解释。混合纳米颗粒基熔融聚合物改变了流体粘度,增强了压力梯度和温度分布。在杂化纳米颗粒体积分数和哈特曼数不同的情况下,膜附着与脱离点的关系也不同。由于混合纳米颗粒具有更高的流体粘度和压力分布,因此可以提高分离力和功率输入等工程量,但由于MHD,则会出现相反的趋势。目前的研究主要集中在流变学、传热机理和膜厚的控制因素上,为了节省工程成本和宝贵的时间,没有进行大量的实验。它还有助于提高工业薄膜应用中的产品性能和质量。
{"title":"Rheological and Thermal Behavior of Calendering Process of Hybrid Nanofluid: A Magnetohydrodynamic Thin Film Analysis","authors":"Hasan Shahzad,&nbsp;Moataz Alosaimi","doi":"10.1002/mats.202500088","DOIUrl":"https://doi.org/10.1002/mats.202500088","url":null,"abstract":"<div>\u0000 \u0000 <p>The current investigation reports the rheological implications on thin film production with magnetized hybrid nanofluid during the calendering process. Hybrid nanofluids are reported to have better rheological characteristics, improved mechanism of heat transfer in liquid, viscosity modification, and thermal conductivity enhancement as related to the usual unitary nanofluid. Lubrication Approximation Theory (LAT) is applied to simplify the respective system of non-dimensional equations and solved by employing analytical as well as numerical approaches to find velocity, temperature, pressure gradient, exiting film thickness, pressure, and other mechanical quantities. The graphical illustrations are thoroughly explained by providing physical reasoning for the obtained variations. Hybrid nanoparticle-based molten polymer modifies the fluid viscosity, enhancing pressure gradient and temperature distribution. The relation between film attachment and detachment point also varies under hybrid nanoparticle volume fraction and Hartmann number. Engineering quantities like separating force and power input are enhanced due to hybrid nanoparticles because of higher fluid viscosity and pressure distribution, but an opposite trend is detected due to MHD. The current investigation focuses on the rheology and controlling factors for the heat transfer mechanism and film thickness, without extensive experimentation to save project cost and precious time. It also helps improve product performance and quality in industrial thin film applications.</p>\u0000 </div>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145969969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Computational Study of Physical Properties of Nitrile-Butadiene Rubber via Molecular Dynamics Simulations 丁腈橡胶物理性质的分子动力学模拟计算研究
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-09-11 DOI: 10.1002/mats.202500070
Fuyuan Tian, Tiancong Wang, Zongxia Guo, Zhanfu Yong, Jianhui Song
<div> <p>As a widely used elastomer, the properties of nitrile butadiene rubber (NBR) are strongly influenced by its monomer composition and molecular structure. In this work, we employ all-atom molecular dynamics simulations to systematically investigate the effects of chain length, acrylonitrile (ACN) content, and trans-butadiene (T-B) ratio on the properties of NBR. Key properties examined include density (<i>ρ</i>), unit free volume (UFV), root-mean-square radius of gyration (<span></span><math> <semantics> <mrow> <mo><</mo> <msubsup> <mover> <mi>R</mi> <mo>¯</mo> </mover> <mi>g</mi> <mn>2</mn> </msubsup> <msup> <mo>></mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> <annotation>$ < bar{R}_g^2{{ > }^{1/2}}$</annotation> </semantics></math>), and glass transition temperature (<span></span><math> <semantics> <msub> <mi>T</mi> <mi>g</mi> </msub> <annotation>${{T}_g}$</annotation> </semantics></math>). We also analyze two dynamic parameters: mean square displacement (MSD) and diffusion coefficient (DC). Our results indicate that increasing the chain length leads to higher density and larger <span></span><math> <semantics> <mrow> <mo><</mo> <msubsup> <mover> <mi>R</mi> <mo>¯</mo> </mover> <mi>g</mi> <mn>2</mn> </msubsup> <msup> <mo>></mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> <annotation>$ < bar{R}_g^2{{ > }^{1/2}}$</annotation> </semantics></math>, while reducing UFV, which consequently decreases molecular mobility. With increasing ACN content, density, and <span></span><math> <semantics> <msub> <mi>T</mi> <mi>g</mi> </msub> <annotation>${{T}_g}$</annotation> </semantics></math> rise, whereas all other structural and dynamic parameters decline. In contrast, variations in T-B content ratio have a minor effect on density; however, <span></span><math> <semantics> <mrow> <mo><
丁腈橡胶(NBR)作为一种应用广泛的弹性体,其性能受到其单体组成和分子结构的强烈影响。在这项工作中,我们采用全原子分子动力学模拟系统地研究了链长、丙烯腈(ACN)含量和反式丁二烯(T-B)比对丁腈橡胶性能的影响。检查的关键性质包括密度(ρ),单位自由体积(UFV),均方根旋转半径(< R¯g 2 > 1 / 2 $ < bar{R}_g^2{{>;}^{1/2}}$),玻璃化转变温度(T g ${{T}_g}$)。我们还分析了两个动态参数:均方位移(MSD)和扩散系数(DC)。我们的研究结果表明,增加链长会导致更高的密度和更大的<; R¯g 2 > 1 / 2$ < bar{R}_g^2{{>}^{1/2}}$,同时降低UFV,从而降低分子迁移率。随着ACN含量的增加,密度增大,tg ${{T}_g}$增大,其他结构参数和动力参数均减小。相反,T-B含量比的变化对密度的影响较小;然而,< R¯g 2 > 1/2 $ < bar{R}_g^2{>}^{1/2}}$, UFV,T g ${{T}_g}$随T- b比的增大而增大。值得注意的是,动态参数(MSD和DC)在60 mol%的T-B比下达到最大值。本研究提供了分子水平上单体组成和链结构在决定丁腈橡胶性能中的作用,为合理设计具有定制性能的丁腈橡胶材料提供理论指导。
{"title":"A Computational Study of Physical Properties of Nitrile-Butadiene Rubber via Molecular Dynamics Simulations","authors":"Fuyuan Tian,&nbsp;Tiancong Wang,&nbsp;Zongxia Guo,&nbsp;Zhanfu Yong,&nbsp;Jianhui Song","doi":"10.1002/mats.202500070","DOIUrl":"https://doi.org/10.1002/mats.202500070","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;As a widely used elastomer, the properties of nitrile butadiene rubber (NBR) are strongly influenced by its monomer composition and molecular structure. In this work, we employ all-atom molecular dynamics simulations to systematically investigate the effects of chain length, acrylonitrile (ACN) content, and trans-butadiene (T-B) ratio on the properties of NBR. Key properties examined include density (&lt;i&gt;ρ&lt;/i&gt;), unit free volume (UFV), root-mean-square radius of gyration (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ &lt; bar{R}_g^2{{ &gt; }^{1/2}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;), and glass transition temperature (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${{T}_g}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;). We also analyze two dynamic parameters: mean square displacement (MSD) and diffusion coefficient (DC). Our results indicate that increasing the chain length leads to higher density and larger &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ &lt; bar{R}_g^2{{ &gt; }^{1/2}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, while reducing UFV, which consequently decreases molecular mobility. With increasing ACN content, density, and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${{T}_g}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; rise, whereas all other structural and dynamic parameters decline. In contrast, variations in T-B content ratio have a minor effect on density; however, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;&lt","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145983717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging of Tetrafluoroethylene Propylene (FEPM) Material in High-Pressure HighTemperature Hydrogen Sulfide Downhole Environment: Theory, Modeling, Experiments, and Material Lifetime Prediction 高压高温硫化氢井下环境下四氟乙烯丙烯(FEPM)材料的老化:理论、建模、实验和材料寿命预测
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-09-10 DOI: 10.1002/mats.202500044
Aref Ghaderi, Hadis Nouri, Roozbeh Dargazany, Scott Meng, Peixiang Xing, Jiaxiang Ren, Peng Cheng

This paper presents a physics-driven neural network (PINN) model to capture the constitutive behavior, elongation at break (EAB), modulus, and tensile strength of FEPM material in high-pressure, high-temperature (HPHT) hydrogen sulfide (H2S) downhole environment. The model comprises a deep neural network structure and a physics-based constitutive equation. The PINN model was trained using experimental data from the FEPM material properties before and after the ISO-23936-2 immersion tests. It is shown that the PINN model can accurately predict the FEPM material behavior under HPHT sour service conditions. The predictions of our DL model agree well with the experimental data. Predictions were also made via the Arrhenius approach per ISO 23936-2 based on the same data set, and the results were compared to those from the PINN model. The comparison highlights that the Physics-Informed Neural Network (PINN) model excels in predicting material longevity across a broad temperature spectrum. This research underscores the effectiveness of PINN models in precisely forecasting material performance in high-pressure, high-temperature (HPHT) sour downhole conditions, paving the way for the development of advanced materials.

本文提出了一种物理驱动的神经网络(PINN)模型,用于捕获高压、高温(HPHT)硫化氢(H2S)井下环境中FEPM材料的本构行为、断裂伸长率(EAB)、模量和抗拉强度。该模型由深度神经网络结构和基于物理的本构方程组成。利用ISO-23936-2浸泡试验前后的FEPM材料性能实验数据对PINN模型进行了训练。结果表明,PINN模型能较准确地预测高温高温含酸工况下FEPM材料的性能。DL模型的预测结果与实验数据吻合较好。根据ISO 23936-2基于相同的数据集,通过Arrhenius方法进行预测,并将结果与PINN模型的结果进行比较。对比表明,物理信息神经网络(PINN)模型在预测材料在广泛温度范围内的寿命方面表现出色。该研究强调了PINN模型在精确预测高压高温(HPHT)含酸井下条件下材料性能方面的有效性,为先进材料的开发铺平了道路。
{"title":"Aging of Tetrafluoroethylene Propylene (FEPM) Material in High-Pressure HighTemperature Hydrogen Sulfide Downhole Environment: Theory, Modeling, Experiments, and Material Lifetime Prediction","authors":"Aref Ghaderi,&nbsp;Hadis Nouri,&nbsp;Roozbeh Dargazany,&nbsp;Scott Meng,&nbsp;Peixiang Xing,&nbsp;Jiaxiang Ren,&nbsp;Peng Cheng","doi":"10.1002/mats.202500044","DOIUrl":"https://doi.org/10.1002/mats.202500044","url":null,"abstract":"<p>This paper presents a physics-driven neural network (PINN) model to capture the constitutive behavior, elongation at break (EAB), modulus, and tensile strength of FEPM material in high-pressure, high-temperature (HPHT) hydrogen sulfide (H2S) downhole environment. The model comprises a deep neural network structure and a physics-based constitutive equation. The PINN model was trained using experimental data from the FEPM material properties before and after the ISO-23936-2 immersion tests. It is shown that the PINN model can accurately predict the FEPM material behavior under HPHT sour service conditions. The predictions of our DL model agree well with the experimental data. Predictions were also made via the Arrhenius approach per ISO 23936-2 based on the same data set, and the results were compared to those from the PINN model. The comparison highlights that the Physics-Informed Neural Network (PINN) model excels in predicting material longevity across a broad temperature spectrum. This research underscores the effectiveness of PINN models in precisely forecasting material performance in high-pressure, high-temperature (HPHT) sour downhole conditions, paving the way for the development of advanced materials.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202500044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145909193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Weight Functions on the Dynamics and Rheology of Dilute Polymer Solutions in Dissipative Particle Dynamics Simulations 耗散粒子动力学模拟中权函数对稀聚合物溶液动力学和流变性的影响
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-09-10 DOI: 10.1002/mats.202500071
Sanjay Jana, Indranil Saha Dalal
<div> <p>Dissipative particle dynamics (DPD) is a mesoscale simulation technique that has shown promise for studying polymer solutions, particularly in complex flow geometries. However, its application in rheological studies of polymer solutions remains limited compared to Brownian dynamics (BD) simulations. This is partly due to lack of investigations of the effect of modeling parameters on rheological results, in flow fields. This study investigates the influence of the weight function parameter <span></span><math> <semantics> <mi>s</mi> <annotation>$s$</annotation> </semantics></math> in DPD simulations on the behavior of dilute polymer solutions, comparing the conventional value <span></span><math> <semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>2</mn> </mrow> <annotation>$s = 2$</annotation> </semantics></math> with <span></span><math> <semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.5</mn> </mrow> <annotation>$s = 0.5$</annotation> </semantics></math>, which has been suggested to better mimic liquid-like behavior. We perform detailed DPD simulations at equilibrium and under flow conditions, including both extensional and shear flows, using a highly resolved polymer chain model. Our results show that while the equilibrium chain size predictions are nearly identical for both <span></span><math> <semantics> <mi>s</mi> <annotation>$s$</annotation> </semantics></math> values, the dynamics differ significantly. Specifically, <span></span><math> <semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.5</mn> </mrow> <annotation>$s = 0.5$</annotation> </semantics></math> results in slower chain relaxation times and suppresses excluded volume effects. Drag forces with <span></span><math> <semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.5</mn> </mrow> <annotation>$s = 0.5$</annotation> </semantics></math> are larger, leading to higher chain stretch at moderate flow rates. With start-up extension, the time distribution for unraveling with <span></span><math> <semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.5</mn> </mrow> <annotation>$s = 0.5$</annotation> </semantics></math> remains significantly narrow, with no outlier configurations with delayed stretching. In shear flows, the end-over-end tumbling dynamics is slower with <span></span><math
耗散粒子动力学(DPD)是一种中尺度模拟技术,在研究聚合物溶液,特别是复杂的流动几何结构方面表现出了很大的前景。然而,与布朗动力学(BD)模拟相比,它在聚合物溶液流变学研究中的应用仍然有限。这部分是由于缺乏对流场中建模参数对流变结果影响的研究。本文研究了DPD模拟中权重函数参数s$ s$对稀聚合物溶液行为的影响。将常规值s = 2$ s = 2$与s = 0.5$ s = 0.5$进行比较,认为s = 2$ s = 2$能更好地模拟类液体行为。我们使用高分辨率的聚合物链模型,在平衡和流动条件下进行了详细的DPD模拟,包括拉伸和剪切流动。我们的结果表明,虽然平衡链大小的预测几乎是相同的两个s$ s$值,动态差异显著。具体来说,s = 0.5$导致链弛豫时间变慢,抑制了排除的体积效应。s = 0.5$时阻力较大,在中等流量下链的拉伸量较大。随着启动时间的延长,s = 0.5$展开的时间分布仍然很窄,没有出现延迟展开的异常构型。在剪切流动中,当s= 0.5$ s= 0.5$时,端对端翻滚动力学较慢,在中等剪切速率下链处于拉伸状态的时间明显较长。然而,链大小预测(平均构象和时间)和趋势仍然相似。然而,注意到HI的压倒性,导致EV效应在平衡状态下被抑制,并且解开的时间分布非常窄,没有异常值和延迟拉伸(如实验中所见),s = 2$ s = 2$(常规DPD)的结果比s = 0.5$ s = 0.5$更为一致。因此,我们的研究结果表明,s = 2$ s = 2$可能更适合使用DPD模拟稀聚合物溶液的流变学模拟。
{"title":"Effect of Weight Functions on the Dynamics and Rheology of Dilute Polymer Solutions in Dissipative Particle Dynamics Simulations","authors":"Sanjay Jana,&nbsp;Indranil Saha Dalal","doi":"10.1002/mats.202500071","DOIUrl":"https://doi.org/10.1002/mats.202500071","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;Dissipative particle dynamics (DPD) is a mesoscale simulation technique that has shown promise for studying polymer solutions, particularly in complex flow geometries. However, its application in rheological studies of polymer solutions remains limited compared to Brownian dynamics (BD) simulations. This is partly due to lack of investigations of the effect of modeling parameters on rheological results, in flow fields. This study investigates the influence of the weight function parameter &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;annotation&gt;$s$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in DPD simulations on the behavior of dilute polymer solutions, comparing the conventional value &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$s = 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0.5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$s = 0.5$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, which has been suggested to better mimic liquid-like behavior. We perform detailed DPD simulations at equilibrium and under flow conditions, including both extensional and shear flows, using a highly resolved polymer chain model. Our results show that while the equilibrium chain size predictions are nearly identical for both &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;annotation&gt;$s$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; values, the dynamics differ significantly. Specifically, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0.5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$s = 0.5$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; results in slower chain relaxation times and suppresses excluded volume effects. Drag forces with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0.5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$s = 0.5$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are larger, leading to higher chain stretch at moderate flow rates. With start-up extension, the time distribution for unraveling with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0.5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$s = 0.5$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; remains significantly narrow, with no outlier configurations with delayed stretching. In shear flows, the end-over-end tumbling dynamics is slower with &lt;span&gt;&lt;/span&gt;&lt;math","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Patch Size and Attraction Energy on Polymer Chain Adsorption in Slits Created by Opposing Patch-Patterned Surfaces 贴片尺寸和吸引能对聚合物链在对立贴片表面缝隙中吸附的影响
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-09-08 DOI: 10.1002/mats.202500076
Han-Da Liu, Shuai Li, Qing-Hui Yang, Meng-Bo Luo

The adsorption behavior of a polymer chain within a slit composed of two patch-patterned surfaces is investigated using Langevin dynamics simulations. Each surface exhibits periodic attractive square patches (period d, size L, attraction energy εps), with a 0.5d misalignment between the two surfaces. The adsorption degree increases with L, while the mean number of occupied patches <npa> and the surface-parallel component of the mean square radius of gyration <R2g,xy> exhibit a complex dependence on L. We identify distinct adsorption regimes: a single-surface and single-patch adsorbed state for L > Ls, an upper-lower and multi-patch adsorbed state for L > Lm, and a complete adsorbed state for L > Lc. At weak εps, the polymer chain adopts single-surface and single-patch adsorption for middle L and upper-lower and multi-patch adsorption for large L. Conversely, a strong εps promotes upper-lower and multi-patch adsorption for small L, and single-surface and single-patch adsorption as L increases. The adsorption degree increases monotonically to saturate with εps, while <np> initially increases and subsequently decays toward stability. Notably, <R2g,xy> first decreases, then increases, and finally decreases to stabilize as εps increases. These results highlight the role of patch geometry and interaction strength in governing polymer adsorption behavior.

采用朗之万动力学模拟研究了聚合物链在由两个贴片表面组成的狭缝内的吸附行为。每个表面都有周期性的吸引方形斑块(周期d,尺寸L,吸引能εps),两个表面之间有0.5d的不对准。吸附度随L的增加而增加,而平均占据的斑块数<;npa>;和平均旋转半径的表面平行分量<;R2g,xy>;与L呈复杂的依赖关系。我们确定了不同的吸附状态:L >; Ls为单表面和单斑块吸附状态,L >; Lm为上下多斑块吸附状态,L >; Lc为完全吸附状态。当εps较弱时,聚合物链对中L和上下L采用单表面、单贴片吸附,对大L采用多贴片吸附。反之,当εps较强时,对小L采用上下、多贴片吸附,随着L的增大,采用单表面、单贴片吸附。吸附度随εps单调增加至饱和,而吸附度随εps逐渐增大,而后逐渐衰减趋于稳定。值得注意的是,随着εps的增大,<R2g,xy>;先减小后增大,最后减小趋于稳定。这些结果突出了斑块几何形状和相互作用强度在控制聚合物吸附行为中的作用。
{"title":"Effect of Patch Size and Attraction Energy on Polymer Chain Adsorption in Slits Created by Opposing Patch-Patterned Surfaces","authors":"Han-Da Liu,&nbsp;Shuai Li,&nbsp;Qing-Hui Yang,&nbsp;Meng-Bo Luo","doi":"10.1002/mats.202500076","DOIUrl":"https://doi.org/10.1002/mats.202500076","url":null,"abstract":"<div>\u0000 \u0000 <p>The adsorption behavior of a polymer chain within a slit composed of two patch-patterned surfaces is investigated using Langevin dynamics simulations. Each surface exhibits periodic attractive square patches (period <i>d</i>, size <i>L</i>, attraction energy ε<sub>ps</sub>), with a 0.5<i>d</i> misalignment between the two surfaces. The adsorption degree increases with <i>L</i>, while the mean number of occupied patches &lt;<i>n</i><sub>pa</sub>&gt; and the surface-parallel component of the mean square radius of gyration &lt;<i>R</i><sup>2</sup><sub>g,xy</sub>&gt; exhibit a complex dependence on <i>L</i>. We identify distinct adsorption regimes: a single-surface and single-patch adsorbed state for <i>L</i> &gt; <i>L</i><sub>s</sub>, an upper-lower and multi-patch adsorbed state for <i>L</i> &gt; <i>L</i><sub>m</sub>, and a complete adsorbed state for <i>L</i> &gt; <i>L</i><sub>c</sub>. At weak ε<sub>ps</sub>, the polymer chain adopts single-surface and single-patch adsorption for middle <i>L</i> and upper-lower and multi-patch adsorption for large <i>L</i>. Conversely, a strong ε<sub>ps</sub> promotes upper-lower and multi-patch adsorption for small <i>L</i>, and single-surface and single-patch adsorption as <i>L</i> increases. The adsorption degree increases monotonically to saturate with ε<sub>ps</sub>, while &lt;<i>n</i><sub>p</sub>&gt; initially increases and subsequently decays toward stability. Notably, &lt;<i>R</i><sup>2</sup><sub>g,xy</sub>&gt; first decreases, then increases, and finally decreases to stabilize as ε<sub>ps</sub> increases. These results highlight the role of patch geometry and interaction strength in governing polymer adsorption behavior.</p>\u0000 </div>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 6","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145533686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear Polymerization in an HCSTR, the Age Distribution and the Inhomogeneous Distribution of Branch Points HCSTR中的非线性聚合,枝点的年龄分布和不均匀分布
IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE Pub Date : 2025-09-08 DOI: 10.1002/mats.202500064
Rolf Bachmann, Marcel Klinger

The effect of the broadening of the molecular weight distribution (MWD) in a continuous operation in an HCSTR accompanied by an increased tendency to form gel caused by branching and crosslinking reactions is well known. A more detailed understanding of this phenomenon can be gained from the age distribution. This new concept, introduced here, is a generalization of the residence time distribution and describes the age of individual monomeric units of a polymer chain, which is the time elapsed since the unit entered the reactor as a monomer. It is shown that in living and step growth polymerization the branching density depends on the length of the polymer chain. In living polymerization, it is a linear function of chain length whereas in step growth polymerization it follows a square root function. This leads to high molecular weight tailing and the formation of very inhomogeneous polymer molecules or networks. The onset of gelation is much earlier than in case of an uniform distribution of branch points. The concept of the age distribution is very general and applies to general reaction systems. In a reactor with recycles, the time a chemical species spends in the reactor depends on the reaction path.

在HCSTR连续操作中,分子量分布(MWD)的扩大伴随着分支和交联反应引起的凝胶形成趋势的增加,其影响是众所周知的。从年龄分布中可以更详细地了解这一现象。这里引入的这个新概念是停留时间分布的概括,它描述了聚合物链上单个单体单元的年龄,也就是该单元作为单体进入反应器后所经过的时间。研究表明,在活性和阶梯生长聚合中,分支密度取决于聚合物链的长度。在活性聚合中,它是链长的线性函数,而在阶跃生长聚合中,它遵循平方根函数。这导致了高分子量的尾迹和非常不均匀的聚合物分子或网络的形成。凝胶化的开始时间比分支点均匀分布的情况要早得多。年龄分布的概念非常普遍,适用于一般反应体系。在有循环的反应器中,化学物质在反应器中停留的时间取决于反应路径。
{"title":"Nonlinear Polymerization in an HCSTR, the Age Distribution and the Inhomogeneous Distribution of Branch Points","authors":"Rolf Bachmann,&nbsp;Marcel Klinger","doi":"10.1002/mats.202500064","DOIUrl":"https://doi.org/10.1002/mats.202500064","url":null,"abstract":"<div>\u0000 \u0000 <p>The effect of the broadening of the molecular weight distribution (MWD) in a continuous operation in an HCSTR accompanied by an increased tendency to form gel caused by branching and crosslinking reactions is well known. A more detailed understanding of this phenomenon can be gained from the age distribution. This new concept, introduced here, is a generalization of the residence time distribution and describes the age of individual monomeric units of a polymer chain, which is the time elapsed since the unit entered the reactor as a monomer. It is shown that in living and step growth polymerization the branching density depends on the length of the polymer chain. In living polymerization, it is a linear function of chain length whereas in step growth polymerization it follows a square root function. This leads to high molecular weight tailing and the formation of very inhomogeneous polymer molecules or networks. The onset of gelation is much earlier than in case of an uniform distribution of branch points. The concept of the age distribution is very general and applies to general reaction systems. In a reactor with recycles, the time a chemical species spends in the reactor depends on the reaction path.</p>\u0000 </div>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 6","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145533685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Macromolecular Theory and Simulations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1