Precast dry connected frame systems are faster to construct with less erection efforts. These frame systems are considered non-emulate frame systems. The lateral load behaviour of these connections needs to be evaluated to ensure the desired performance. The performance of these dry connections with embedded bolts proposed was studied by finite elemental analysis. The nonlinear FEM analysis results obtained by considering appropriate elements, and material definition parameters, including failure and interactions, were validated with the experimental results available in the literature. The rigidity of the joints was evaluated using the beamline method. The beamline plot unveils that the joints can be classified as rigid joints. The results reveal that the joints under study have satisfactory stiffness degradation, energy dissipation characteristics, and failure modes like monolithic connection. The numerical procedure developed provide an efficient solution for performance evaluation and seismic design of these precast joints
{"title":"Nonlinear Numerical Evaluation of Dry Precast Beam Column Connection with Embedded Bolts","authors":"Srikanth Kallam, S. B. Borghate","doi":"10.1590/1679-78257314","DOIUrl":"https://doi.org/10.1590/1679-78257314","url":null,"abstract":"Precast dry connected frame systems are faster to construct with less erection efforts. These frame systems are considered non-emulate frame systems. The lateral load behaviour of these connections needs to be evaluated to ensure the desired performance. The performance of these dry connections with embedded bolts proposed was studied by finite elemental analysis. The nonlinear FEM analysis results obtained by considering appropriate elements, and material definition parameters, including failure and interactions, were validated with the experimental results available in the literature. The rigidity of the joints was evaluated using the beamline method. The beamline plot unveils that the joints can be classified as rigid joints. The results reveal that the joints under study have satisfactory stiffness degradation, energy dissipation characteristics, and failure modes like monolithic connection. The numerical procedure developed provide an efficient solution for performance evaluation and seismic design of these precast joints","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67621942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junwei Liu, Xianfeng Zhang, Haiyang Wei, Chuang Liu
To better understand the penetration mechanism of the elliptical cross-section projectile (ECSP) into semi-infinite concrete target, penetration experiments using three types of ECSPs with different shape ratios (1, 1.25 and 1.61) and with striking velocities ranged from 550 m/s to 1050 m/s were conducted. Penetration depths, penetration trajectory and mass erosion rates of the projectile were obtained after the experiments. The experiment results show that the penetration performance and ballistic stability of the ECSP are equivalent to those of the circular cross-section projectile (CCSP). Based on the theory of complex variable function and conformal transformation, a semi-analytical model which can calculate the cavity boundary stress distribution of elliptical section cavity controlled by the displacement boundary condition was established and the model was validated by comparing the model degenerate solution with Kirsch problem results. Theoretical calculation results show that the radial stress of elliptical section cavity increases progressively from the minor axis to the major axis. In addition, a formula combining with the semi-analytical theoretical model and the local interaction theory was developed. The predicted penetration depths were compared with 30 groups of experiment data with different projectile parameters and striking velocities and coincide quite well with the corresponding experimental data. Finally, the influence of shape ratio and caliber-radius-head (CRH) on the penetration performance of projectile and the application prospect of ECSPs on hypersonic weapon platform were studied.
{"title":"Study on the penetration of elliptical cross-section projectiles into concrete targets: theory and experiment","authors":"Junwei Liu, Xianfeng Zhang, Haiyang Wei, Chuang Liu","doi":"10.1590/1679-78256939","DOIUrl":"https://doi.org/10.1590/1679-78256939","url":null,"abstract":"To better understand the penetration mechanism of the elliptical cross-section projectile (ECSP) into semi-infinite concrete target, penetration experiments using three types of ECSPs with different shape ratios (1, 1.25 and 1.61) and with striking velocities ranged from 550 m/s to 1050 m/s were conducted. Penetration depths, penetration trajectory and mass erosion rates of the projectile were obtained after the experiments. The experiment results show that the penetration performance and ballistic stability of the ECSP are equivalent to those of the circular cross-section projectile (CCSP). Based on the theory of complex variable function and conformal transformation, a semi-analytical model which can calculate the cavity boundary stress distribution of elliptical section cavity controlled by the displacement boundary condition was established and the model was validated by comparing the model degenerate solution with Kirsch problem results. Theoretical calculation results show that the radial stress of elliptical section cavity increases progressively from the minor axis to the major axis. In addition, a formula combining with the semi-analytical theoretical model and the local interaction theory was developed. The predicted penetration depths were compared with 30 groups of experiment data with different projectile parameters and striking velocities and coincide quite well with the corresponding experimental data. Finally, the influence of shape ratio and caliber-radius-head (CRH) on the penetration performance of projectile and the application prospect of ECSPs on hypersonic weapon platform were studied.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67619762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. F. Rincón, Á. Viviescas, E. Osorio, C. A. Riveros-Jerez, J. Lozano-Galant
The balanced cast-in-place cantilever erection method has become a popular construction bridge technique. The main advantages include an industrialized erection technique that prevents the use of intermediate supports and rapid construction. However, the long-term response of this bridge typology is not well understood as long-term deflections due to time-dependent phenomena (such as creep and shrinkage) are significantly simplified in bridge design codes. Existing prediction models commonly used in design tend to underestimate long-term deflections, and as a result, field measurements conducted in newly constructed bridges still report excessive long-term deflections. This paper shows the long-term deflection analysis of a long-span concrete bridge located in Colombia and opened to traffic in 2014. This study is conducted using field data collected within a one-year time interval and modelling results. Further comparisons using field data collected from bridges with similar structural configurations, but opened to traffic in the 90s and 2000s, show that the bridge's current situation is categorized as a major concern.
{"title":"Long-term deformation assessment of a long-span concrete bridge built by the cantilever erection method","authors":"L. F. Rincón, Á. Viviescas, E. Osorio, C. A. Riveros-Jerez, J. Lozano-Galant","doi":"10.1590/1679-78257102","DOIUrl":"https://doi.org/10.1590/1679-78257102","url":null,"abstract":"The balanced cast-in-place cantilever erection method has become a popular construction bridge technique. The main advantages include an industrialized erection technique that prevents the use of intermediate supports and rapid construction. However, the long-term response of this bridge typology is not well understood as long-term deflections due to time-dependent phenomena (such as creep and shrinkage) are significantly simplified in bridge design codes. Existing prediction models commonly used in design tend to underestimate long-term deflections, and as a result, field measurements conducted in newly constructed bridges still report excessive long-term deflections. This paper shows the long-term deflection analysis of a long-span concrete bridge located in Colombia and opened to traffic in 2014. This study is conducted using field data collected within a one-year time interval and modelling results. Further comparisons using field data collected from bridges with similar structural configurations, but opened to traffic in the 90s and 2000s, show that the bridge's current situation is categorized as a major concern.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67620237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a finite element (FE)-based model that efficiently evaluates the dynamic behavior of dam-reservoir-foundation interaction (DRFI) problem was proposed including the radiation of waves to the unbounded rock and reservoir domains. Lagrangian fluid elements were used to discretize the near-field reservoir domain, while the presented infinite fluid elements were used to discretize the far-field reservoir domain. The fully coupled equation of motion for DRFI problem was solved by direct method. A two-dimensional (2D) plane-strain FE formulation of the problem is written in FORTRAN 90 programming language. Investigations were conducted on the effect of near-field domain size (length and depth) on the dynamic behavior of DRFI, dam-foundation interaction (DFI), and dam-reservoir interaction (DRI) problems. The results of this study demonstrate that the proposed model outperforms many other models that have been evolved in the literature in terms of accuracy and speed. The reflected hydrodynamic pressures at the far-field reservoir domain were efficiently absorbed by the suggested infinite fluid elements. The near-field domains size has a noticeable impact on the dynamic behavior of the dam. Making an exact choice about the size is more challenging. However, it was observed that the size of 1.5H is the physically appropriate response.
{"title":"An efficient finite element model for dynamic analysis of gravity dam-reservoir-foundation interaction problems","authors":"Ahmad Yamin Rasa, A. Budak, Oğuz Akın Düzgün","doi":"10.1590/1679-78257178","DOIUrl":"https://doi.org/10.1590/1679-78257178","url":null,"abstract":"In this paper, a finite element (FE)-based model that efficiently evaluates the dynamic behavior of dam-reservoir-foundation interaction (DRFI) problem was proposed including the radiation of waves to the unbounded rock and reservoir domains. Lagrangian fluid elements were used to discretize the near-field reservoir domain, while the presented infinite fluid elements were used to discretize the far-field reservoir domain. The fully coupled equation of motion for DRFI problem was solved by direct method. A two-dimensional (2D) plane-strain FE formulation of the problem is written in FORTRAN 90 programming language. Investigations were conducted on the effect of near-field domain size (length and depth) on the dynamic behavior of DRFI, dam-foundation interaction (DFI), and dam-reservoir interaction (DRI) problems. The results of this study demonstrate that the proposed model outperforms many other models that have been evolved in the literature in terms of accuracy and speed. The reflected hydrodynamic pressures at the far-field reservoir domain were efficiently absorbed by the suggested infinite fluid elements. The near-field domains size has a noticeable impact on the dynamic behavior of the dam. Making an exact choice about the size is more challenging. However, it was observed that the size of 1.5H is the physically appropriate response.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67620786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Numerical form-finding is an effective method for determining the equilibrium configurations of tensegrity structures. However, the connectivity matrix is required to be input as initial data in most form-finding methods, and it is time-consuming and inconvenient for the designer in processing a complex structure with a large number of components. To address this issue, a novel automatic method of generating a connectivity matrix is proposed for three dimensional N-4 type tensegrity structures in this paper. The novelty of our algorithm is that the number of nodes is the only required parameter for the proposed method. Numerical examples are employed to validate our method. The results show that the proposed method is competent inform-finding for three-dimensional N-4 type tensegrity structures in terms of accuracy, efficiency and convergence.
{"title":"Automatic Form-finding of N-4 Type Tensegrity Structures","authors":"Xiaoming Yu, Yinghua Yang, Ya-dong Ji","doi":"10.1590/1679-78256735","DOIUrl":"https://doi.org/10.1590/1679-78256735","url":null,"abstract":"Numerical form-finding is an effective method for determining the equilibrium configurations of tensegrity structures. However, the connectivity matrix is required to be input as initial data in most form-finding methods, and it is time-consuming and inconvenient for the designer in processing a complex structure with a large number of components. To address this issue, a novel automatic method of generating a connectivity matrix is proposed for three dimensional N-4 type tensegrity structures in this paper. The novelty of our algorithm is that the number of nodes is the only required parameter for the proposed method. Numerical examples are employed to validate our method. The results show that the proposed method is competent inform-finding for three-dimensional N-4 type tensegrity structures in terms of accuracy, efficiency and convergence.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67618746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature ( l/a ) ratios
{"title":"Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells","authors":"C. Nwoji, Deval Godwill Ani","doi":"10.1590/1679-78256843","DOIUrl":"https://doi.org/10.1590/1679-78256843","url":null,"abstract":"The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature ( l/a ) ratios","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67619239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Gao, Xuelei Xie, Jiajun Wang, Luo Liu, Wenjie Zhang
In this paper, a model of the composite foundation reinforced with geosynthetic encased stone columns was established using the discrete element method, and the characteristics of its action under cyclic loading were studied. The influence of the length and radius of the pile on the settlement of the composite foundation is analyzed. The deformation characteristics of the pile and the stress ratio of pile-soil are studied under different pile lengths and radius. Then, based on this, the analysis of the lateral deformation characteristics of the piles under cyclic loading, the calculation model of the geosynthetic encased pile composite foundation is established. The settlement calculation formula of the composite foundation is solved according to the deformation coordination relationship between the pile and soil, the equilibrium condition, and the boundary condition. The results show that the theoretical value is in good agreement with the simulation value, which verifies the rationality of the theoretical calculation formula.
{"title":"Numerical and theoretical analysis of geosynthetic encased stone column composite foundation under cyclic loading","authors":"J. Gao, Xuelei Xie, Jiajun Wang, Luo Liu, Wenjie Zhang","doi":"10.1590/1679-78256979","DOIUrl":"https://doi.org/10.1590/1679-78256979","url":null,"abstract":"In this paper, a model of the composite foundation reinforced with geosynthetic encased stone columns was established using the discrete element method, and the characteristics of its action under cyclic loading were studied. The influence of the length and radius of the pile on the settlement of the composite foundation is analyzed. The deformation characteristics of the pile and the stress ratio of pile-soil are studied under different pile lengths and radius. Then, based on this, the analysis of the lateral deformation characteristics of the piles under cyclic loading, the calculation model of the geosynthetic encased pile composite foundation is established. The settlement calculation formula of the composite foundation is solved according to the deformation coordination relationship between the pile and soil, the equilibrium condition, and the boundary condition. The results show that the theoretical value is in good agreement with the simulation value, which verifies the rationality of the theoretical calculation formula.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67619981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compared with central penetration, the eccentric penetration of jet into a liquid-filled composite armor (LCA) shows a more obvious lateral displacement due to the asymmetric impact by the shock wave and liquid radial reflux. Based on this characteristic, the reaming process in the liquid layer during the shaped charge jet (SCJ) penetrates into the strongly-constrained liquid-filled composite armor (SLCA) eccentrically, the interference process of jet is subjected to the asymmetric impact by the shock wave and liquid radial reflux, and the lateral movement process of the SCJ under lateral force loading is analyzed to study the influence of SLCA on the stability of incoming SCJ during eccentric penetration. Theoretical and X-ray experimental results show that when the eccentricity distance is [0 mm, 12 mm], the severely disturbed velocity range and total disturbed velocity range of the SCJ increase with the increase of the eccentricity distance, while the maximum lateral displacement of the SCJ decreases slightly with the increase of the eccentricity distance at [1 mm, 12 mm].
{"title":"Influence of strongly-constrained liquid-filled composite armor on stability of incoming shaped charge jet during eccentric penetration","authors":"You-er Cai, Zhengxiang Huang, Yaping Tan, X. Zu, Xiaojun Shen, Xin Jia","doi":"10.1590/1679-78257098","DOIUrl":"https://doi.org/10.1590/1679-78257098","url":null,"abstract":"Compared with central penetration, the eccentric penetration of jet into a liquid-filled composite armor (LCA) shows a more obvious lateral displacement due to the asymmetric impact by the shock wave and liquid radial reflux. Based on this characteristic, the reaming process in the liquid layer during the shaped charge jet (SCJ) penetrates into the strongly-constrained liquid-filled composite armor (SLCA) eccentrically, the interference process of jet is subjected to the asymmetric impact by the shock wave and liquid radial reflux, and the lateral movement process of the SCJ under lateral force loading is analyzed to study the influence of SLCA on the stability of incoming SCJ during eccentric penetration. Theoretical and X-ray experimental results show that when the eccentricity distance is [0 mm, 12 mm], the severely disturbed velocity range and total disturbed velocity range of the SCJ increase with the increase of the eccentricity distance, while the maximum lateral displacement of the SCJ decreases slightly with the increase of the eccentricity distance at [1 mm, 12 mm].","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67620637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. R. Maulana, S. Sugiman, H. Ahmad, Z. Jaini, H. Mansor
This paper investigates the effect of KFRP composite sheets as a strengthening material in improving the load-carrying resistance of lightweight foam concrete beams using a FEA modelling framework. The study employed three parametric strengthening schemes (i
{"title":"XFEM Modelling and Experimental Observations of Foam Concrete Beam Externally-Bonded with KFRP Sheet","authors":"M. R. Maulana, S. Sugiman, H. Ahmad, Z. Jaini, H. Mansor","doi":"10.1590/1679-78257205","DOIUrl":"https://doi.org/10.1590/1679-78257205","url":null,"abstract":"This paper investigates the effect of KFRP composite sheets as a strengthening material in improving the load-carrying resistance of lightweight foam concrete beams using a FEA modelling framework. The study employed three parametric strengthening schemes (i","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67621587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduar Cuesvas, R. Ortega, J. Marulanda, P. Thomson, G. Areiza, Alejandro Cruz
The industrialized building system has specific characteristics that set it apart from the conventional concrete wall system, namely, a reduced wall thickness, the use of electro-welded wire mesh, and a lack of boundary element confinement. These conditions have attracted the interest of researchers, who have developed various experimental programs to evaluate the behavior of these walls. However, evidence on the seismic performance of buildings remains scarce. In this study, the performance of 5, 8-and 12-story buildings was evaluated by nonlinear chronological analysis. Numerical models were constructed using the Shell Layered element of the ETABS software and adjusted based on the results from tests of isolated walls and the periods of one of the buildings identified in an ambient vibration test. The findings suggest that these buildings may fail to meet the life safety performance level in high seismic hazard areas.
{"title":"Numerical evaluation of the seismic performance of thin reinforced concrete wall buildings representative of the industrialized building system","authors":"Eduar Cuesvas, R. Ortega, J. Marulanda, P. Thomson, G. Areiza, Alejandro Cruz","doi":"10.1590/1679-78256759","DOIUrl":"https://doi.org/10.1590/1679-78256759","url":null,"abstract":"The industrialized building system has specific characteristics that set it apart from the conventional concrete wall system, namely, a reduced wall thickness, the use of electro-welded wire mesh, and a lack of boundary element confinement. These conditions have attracted the interest of researchers, who have developed various experimental programs to evaluate the behavior of these walls. However, evidence on the seismic performance of buildings remains scarce. In this study, the performance of 5, 8-and 12-story buildings was evaluated by nonlinear chronological analysis. Numerical models were constructed using the Shell Layered element of the ETABS software and adjusted based on the results from tests of isolated walls and the periods of one of the buildings identified in an ambient vibration test. The findings suggest that these buildings may fail to meet the life safety performance level in high seismic hazard areas.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67619523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}