Kun Yang, Yiwen Chen, Yibo Wang, Hao Chen, Shourui Wang
In this paper, negative poisson's ratio material is used to fill the interlayer of mine refuge chamber, and its characteristics such as light weight, thermal insulation, vibration isolation and impact resistance are used to improve the impact resistance and thermal insulation ability of mine refuge chamber. The equivalent density, elastic modulus and yield strength of negative poisson's ratio structure of material Q345 were obtained by simulation analysis. The negative poisson's ratio material was filled into the mine refuge chamber
{"title":"Analysis and optimization of impact energy absorption performance of mine refuge chamber filled with concave triangular negative poisson's ratio material","authors":"Kun Yang, Yiwen Chen, Yibo Wang, Hao Chen, Shourui Wang","doi":"10.1590/1679-78257438","DOIUrl":"https://doi.org/10.1590/1679-78257438","url":null,"abstract":"In this paper, negative poisson's ratio material is used to fill the interlayer of mine refuge chamber, and its characteristics such as light weight, thermal insulation, vibration isolation and impact resistance are used to improve the impact resistance and thermal insulation ability of mine refuge chamber. The equivalent density, elastic modulus and yield strength of negative poisson's ratio structure of material Q345 were obtained by simulation analysis. The negative poisson's ratio material was filled into the mine refuge chamber","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67623261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thiarly Feitosa Afonso de Lavôr, J. Brito, A. Loredo-Souza
Wind-induced loading on buildings may be altered due to presence of upwind structures. These variations are quantified by the interference factors (IFs), which is determined experimentally for each case analyzed, since obtaining this quantification in codes and standards is still impractical due to the complexity of the multi-parameters involved. To understand the influence of some of these parameters on the interference effects, contour plots and power spectra density were presented for IFs corresponding to aerodynamic coefficients of the along-wind and cross-wind force, as well as for torsion. Wind tunnel tests were conducted applying the synchronous pressure measurement technique. Interference arrangements with one and two upstream interfering buildings were investigated for different wind angles, relative positions and terrain roughness. Results indicate that the shielding effect is predominant in most of the studied cases. Nevertheless, the amplification effects are generally present in specific configurations and are usually caused by channeling and buffeting effects, as well as vortex shedding
{"title":"Interference effects mapping on the static wind loading of a tall building","authors":"Thiarly Feitosa Afonso de Lavôr, J. Brito, A. Loredo-Souza","doi":"10.1590/1679-78257330","DOIUrl":"https://doi.org/10.1590/1679-78257330","url":null,"abstract":"Wind-induced loading on buildings may be altered due to presence of upwind structures. These variations are quantified by the interference factors (IFs), which is determined experimentally for each case analyzed, since obtaining this quantification in codes and standards is still impractical due to the complexity of the multi-parameters involved. To understand the influence of some of these parameters on the interference effects, contour plots and power spectra density were presented for IFs corresponding to aerodynamic coefficients of the along-wind and cross-wind force, as well as for torsion. Wind tunnel tests were conducted applying the synchronous pressure measurement technique. Interference arrangements with one and two upstream interfering buildings were investigated for different wind angles, relative positions and terrain roughness. Results indicate that the shielding effect is predominant in most of the studied cases. Nevertheless, the amplification effects are generally present in specific configurations and are usually caused by channeling and buffeting effects, as well as vortex shedding","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67622004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khoa Ngo-Nhu, Sy Nguyen-Van, Dung Luong-Viet, N. Nguyen-Dinh, Hoai Nguyen Thị, Anh-Tuan Dang, Ngoc Pham Thi Bich
In this paper, the hybrid differential evolution and symbiotic organism search (HDS), is the first-time developed for general solutions of a piezoelectric stack in ultrasonic transducers. The convergence and reliability of the new algorithm are verified through comparison with corresponding data from similar previous publications and differential evolution (DE) algorithm. This study also presents and discusses the calculation results using HDS for commercial piezoelectric stacks. The Matlab HDS programs for a segmented piezoelectric (PZT) model have advanced features including its applicability to any configurations, thickness and arbitrary layer numbers of PZT. Using the novel proposed technique, there is no requirement for initial data guess, no limitations for piezoelectric stacks and the convergence rate is much faster than DE. Therefore, the HDS is promising for direct evaluation of specific aging or degradation mechanisms of ultrasonic transducers.
{"title":"A new algorithm to calculate complex material parameters in piezoelectric stacks","authors":"Khoa Ngo-Nhu, Sy Nguyen-Van, Dung Luong-Viet, N. Nguyen-Dinh, Hoai Nguyen Thị, Anh-Tuan Dang, Ngoc Pham Thi Bich","doi":"10.1590/1679-78257491","DOIUrl":"https://doi.org/10.1590/1679-78257491","url":null,"abstract":"In this paper, the hybrid differential evolution and symbiotic organism search (HDS), is the first-time developed for general solutions of a piezoelectric stack in ultrasonic transducers. The convergence and reliability of the new algorithm are verified through comparison with corresponding data from similar previous publications and differential evolution (DE) algorithm. This study also presents and discusses the calculation results using HDS for commercial piezoelectric stacks. The Matlab HDS programs for a segmented piezoelectric (PZT) model have advanced features including its applicability to any configurations, thickness and arbitrary layer numbers of PZT. Using the novel proposed technique, there is no requirement for initial data guess, no limitations for piezoelectric stacks and the convergence rate is much faster than DE. Therefore, the HDS is promising for direct evaluation of specific aging or degradation mechanisms of ultrasonic transducers.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67624032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the behavior of steel-concrete composite beams with fire protection using the finite element software ABAQUS. An extensive parametric study was carried out to verify the influence of the axial and rotational restraint stiffness, the influence of the spans and the influence of the variation of the fire protection coating, topic with few studies by other authors. The focus of this paper was to verify the axial forces on the supports to study the influence of these forces on the surrounding elements: columns and connections. The study shows that axial and rotational constraints have an important influence on the beams. The values of axial forces are proportionally greater as the beam span is increased. Also verified was that the beam behavior does not change with the variation of the fire protection coating. Finally, the study brings a new approach to the importance of investigating the forces of interaction between beams and columns, as theses forces can lead to unsafe design because the compressive forces in the interaction with the columns and the tensile forces in the catenary phase in connections.
{"title":"Effect of axial and rotational restraint on performance of composite beams with fire protection coating","authors":"I. C. S. Leite, V. P. Silva","doi":"10.1590/1679-78257403","DOIUrl":"https://doi.org/10.1590/1679-78257403","url":null,"abstract":"This paper presents the behavior of steel-concrete composite beams with fire protection using the finite element software ABAQUS. An extensive parametric study was carried out to verify the influence of the axial and rotational restraint stiffness, the influence of the spans and the influence of the variation of the fire protection coating, topic with few studies by other authors. The focus of this paper was to verify the axial forces on the supports to study the influence of these forces on the surrounding elements: columns and connections. The study shows that axial and rotational constraints have an important influence on the beams. The values of axial forces are proportionally greater as the beam span is increased. Also verified was that the beam behavior does not change with the variation of the fire protection coating. Finally, the study brings a new approach to the importance of investigating the forces of interaction between beams and columns, as theses forces can lead to unsafe design because the compressive forces in the interaction with the columns and the tensile forces in the catenary phase in connections.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67623298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
En-Yong Zhang, Haixia Zhao, Guoyun Lu, Pengcheng Chen, Huiwei Yang
Metaconcrete is a newly manmade concrete where traditional aggregates are partially replaced by resonant aggregates. The metaconcrete slab can attenuate vibration in the specific frequency bandgap which are created by the locally resonant aggregates. To enhance the attenuation performance of metaconcrete slab, a dual-resonant aggregate was designed and embedded into the metaconcrete slab. Firstly, a mass-in-(mass-in-mass) analytical model is used to predict the bandgap characteristics of dual-resonant aggregates metaconcrete. Then, eigenfrequency investigation is conducted to acquire the dispersion curve of the periodic unit cell by using finite element software COMSOL Multiphysics. The effects of the mass and stiffness ratios parameters on the characteristics of bandgap are studied. The frequency responses of the dual-resonant aggregates metaconcrete reveal that the dual-resonant aggregates metaconcrete slab can acquire vibration wave mitigation in two designed frequency bands. The results offer a base for the optimal design of the metaconcrete slab for structural protections resist vibration loading.
{"title":"Design and evaluation of dual-resonant aggregates metaconcrete","authors":"En-Yong Zhang, Haixia Zhao, Guoyun Lu, Pengcheng Chen, Huiwei Yang","doi":"10.1590/1679-78257392","DOIUrl":"https://doi.org/10.1590/1679-78257392","url":null,"abstract":"Metaconcrete is a newly manmade concrete where traditional aggregates are partially replaced by resonant aggregates. The metaconcrete slab can attenuate vibration in the specific frequency bandgap which are created by the locally resonant aggregates. To enhance the attenuation performance of metaconcrete slab, a dual-resonant aggregate was designed and embedded into the metaconcrete slab. Firstly, a mass-in-(mass-in-mass) analytical model is used to predict the bandgap characteristics of dual-resonant aggregates metaconcrete. Then, eigenfrequency investigation is conducted to acquire the dispersion curve of the periodic unit cell by using finite element software COMSOL Multiphysics. The effects of the mass and stiffness ratios parameters on the characteristics of bandgap are studied. The frequency responses of the dual-resonant aggregates metaconcrete reveal that the dual-resonant aggregates metaconcrete slab can acquire vibration wave mitigation in two designed frequency bands. The results offer a base for the optimal design of the metaconcrete slab for structural protections resist vibration loading.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67622760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In typical dynamic soil-structure interaction (SSI) problems, the dynamic response a structure can be affected by the existence of some nearby structures, which is sometimes referred to as the dynamic structure-soil-structure interaction (SSSI). This effect is especially important in the earthquake engineering design of adjacent nuclear power plants, as the safety risk is relatively high. However, the current understanding on the SSSI of nuclear power plants is still insufficient. In this work, we use the finite element method to investigate the SSSI of two nuclear power plants located at a specific distance under earthquake excitation. Four nuclear-power-plant-soil systems are designed to account for the SSI and SSSI respectively, where the soil properties are obtained from drilling data. The effect of the SSSI on the nuclear power plants is studied by comparing the dynamic responses of four nuclear power plants-soil systems in vertical and horizontal directions, in which both layered soils and local weak interlayer soils are considered. The results of numerical study show that the presence of one nuclear power plant has a favorable effect on the seismic response of an adjacent nuclear power plant, such as reducing the displacement response, but this effect is limited. In addition, the SSSI effect is related to not only the soil properties, but also the direction of ground motion. Furthermore, the existence of soft soil layers complicates the SSSI effect. The results provide important insights for the construction and expansion of nuclear power plants.
{"title":"Numerically study of SSSI effect on nuclear power plant on layered soil","authors":"Qun Chen, Mi Zhao, Junqing Zhang, Xiu-li Du","doi":"10.1590/1679-78257508","DOIUrl":"https://doi.org/10.1590/1679-78257508","url":null,"abstract":"In typical dynamic soil-structure interaction (SSI) problems, the dynamic response a structure can be affected by the existence of some nearby structures, which is sometimes referred to as the dynamic structure-soil-structure interaction (SSSI). This effect is especially important in the earthquake engineering design of adjacent nuclear power plants, as the safety risk is relatively high. However, the current understanding on the SSSI of nuclear power plants is still insufficient. In this work, we use the finite element method to investigate the SSSI of two nuclear power plants located at a specific distance under earthquake excitation. Four nuclear-power-plant-soil systems are designed to account for the SSI and SSSI respectively, where the soil properties are obtained from drilling data. The effect of the SSSI on the nuclear power plants is studied by comparing the dynamic responses of four nuclear power plants-soil systems in vertical and horizontal directions, in which both layered soils and local weak interlayer soils are considered. The results of numerical study show that the presence of one nuclear power plant has a favorable effect on the seismic response of an adjacent nuclear power plant, such as reducing the displacement response, but this effect is limited. In addition, the SSSI effect is related to not only the soil properties, but also the direction of ground motion. Furthermore, the existence of soft soil layers complicates the SSSI effect. The results provide important insights for the construction and expansion of nuclear power plants.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67623667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Martinez, J. C. Cyrino, M. Vaz, I. D. Hernández, V. D. Torres, V. Perrut, Gustavo Gomes de Paula
Welding procedures for repairing corroded tubular structures are commonly used; however, composite material repairs are becoming popular since they do not use heat sources that might cause accidents. This paper provides a detailed description of the CFRP patch repair application in steel tubular members with a circular perforation originated from a prolonged corrosion process. The results of experimental tests on mid-scale unrepaired damaged and repaired steel tubes are reported. The predictions of the maximum loads recovered from a proposed numerical model lie close to the experimental observed values, justifying its usage for analysis of repaired tubular structures with circular cutouts when subjected to axial compression. Compared to unrepaired perforated tubes, the experimental results demonstrate a substantial strength recovery for repaired tubes. The value of this research for the oil and gas industry is that it demonstrates the feasibility of this kind of repair, which means reduced risk to the production unit and a shorter repair period.
{"title":"CFRP repair effectiveness on compressed steel tubular members with circular cutout","authors":"J. Martinez, J. C. Cyrino, M. Vaz, I. D. Hernández, V. D. Torres, V. Perrut, Gustavo Gomes de Paula","doi":"10.1590/1679-78257357","DOIUrl":"https://doi.org/10.1590/1679-78257357","url":null,"abstract":"Welding procedures for repairing corroded tubular structures are commonly used; however, composite material repairs are becoming popular since they do not use heat sources that might cause accidents. This paper provides a detailed description of the CFRP patch repair application in steel tubular members with a circular perforation originated from a prolonged corrosion process. The results of experimental tests on mid-scale unrepaired damaged and repaired steel tubes are reported. The predictions of the maximum loads recovered from a proposed numerical model lie close to the experimental observed values, justifying its usage for analysis of repaired tubular structures with circular cutouts when subjected to axial compression. Compared to unrepaired perforated tubes, the experimental results demonstrate a substantial strength recovery for repaired tubes. The value of this research for the oil and gas industry is that it demonstrates the feasibility of this kind of repair, which means reduced risk to the production unit and a shorter repair period.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"8 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67622995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on the theory of single-phase elastic medium and unsaturated porous medium, the vibration isolation effect of composite multilayer wave impeding block (WIB) in the unsaturated ground under an underground dynamic load is investigated. The results show that the best vibration isolation effect can be obtained by designing the wave impedance ratio between the composite multilayer WIB and unsaturated ground. The composite multilayer WIB improves the vibration-damping bandwidth compared with the homogeneous WIB. The vibration isolation effect is better the closer the embedded depth of the composite multilayer WIB is to the vibration source, and its vibration isolation effect increases significantly with the increase of thickness, but when the thickness of the WIB exceeds a certain critical thickness, its vibration isolation effect decreases with the increase of thickness. Soil saturation has a significant effect on the vibration isolation effect of composite multilayer WIB in the unsaturated ground, and the composite multilayer WIB can achieve a better vibration isolation effect at low saturation.
{"title":"Study on vibration isolation performance of composite multilayer wave impeding block based on wave impedance ratio under an underground dynamic load","authors":"Mengmeng Zhang, Qiang Ma","doi":"10.1590/1679-78257439","DOIUrl":"https://doi.org/10.1590/1679-78257439","url":null,"abstract":"Based on the theory of single-phase elastic medium and unsaturated porous medium, the vibration isolation effect of composite multilayer wave impeding block (WIB) in the unsaturated ground under an underground dynamic load is investigated. The results show that the best vibration isolation effect can be obtained by designing the wave impedance ratio between the composite multilayer WIB and unsaturated ground. The composite multilayer WIB improves the vibration-damping bandwidth compared with the homogeneous WIB. The vibration isolation effect is better the closer the embedded depth of the composite multilayer WIB is to the vibration source, and its vibration isolation effect increases significantly with the increase of thickness, but when the thickness of the WIB exceeds a certain critical thickness, its vibration isolation effect decreases with the increase of thickness. Soil saturation has a significant effect on the vibration isolation effect of composite multilayer WIB in the unsaturated ground, and the composite multilayer WIB can achieve a better vibration isolation effect at low saturation.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67623874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study highlights the analysis of corrosion shape effects under thermo-mechanical loading on the development of damage in corroded and cracked aluminum plates. This study is divided into two parts, the numerical analytical part, was performed to compare the effect of the corrosion geometry on the repair and adhesive damage; We analyzed the effects of damaged areas on the level of corrosion in the adhesive layer of three composite materials (boron/epoxy, glass/epoxy
{"title":"Analysis of the effect of localized corrosion shape on a cracked and notched 2024 AL plate repaired with composite patch under thermo-mechanical loading","authors":"Hayet Benzineb, M. Berrahou, Leila Belkaddour","doi":"10.1590/1679-78257415","DOIUrl":"https://doi.org/10.1590/1679-78257415","url":null,"abstract":"This study highlights the analysis of corrosion shape effects under thermo-mechanical loading on the development of damage in corroded and cracked aluminum plates. This study is divided into two parts, the numerical analytical part, was performed to compare the effect of the corrosion geometry on the repair and adhesive damage; We analyzed the effects of damaged areas on the level of corrosion in the adhesive layer of three composite materials (boron/epoxy, glass/epoxy","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67623380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maurício Vitali Mendes, Lucas Borchardt Ghedini, Rafael Neponuceno Batista, L. Pedroso
In this article, the efficiency of the tuned liquid column damper (TLCD) in reducing structural vibration is analyzed. The analysis by numerical methods and by analytical methods is adopted in the search for the ideal parameters for the liquid column. The equivalent linear model is considered for the U-shaped liquid column equation of motion with damping resulting from an orifice. Thus, variation of TLCD parameters for different loads is investigated. Initially, for the numerical study in conjunction with the analytical formulation, a sinusoidal forcing is adopted. Subsequently, the action of an earthquake through the recorded ground accelerations is considered in the case study. Optimal TLCD parameters are presented via response map for reducing the structure's maximum permanent response to harmonic excitation and for reducing the structure's rms response to seismic excitation with wide frequency and various amplitude. The variation of the TLCD parameters presented by the response map is directly related to the force acting on the structure. However, it is verified that regardless of the acting force, there is an ideal frequency range to tune the TLCD where the greatest reductions in the primary system response are found. It appears that reducing the aspect ratio of the liquid column makes this range narrower, making the damper more sensitive to parameter variations, as well as its performance. It is also observed that the increase in the attenuator mass ratio combined with the correct tuning and damping ratios present greater reductions in structural vibration. Also, the frequency ratio is reduced with the increase of the mass ratio, while the damping rate of the liquid column increases. From the ideal liquid column parameters determined by the parametric analysis, structural response reductions of approximately 60% were achieved.
{"title":"A study of TLCD parameters for structural vibration mitigation","authors":"Maurício Vitali Mendes, Lucas Borchardt Ghedini, Rafael Neponuceno Batista, L. Pedroso","doi":"10.1590/1679-78257412","DOIUrl":"https://doi.org/10.1590/1679-78257412","url":null,"abstract":"In this article, the efficiency of the tuned liquid column damper (TLCD) in reducing structural vibration is analyzed. The analysis by numerical methods and by analytical methods is adopted in the search for the ideal parameters for the liquid column. The equivalent linear model is considered for the U-shaped liquid column equation of motion with damping resulting from an orifice. Thus, variation of TLCD parameters for different loads is investigated. Initially, for the numerical study in conjunction with the analytical formulation, a sinusoidal forcing is adopted. Subsequently, the action of an earthquake through the recorded ground accelerations is considered in the case study. Optimal TLCD parameters are presented via response map for reducing the structure's maximum permanent response to harmonic excitation and for reducing the structure's rms response to seismic excitation with wide frequency and various amplitude. The variation of the TLCD parameters presented by the response map is directly related to the force acting on the structure. However, it is verified that regardless of the acting force, there is an ideal frequency range to tune the TLCD where the greatest reductions in the primary system response are found. It appears that reducing the aspect ratio of the liquid column makes this range narrower, making the damper more sensitive to parameter variations, as well as its performance. It is also observed that the increase in the attenuator mass ratio combined with the correct tuning and damping ratios present greater reductions in structural vibration. Also, the frequency ratio is reduced with the increase of the mass ratio, while the damping rate of the liquid column increases. From the ideal liquid column parameters determined by the parametric analysis, structural response reductions of approximately 60% were achieved.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67623141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}