首页 > 最新文献

Magnetochemistry最新文献

英文 中文
Electromagnetic Property Modulation of Flaky Ferromagnetic 304 Stainless-Steel Powders for Microwave Absorption at Elevated Temperatures 片状铁磁304不锈钢高温微波吸收粉末的电磁特性调制
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-09-05 DOI: 10.3390/magnetochemistry9090208
Bolin Yang, Yifan Xu, Zhihong Chen, Hang Yang, Yuchen Hu, Haoqin Wu, Mingfeng Xing, Jianguo Guan, Wei Li
Soft magnetic metallic absorbents suffer from severe oxidation, reduction in permeability and deterioration in microwave absorption when exposed to high temperatures. In this study, we prepared flaky 304 stainless-steel powders as new microwave absorbents via deformation-induced ferromagnetism. The 304 stainless-steel powders showed significant increases in saturation magnetization (Ms) from 1.03 to 82.46 emu/g when their shape was changed from spheroids to flakes; the Ms further increased to 92.29 emu/g after heat treatment at 500 °C in air. The permeability of 304 alloy powders also showed an obvious increase after ball milling and remained roughly stable after heat treatment at 500 °C in air. Moreover, the permittivity exhibited a sharp decrease after heat treatment, enabling the improvement of impedance matching and microwave absorption. After heat treatment at 500 °C in air for 100 h, the simulated reflection loss of 304 stainless-steel powders with wax still showed attractive levels, giving a minimum value of −22 dB and remaining below −6 dB over 8.5–16.5 GHz at a thickness of 2 mm. Our work can help to include paramagnetic alloy systems as new microwave absorbents for working in harsh environments.
软磁性金属吸附剂在高温下会发生严重的氧化、磁导率降低和微波吸收性能下降。本研究采用变形诱导铁磁法制备片状304不锈钢粉末作为新型微波吸收剂。304不锈钢粉末由球状变为片状时,饱和磁化强度(Ms)由1.03增加到82.46 emu/g;500℃空气热处理后,Ms进一步提高到92.29 emu/g。304合金粉末经球磨后渗透率也有明显提高,500℃空气热处理后渗透率基本保持稳定。热处理后的介电常数显著降低,提高了材料的阻抗匹配性能和微波吸收性能。在500℃空气中热处理100 h后,304不锈钢蜡粉的模拟反射损失仍然显示出吸引人的水平,在8.5-16.5 GHz范围内,在厚度为2mm的情况下,最小值为- 22 dB,保持在- 6 dB以下。我们的工作有助于将顺磁合金系统作为在恶劣环境下工作的新型微波吸收剂。
{"title":"Electromagnetic Property Modulation of Flaky Ferromagnetic 304 Stainless-Steel Powders for Microwave Absorption at Elevated Temperatures","authors":"Bolin Yang, Yifan Xu, Zhihong Chen, Hang Yang, Yuchen Hu, Haoqin Wu, Mingfeng Xing, Jianguo Guan, Wei Li","doi":"10.3390/magnetochemistry9090208","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090208","url":null,"abstract":"Soft magnetic metallic absorbents suffer from severe oxidation, reduction in permeability and deterioration in microwave absorption when exposed to high temperatures. In this study, we prepared flaky 304 stainless-steel powders as new microwave absorbents via deformation-induced ferromagnetism. The 304 stainless-steel powders showed significant increases in saturation magnetization (Ms) from 1.03 to 82.46 emu/g when their shape was changed from spheroids to flakes; the Ms further increased to 92.29 emu/g after heat treatment at 500 °C in air. The permeability of 304 alloy powders also showed an obvious increase after ball milling and remained roughly stable after heat treatment at 500 °C in air. Moreover, the permittivity exhibited a sharp decrease after heat treatment, enabling the improvement of impedance matching and microwave absorption. After heat treatment at 500 °C in air for 100 h, the simulated reflection loss of 304 stainless-steel powders with wax still showed attractive levels, giving a minimum value of −22 dB and remaining below −6 dB over 8.5–16.5 GHz at a thickness of 2 mm. Our work can help to include paramagnetic alloy systems as new microwave absorbents for working in harsh environments.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44987998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Magnetic Fields on Electrophoretic Processes in Magnetic Colloids with Different Stabilization Mechanisms 磁场对不同稳定机制磁性胶体电泳过程的影响
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-30 DOI: 10.3390/magnetochemistry9090207
Yuri Dikansky, A. Drozdov, Inna V. Eskova, E. Beketova
Electrophoretic nanostructuring is a promising approach for the creation of functional surfaces and active layers. The potency of this approach may be further enhanced by additional factors of various natures, such as magnetic fields. In this work, we have studied the process of electrophoresis in thin layers of water- and kerosene-based magnetic liquids and the effect of additional magnetic fields on the occurring processes. It was found that the electrophoresis process can be significantly affected by inhomogeneous magnetic fields. The possibility of compensating electrophoresis processes in such systems by means of inhomogeneous magnetic field influence was shown. Structural changes in magnetic colloids on hydrocarbon bases under the influence of an electric field have been studied. The role of electrohydrodynamic flows arising in this process is considered, and the influence of the magnetic field on the configuration of the formed labyrinth structure is studied. The dependence of the threshold value of the electric field strength corresponding to the emergence of the structure on the temperature and additionally applied magnetic field has been established. The obtained results could contribute to the development of an original method for determining the charge and magnetic moment of a single nanoparticle.
电泳纳米结构是创造功能表面和活性层的一种很有前途的方法。这种方法的效力可能会被其他各种性质的因素进一步增强,比如磁场。在本工作中,我们研究了水基和煤油基磁性液体的薄层电泳过程以及附加磁场对发生过程的影响。结果表明,不均匀磁场对电泳过程有显著影响。指出了利用非均匀磁场影响对电泳过程进行补偿的可能性。本文研究了电场作用下烃基磁性胶体的结构变化。考虑了在此过程中产生的电流体动力流的作用,并研究了磁场对形成的迷宫结构形态的影响。建立了结构出现所对应的电场强度阈值与温度和外加磁场的关系。所得结果有助于发展一种测定单个纳米粒子的电荷和磁矩的原始方法。
{"title":"The Influence of Magnetic Fields on Electrophoretic Processes in Magnetic Colloids with Different Stabilization Mechanisms","authors":"Yuri Dikansky, A. Drozdov, Inna V. Eskova, E. Beketova","doi":"10.3390/magnetochemistry9090207","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090207","url":null,"abstract":"Electrophoretic nanostructuring is a promising approach for the creation of functional surfaces and active layers. The potency of this approach may be further enhanced by additional factors of various natures, such as magnetic fields. In this work, we have studied the process of electrophoresis in thin layers of water- and kerosene-based magnetic liquids and the effect of additional magnetic fields on the occurring processes. It was found that the electrophoresis process can be significantly affected by inhomogeneous magnetic fields. The possibility of compensating electrophoresis processes in such systems by means of inhomogeneous magnetic field influence was shown. Structural changes in magnetic colloids on hydrocarbon bases under the influence of an electric field have been studied. The role of electrohydrodynamic flows arising in this process is considered, and the influence of the magnetic field on the configuration of the formed labyrinth structure is studied. The dependence of the threshold value of the electric field strength corresponding to the emergence of the structure on the temperature and additionally applied magnetic field has been established. The obtained results could contribute to the development of an original method for determining the charge and magnetic moment of a single nanoparticle.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44852247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications 用于化学战剂传感应用的Fe2O3纳米粒子的磁性和阻抗分析
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-25 DOI: 10.3390/magnetochemistry9090206
J. Soliz, Smriti Ranjit, Joshua Phillips, R. Rosenberg, A. Hauser
A dire need for real-time detection of toxic chemical compounds exists in both civilian and military spheres. In this paper, we demonstrate that inexpensive, commercially available Fe2O3 nanoparticles are capable of selective sensing of chemical warfare agents (CWAs) using frequency-dependent impedance spectroscopy, with additional potential as an orthogonal magnetic sensor. X-ray magnetic circular dichroism analysis shows that Fe2O3 nanoparticles possess moderately lowered moment upon exposure to 2-chloroethyl ethyl sulfide (2-CEES) and diisopropyl methylphosphonate (DIMP) and significantly lowered moment upon exposure to dimethyl methylphosphonate (DMMP) and dimethyl chlorophosphate (DMCP). Associated X-ray absorption spectra confirm a redox reaction in the Fe2O3 nanoparticles due to CWA structural analog exposure, with differentiable energy-dependent features that suggest selective sensing is possible, given the correct method. Impedance spectroscopy performed on samples dosed with DMMP, DMCP, and tabun (GA, chemical warfare nerve agent) showed strong, differentiable, frequency-dependent responses. The frequency profiles provide unique “shift fingerprints” with which high specificity can be determined, even amongst similar analytes. The results suggest that frequency-dependent impedance fingerprinting using commercially available Fe2O3 nanoparticles as a sensor material is a feasible route to selective detection.
民用和军事领域都迫切需要实时检测有毒化合物。在本文中,我们证明了廉价的市售Fe2O3纳米颗粒能够使用频率相关阻抗谱对化学战剂(CWA)进行选择性传感,并具有作为正交磁传感器的额外潜力。X射线磁圆二色性分析表明,Fe2O3纳米粒子在暴露于2-氯乙基乙基硫醚(2-CEES)和甲基膦酸二异丙酯(DIMP)时具有适度降低的力矩,在暴露于甲基膦酸甲酯(DMMP)和氯磷酸二甲酯(DMCP)时具有显著降低的力矩。相关的X射线吸收光谱证实,由于CWA结构类似物暴露,Fe2O3纳米颗粒中发生了氧化还原反应,具有可微分的能量依赖性特征,表明如果采用正确的方法,选择性传感是可能的。对服用DMMP、DMCP和tabun(GA,化学战神经毒剂)的样品进行的阻抗谱显示出强烈的、可微分的、频率依赖性的反应。频率分布提供了独特的“偏移指纹”,即使在类似的分析物中也可以确定高特异性。结果表明,使用市售的Fe2O3纳米颗粒作为传感器材料的频率依赖性阻抗指纹是选择性检测的可行途径。
{"title":"Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications","authors":"J. Soliz, Smriti Ranjit, Joshua Phillips, R. Rosenberg, A. Hauser","doi":"10.3390/magnetochemistry9090206","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090206","url":null,"abstract":"A dire need for real-time detection of toxic chemical compounds exists in both civilian and military spheres. In this paper, we demonstrate that inexpensive, commercially available Fe2O3 nanoparticles are capable of selective sensing of chemical warfare agents (CWAs) using frequency-dependent impedance spectroscopy, with additional potential as an orthogonal magnetic sensor. X-ray magnetic circular dichroism analysis shows that Fe2O3 nanoparticles possess moderately lowered moment upon exposure to 2-chloroethyl ethyl sulfide (2-CEES) and diisopropyl methylphosphonate (DIMP) and significantly lowered moment upon exposure to dimethyl methylphosphonate (DMMP) and dimethyl chlorophosphate (DMCP). Associated X-ray absorption spectra confirm a redox reaction in the Fe2O3 nanoparticles due to CWA structural analog exposure, with differentiable energy-dependent features that suggest selective sensing is possible, given the correct method. Impedance spectroscopy performed on samples dosed with DMMP, DMCP, and tabun (GA, chemical warfare nerve agent) showed strong, differentiable, frequency-dependent responses. The frequency profiles provide unique “shift fingerprints” with which high specificity can be determined, even amongst similar analytes. The results suggest that frequency-dependent impedance fingerprinting using commercially available Fe2O3 nanoparticles as a sensor material is a feasible route to selective detection.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43210184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Research Developments of 4D Printing Technology for Magnetically Controlled Smart Materials: A Review 磁控智能材料4D打印技术研究进展综述
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-14 DOI: 10.3390/magnetochemistry9080204
Hujun Wang, Jinqiu Zhao, Zhuo Luo, Zhenkun Li
Traditional printed products have to some extent affected the development of smart structures and their application in multiple fields, especially in harsh environments, due to their complex mechanisms and control principles. The 4D printing technology based on magnetically controlled smart materials exploits the advantages of magnetically controlled smart materials with good operability and security, and its printed smart structures can be obtained under magnetic field drive for unfettered remote manipulation and wireless motion control, which expands the application of printed products in complex environments, such as sealed and narrow, and has broad development prospects. At present, magnetically controlled smart material 4D printing technology is still in its infancy, and its theory and application need further in–depth study. To this end, this paper introduces the current status of research on magnetically controlled smart material 4D printing, discusses the printing process, and provides an outlook on its application prospects.
传统印刷产品由于其复杂的机理和控制原理,在一定程度上影响了智能结构的发展及其在多个领域的应用,特别是在恶劣环境下的应用。基于磁控智能材料的4D打印技术,利用了磁控智能材料具有良好的可操作性和安全性的优点,在磁场驱动下可获得打印出的智能结构,实现不受约束的远程操作和无线运动控制,拓展了打印产品在密闭、狭窄等复杂环境下的应用,具有广阔的发展前景。目前,磁控智能材料4D打印技术还处于起步阶段,其理论和应用有待进一步深入研究。为此,本文介绍了磁控智能材料4D打印的研究现状,讨论了打印工艺,并对其应用前景进行了展望。
{"title":"Recent Research Developments of 4D Printing Technology for Magnetically Controlled Smart Materials: A Review","authors":"Hujun Wang, Jinqiu Zhao, Zhuo Luo, Zhenkun Li","doi":"10.3390/magnetochemistry9080204","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080204","url":null,"abstract":"Traditional printed products have to some extent affected the development of smart structures and their application in multiple fields, especially in harsh environments, due to their complex mechanisms and control principles. The 4D printing technology based on magnetically controlled smart materials exploits the advantages of magnetically controlled smart materials with good operability and security, and its printed smart structures can be obtained under magnetic field drive for unfettered remote manipulation and wireless motion control, which expands the application of printed products in complex environments, such as sealed and narrow, and has broad development prospects. At present, magnetically controlled smart material 4D printing technology is still in its infancy, and its theory and application need further in–depth study. To this end, this paper introduces the current status of research on magnetically controlled smart material 4D printing, discusses the printing process, and provides an outlook on its application prospects.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43096245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin 莫迪红泥负载钴催化剂活化过硫酸盐降解氧氟沙星
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-11 DOI: 10.3390/magnetochemistry9080203
Qu-Li Wu, Wenquan Sun, K. J. Shah, Yongjun Sun
As an abundant potentially dangerous waste, red mud (RM) requires a straightforward method of resource management. In this paper, an RM catalyst loaded with cobalt (Co-RM) was prepared by the coprecipitation method for the efficient activation of persulfate (PS). Its degradation performance and mechanism of ofloxacin (OFL) were investigated. The characterization results of scanning electron microscopy, X-ray diffractometer, and energy dispersive spectrometer showed cobalt was successfully loaded onto the surface of RM, and the catalyst produced could effectively activate PS. Under the conditions of 15 mg/L OFL, 0.4 g/L Co-RM, 4 g/L PDS, 3.0 pH, and 40 °C temperature, the maximum removal rate of OFL by the Co-RM/PDS system was 80.06%. Free radical scavenging experiments confirmed sulfate radicals were the main active substances in the reaction system. The intermediates in OFL degradation were further identified by gas chromatography-mass spectrometry, and a possible degradation pathway was proposed. Finally, the relationship between defluorination rate and time in the Co-RM/PDS degradation OFL system was described by the first-order kinetic equation. This work reports an economical, environmental solution to the use of waste RM and provides a research basis for the further exploration of RM-based catalysts.
作为一种丰富的潜在危险废物,赤泥需要一种直接的资源管理方法。本文采用共沉淀法制备了一种负载钴的RM催化剂(Co-RM),用于过硫酸盐(PS)的有效活化。研究了其对氧氟沙星的降解性能及降解机理。扫描电子显微镜、X射线衍射仪和能谱仪的表征结果表明,钴成功地负载在RM表面,所制备的催化剂能够有效地活化PS。在15 mg/L OFL、0.4 g/L Co-RM、4 g/L PDS、3.0 pH和40°C温度的条件下,Co-RM/PDS体系对OFL的最大去除率为80.06%。自由基清除实验证实硫酸根是反应体系中的主要活性物质。通过气相色谱-质谱法进一步鉴定了OFL降解过程中的中间体,并提出了可能的降解途径。最后,用一阶动力学方程描述了Co-RM/PDS降解OFL系统中脱氟速率与时间的关系。这项工作报告了一种经济、环保的废RM使用解决方案,并为进一步探索RM基催化剂提供了研究基础。
{"title":"Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin","authors":"Qu-Li Wu, Wenquan Sun, K. J. Shah, Yongjun Sun","doi":"10.3390/magnetochemistry9080203","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080203","url":null,"abstract":"As an abundant potentially dangerous waste, red mud (RM) requires a straightforward method of resource management. In this paper, an RM catalyst loaded with cobalt (Co-RM) was prepared by the coprecipitation method for the efficient activation of persulfate (PS). Its degradation performance and mechanism of ofloxacin (OFL) were investigated. The characterization results of scanning electron microscopy, X-ray diffractometer, and energy dispersive spectrometer showed cobalt was successfully loaded onto the surface of RM, and the catalyst produced could effectively activate PS. Under the conditions of 15 mg/L OFL, 0.4 g/L Co-RM, 4 g/L PDS, 3.0 pH, and 40 °C temperature, the maximum removal rate of OFL by the Co-RM/PDS system was 80.06%. Free radical scavenging experiments confirmed sulfate radicals were the main active substances in the reaction system. The intermediates in OFL degradation were further identified by gas chromatography-mass spectrometry, and a possible degradation pathway was proposed. Finally, the relationship between defluorination rate and time in the Co-RM/PDS degradation OFL system was described by the first-order kinetic equation. This work reports an economical, environmental solution to the use of waste RM and provides a research basis for the further exploration of RM-based catalysts.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45027291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Characterization of Magnetite/Gold Core Shell Nanoparticles Stabilized with a β-Cyclodextrin Nanosponge to Develop a Magneto-Plasmonic System β-环糊精纳米海绵稳定磁铁矿/金核壳纳米粒子的合成与表征
4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-09 DOI: 10.3390/magnetochemistry9080202
Sebastián Salazar Sandoval, Daniel Santibáñez, Ana Riveros, Fabián Araneda, Tamara Bruna, Nataly Silva, Nicolás Yutronic, Marcelo J. Kogan, Paul Jara
Magnetite/gold core-shell nanoparticles (magnetite/gold NPs) have important optical and magnetic properties that provide potential for applications, especially biomedical ones. However, their preparation is not exempt from difficulties that might lead to unexpected or undesired structures. This work reports the synthesis and characterization of magnetite/gold NPs using tetramethylammonium hydroxide (TMAH) to promote the formation of a continuous interface between the magnetite core and the thin gold shell. The synthesized magnetite/gold NPs were characterized using transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), field emission scanning electron microscope (FE-SEM), ζ-potential, vibrating sample magnetometer (VSM), selected area electron diffraction (SAED), UV-Visible spectroscopy, and dynamic light scattering (DLS), confirming the core-shell structure of the NPs with narrow size distribution while evidencing its plasmonic and superparamagnetic properties as well. Further, the magnetite/gold NPs were associated and stabilized with a β-cyclodextrin nanosponge (β-CDNSs), obtaining a versatile magneto-plasmonic system for potential applications in the encapsulation and controlled release of drugs.
磁铁矿/金核壳纳米粒子(磁铁矿/金NPs)具有重要的光学和磁性能,具有潜在的应用潜力,特别是在生物医学领域。然而,它们的制备也不能避免可能导致意外或不希望的结构的困难。本文报道了利用四甲基氢氧化铵(TMAH)促进磁铁矿核和薄金壳之间形成连续界面的磁铁矿/金NPs的合成和表征。利用透射电子显微镜(TEM)、能谱(EDS)、场发射扫描电子显微镜(FE-SEM)、ζ-电位、振动样品磁强计(VSM)、选择区域电子衍射(SAED)、紫外可见光谱和动态光散射(DLS)对合成的磁铁矿/金NPs进行了表征,证实了NPs具有窄尺寸分布的核壳结构,同时证明了其等离子体和超顺磁性能。此外,将磁铁矿/金NPs与β-环糊精纳米海绵(β-CDNSs)结合并稳定,获得了一种多功能磁等离子体系统,在药物的包封和控释方面具有潜在的应用前景。
{"title":"Synthesis and Characterization of Magnetite/Gold Core Shell Nanoparticles Stabilized with a β-Cyclodextrin Nanosponge to Develop a Magneto-Plasmonic System","authors":"Sebastián Salazar Sandoval, Daniel Santibáñez, Ana Riveros, Fabián Araneda, Tamara Bruna, Nataly Silva, Nicolás Yutronic, Marcelo J. Kogan, Paul Jara","doi":"10.3390/magnetochemistry9080202","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080202","url":null,"abstract":"Magnetite/gold core-shell nanoparticles (magnetite/gold NPs) have important optical and magnetic properties that provide potential for applications, especially biomedical ones. However, their preparation is not exempt from difficulties that might lead to unexpected or undesired structures. This work reports the synthesis and characterization of magnetite/gold NPs using tetramethylammonium hydroxide (TMAH) to promote the formation of a continuous interface between the magnetite core and the thin gold shell. The synthesized magnetite/gold NPs were characterized using transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), field emission scanning electron microscope (FE-SEM), ζ-potential, vibrating sample magnetometer (VSM), selected area electron diffraction (SAED), UV-Visible spectroscopy, and dynamic light scattering (DLS), confirming the core-shell structure of the NPs with narrow size distribution while evidencing its plasmonic and superparamagnetic properties as well. Further, the magnetite/gold NPs were associated and stabilized with a β-cyclodextrin nanosponge (β-CDNSs), obtaining a versatile magneto-plasmonic system for potential applications in the encapsulation and controlled release of drugs.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135653806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NiFe Alloy Nanoparticles Tuning the Structure, Magnetism, and Application for Oxygen Evolution Reaction Catalysis NiFe合金纳米颗粒的结构、磁性及其在析氧反应催化中的应用
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-08 DOI: 10.3390/magnetochemistry9080201
R. A. Raimundo, Vinícius D. Silva, Luciena S. Ferreira, Francisco J. A. Loureiro, D. P. Fagg, D. Macedo, U. Gomes, M. M. Soares, R. Gomes, M. Morales
In this study, Ni-Fe alloy nanoparticles were prepared using the proteic sol–gel method, followed by a reduction in H2 at 500 and 700 °C, namely hereafter as NiFe-500 and NiFe-700, respectively. The morphological, structural, and magnetic properties were tuned via the thermal treatment in H2. The samples were studied using XPS, TEM, Mössbauer spectroscopy, DC magnetic measurements, and electrochemical measurements. Ritveld refinements showed that the sample NiFe-500 has FCC (face-centered cubic) and BCC (body-centered cubic) NiFe alloys, while the sample NiFe-700 has only FCC NiFe alloy. For both samples, magnetization measurements in the range of 300–900 K showed the presence of the Griffiths phase, indicating the formation of clusters of either Fe or Ni-Fe alloys rich in Fe. The sample NiFe-500 presented ferromagnetic (FM) transitions at 533, 700, and 834 K, assigned to the alloys Ni37Fe63-FCC, Ni46Fe54-FCC, and Ni55Fe45-FCC, respectively. In contrast, we could not observe the FM transition of the BCC Ni-Fe alloy because of limitations in our experimental setup (T ≤ 900 K). Meanwhile, three FM transitions were observed for the sample NiFe-700 at 480, 655, and 825 K, attributed to the alloys Ni34Fe66-FCC, Ni43Fe57-FCC, and Ni54Fe46-FCC, respectively. At 5 K, the samples NiFe-500 and NiFe-700 have saturation magnetizations of 164.2 and 173.6 emu g−1, respectively. For application in Oxygen Evolution Reaction catalysis, the samples NiFe-500 and NiFe-700 showed different overpotentials of 319 and 307 mV at 10 mA cm−2. These low overpotential values indicate a higher electrochemical activity of the FCC Ni-Fe alloy and, for both samples, a superior electrocatalytic activity in comparison to RuO2 e IrO2 conventional catalysts. Furthermore, the samples showed high electrochemical stability in chrono potentiometric studies for up to 15 h. This current work highlights that the Ni-Fe alloys produced via the proteic sol–gel and with a reduction in H2 methods can be promising for OER systems due to their good performance and low costs.
在本研究中,使用蛋白质溶胶-凝胶法制备了Ni-Fe合金纳米颗粒,然后在500和700°C下还原H2,即下文中分别称为NiFe-500和NiFe-700。通过在H2中的热处理来调节形态、结构和磁性能。使用XPS、TEM、穆斯堡尔谱、直流磁测量和电化学测量对样品进行了研究。Ritveld精炼表明,样品NiFe-500具有FCC(面心立方)和BCC(体心立方)NiFe合金,而样品NiFe-700仅具有FCC NiFe合金。对于这两个样品,在300–900 K范围内的磁化测量显示存在Griffiths相,表明形成了富含Fe的Fe或Ni-Fe合金团簇。样品NiFe-500在533700和834K处呈现铁磁(FM)跃迁,分别归属于合金Ni37Fe63-FCC、Ni46Fe54-FCC和Ni55Fe45-FCC。相反,由于实验装置的限制(T≤900K),我们无法观察到BCC-Ni-Fe合金的FM转变。同时,样品NiFe-700在480、655和825K下观察到三次FM跃迁,分别归因于合金Ni34Fe66-FCC、Ni43Fe57-FCC和Ni54Fe46-FCC。在5K下,样品NiFe-500和NiFe-700的饱和磁化率分别为164.2和173.6 emu g−1。对于在析氧反应催化中的应用,样品NiFe-500和NiFe-700在10 mA cm−2下显示出319和307 mV的不同过电位。这些低的过电位值表明FCC Ni-Fe合金具有更高的电化学活性,并且对于这两种样品,与RuO2-ErO2常规催化剂相比具有优异的电催化活性。此外,样品在计时电位研究中显示出高达15小时的电化学稳定性。目前的工作强调,通过蛋白质溶胶-凝胶和减少H2方法生产的Ni-Fe合金由于其良好的性能和低成本,有望用于OER系统。
{"title":"NiFe Alloy Nanoparticles Tuning the Structure, Magnetism, and Application for Oxygen Evolution Reaction Catalysis","authors":"R. A. Raimundo, Vinícius D. Silva, Luciena S. Ferreira, Francisco J. A. Loureiro, D. P. Fagg, D. Macedo, U. Gomes, M. M. Soares, R. Gomes, M. Morales","doi":"10.3390/magnetochemistry9080201","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080201","url":null,"abstract":"In this study, Ni-Fe alloy nanoparticles were prepared using the proteic sol–gel method, followed by a reduction in H2 at 500 and 700 °C, namely hereafter as NiFe-500 and NiFe-700, respectively. The morphological, structural, and magnetic properties were tuned via the thermal treatment in H2. The samples were studied using XPS, TEM, Mössbauer spectroscopy, DC magnetic measurements, and electrochemical measurements. Ritveld refinements showed that the sample NiFe-500 has FCC (face-centered cubic) and BCC (body-centered cubic) NiFe alloys, while the sample NiFe-700 has only FCC NiFe alloy. For both samples, magnetization measurements in the range of 300–900 K showed the presence of the Griffiths phase, indicating the formation of clusters of either Fe or Ni-Fe alloys rich in Fe. The sample NiFe-500 presented ferromagnetic (FM) transitions at 533, 700, and 834 K, assigned to the alloys Ni37Fe63-FCC, Ni46Fe54-FCC, and Ni55Fe45-FCC, respectively. In contrast, we could not observe the FM transition of the BCC Ni-Fe alloy because of limitations in our experimental setup (T ≤ 900 K). Meanwhile, three FM transitions were observed for the sample NiFe-700 at 480, 655, and 825 K, attributed to the alloys Ni34Fe66-FCC, Ni43Fe57-FCC, and Ni54Fe46-FCC, respectively. At 5 K, the samples NiFe-500 and NiFe-700 have saturation magnetizations of 164.2 and 173.6 emu g−1, respectively. For application in Oxygen Evolution Reaction catalysis, the samples NiFe-500 and NiFe-700 showed different overpotentials of 319 and 307 mV at 10 mA cm−2. These low overpotential values indicate a higher electrochemical activity of the FCC Ni-Fe alloy and, for both samples, a superior electrocatalytic activity in comparison to RuO2 e IrO2 conventional catalysts. Furthermore, the samples showed high electrochemical stability in chrono potentiometric studies for up to 15 h. This current work highlights that the Ni-Fe alloys produced via the proteic sol–gel and with a reduction in H2 methods can be promising for OER systems due to their good performance and low costs.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44338100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Magnetic Nanoparticles CoFe2O4@Nb5O2 Applied in Paracetamol Removal 绿色磁性纳米粒子CoFe2O4@Nb5O2应用于对乙酰氨基酚的去除
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-05 DOI: 10.3390/magnetochemistry9080200
J. P. Oliveira, Laura S. Ribas, Jose S. Napoli, E. Abreu, J. L. Diaz de Tuesta, H. Gomes, Â. Tusset, G. Lenzi
This study describes the synthesis of an innovative nanomaterial (patent application number BR 1020210000317) composed of cobalt ferrite functionalized in niobium pentoxide CoFe2O4@Nb5O2 (CFNb), synthesized via green synthesis using tangerine peel extract. The material emphasizes the combination of a magnetic material (which allows for easy recovery after application) with niobium pentoxide (a metal which is abundant in Brazil). CFNb was applied as a catalyst for the paracetamol (PCT) degradation by photocatalysis. The new materials were characterized through surface and pore analysis (SBET, SEXT, Smic, Vmic, and VTOTAL), photoacoustic spectroscopy (PAS), zero charge point (pHPZC, scanning electron microscopy (SEM/EDS), and X-ray diffraction (XRD). The reaction parameters studied included pH and catalyst concentration. The results indicated that the CFNb nanocatalysts were efficient in the paracetamol degradation, presenting better results in conditions of low pH (close to 2) and low catalyst concentration under irradiation of the 250 W mercury vapor lamp (greater than 28 mW·cm−2) at 60 min of reaction.
本研究描述了由五氧化二铌功能化的钴铁氧体组成的创新纳米材料(专利申请号BR 1020210000317)的合成CoFe2O4@Nb5O2(CFNb),其通过使用陈皮提取物的绿色合成而合成。该材料强调磁性材料(使用后易于回收)与五氧化二铌(一种在巴西丰富的金属)的结合。CFNb被用作通过光催化降解对乙酰氨基酚(PCT)的催化剂。通过表面和孔隙分析(SBET、SEXT、Smic、Vmic和VTOTAL)、光声光谱(PAS)、零电荷点(pHPZC)、扫描电子显微镜(SEM/EDS)和X射线衍射(XRD)对新材料进行了表征。研究的反应参数包括pH和催化剂浓度。结果表明,CFNb纳米催化剂在对乙酰氨基酚的降解中是有效的,在低pH(接近2)和低催化剂浓度的条件下,在250W汞蒸气灯(大于28mW·cm−2)的照射下,反应60min时表现出更好的结果。
{"title":"Green Magnetic Nanoparticles CoFe2O4@Nb5O2 Applied in Paracetamol Removal","authors":"J. P. Oliveira, Laura S. Ribas, Jose S. Napoli, E. Abreu, J. L. Diaz de Tuesta, H. Gomes, Â. Tusset, G. Lenzi","doi":"10.3390/magnetochemistry9080200","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080200","url":null,"abstract":"This study describes the synthesis of an innovative nanomaterial (patent application number BR 1020210000317) composed of cobalt ferrite functionalized in niobium pentoxide CoFe2O4@Nb5O2 (CFNb), synthesized via green synthesis using tangerine peel extract. The material emphasizes the combination of a magnetic material (which allows for easy recovery after application) with niobium pentoxide (a metal which is abundant in Brazil). CFNb was applied as a catalyst for the paracetamol (PCT) degradation by photocatalysis. The new materials were characterized through surface and pore analysis (SBET, SEXT, Smic, Vmic, and VTOTAL), photoacoustic spectroscopy (PAS), zero charge point (pHPZC, scanning electron microscopy (SEM/EDS), and X-ray diffraction (XRD). The reaction parameters studied included pH and catalyst concentration. The results indicated that the CFNb nanocatalysts were efficient in the paracetamol degradation, presenting better results in conditions of low pH (close to 2) and low catalyst concentration under irradiation of the 250 W mercury vapor lamp (greater than 28 mW·cm−2) at 60 min of reaction.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45491984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Magnetism and Electronic State of Iron Ions on the Surface and in the Core of TiO2 Nanoparticles TiO2纳米粒子表面和核心铁离子的磁性和电子态
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-03 DOI: 10.3390/magnetochemistry9080198
A. Yermakov, M. Uimin, D. Boukhvalov, A. Minin, N. Kleinerman, Sergey P. Naumov, A. Volegov, D. Starichenko, K. Borodin, V. Gaviko, S. Konev, Nikolay A. Cherepanov
In this paper, the electron and magnetic state of iron placed either on the surface or in the core of TiO2 nanoparticles were investigated using magnetometric methods, electron paramagnetic resonance (EPR) and Mössbauer spectroscopy. It was demonstrated that the EPR spectra of TiO2 samples with iron atoms localized both on the surface and in the core of specific features depending on the composition and size of the nanoparticles. Theoretical calculations using the density functional theory (DFT) method demonstrated that the localization of Fe atoms on the surface is characterized by a considerably larger set of atomic configurations as compared to that in the core of TiO2 nanoparticles. Mössbauer spectra of the samples doped with Fe atoms both on the surface and in the core can be described quite satisfactorily using two and three doublets with different quadrupole splitting, respectively. This probably demonstrates that the Fe atoms on particle surface and in the bulk are in different unlike local surroundings. All iron ions, both on the surface and in the core, were found to be in the Fe3+ high-spin state.
本文利用磁强计、电子顺磁共振(EPR)和穆斯堡尔谱研究了铁在TiO2纳米颗粒表面或核心的电子和磁性状态。研究表明,具有铁原子的TiO2样品的EPR光谱位于特定特征的表面和核心,这取决于纳米颗粒的组成和尺寸。使用密度泛函理论(DFT)方法的理论计算表明,与TiO2纳米颗粒的核心相比,Fe原子在表面上的定位具有相当大的一组原子构型。表面和核中掺杂有Fe原子的样品的穆斯堡尔谱可以分别用两个和三个具有不同四极分裂的双原子来非常令人满意地描述。这可能表明颗粒表面和本体中的Fe原子处于不同的局部环境中。发现表面和核心的所有铁离子都处于Fe3+高自旋状态。
{"title":"Magnetism and Electronic State of Iron Ions on the Surface and in the Core of TiO2 Nanoparticles","authors":"A. Yermakov, M. Uimin, D. Boukhvalov, A. Minin, N. Kleinerman, Sergey P. Naumov, A. Volegov, D. Starichenko, K. Borodin, V. Gaviko, S. Konev, Nikolay A. Cherepanov","doi":"10.3390/magnetochemistry9080198","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080198","url":null,"abstract":"In this paper, the electron and magnetic state of iron placed either on the surface or in the core of TiO2 nanoparticles were investigated using magnetometric methods, electron paramagnetic resonance (EPR) and Mössbauer spectroscopy. It was demonstrated that the EPR spectra of TiO2 samples with iron atoms localized both on the surface and in the core of specific features depending on the composition and size of the nanoparticles. Theoretical calculations using the density functional theory (DFT) method demonstrated that the localization of Fe atoms on the surface is characterized by a considerably larger set of atomic configurations as compared to that in the core of TiO2 nanoparticles. Mössbauer spectra of the samples doped with Fe atoms both on the surface and in the core can be described quite satisfactorily using two and three doublets with different quadrupole splitting, respectively. This probably demonstrates that the Fe atoms on particle surface and in the bulk are in different unlike local surroundings. All iron ions, both on the surface and in the core, were found to be in the Fe3+ high-spin state.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49348613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating 用金纳米线光栅手性激发交换自旋波
IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-08-03 DOI: 10.3390/magnetochemistry9080199
L. Temdie, V. Castel, T. Reimann, Morris Lindner, C. Dubs, Gyandeep Pradhan, Jose Solano, R. Bernard, H. Majjad, Y. Henry, M. Bailleul, V. Vlaminck
We propose an experimental method for the unidirectional excitation of spin waves. By structuring Au nanowire arrays within a coplanar waveguide onto a thin yttrium iron garnet (YIG) film, we observe a chiral coupling between the excitation field geometry of the nanowire grating and several well-resolved propagating magnon modes. We report a propagating spin wave spectroscopy study with unprecedented spectral definition, wavelengths down to 130 nm and attenuation lengths well above 100 μm over the 20 GHz frequency band. The proposed experiment paves the way for future non-reciprocal magnonic devices.
提出了一种单向激发自旋波的实验方法。通过在钇铁石榴石(YIG)薄膜上构建共面波导内的金纳米线阵列,我们观察到纳米线光栅的激发场几何形状与几个良好分辨的传播磁振子模式之间的手性耦合。我们报道了一项传播自旋波光谱研究,该研究具有前所未有的光谱清晰度,波长低至130 nm,衰减长度远高于100 μm,覆盖20 GHz频段。提出的实验为未来的非倒易磁器件铺平了道路。
{"title":"Chiral Excitation of Exchange Spin Waves Using Gold Nanowire Grating","authors":"L. Temdie, V. Castel, T. Reimann, Morris Lindner, C. Dubs, Gyandeep Pradhan, Jose Solano, R. Bernard, H. Majjad, Y. Henry, M. Bailleul, V. Vlaminck","doi":"10.3390/magnetochemistry9080199","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080199","url":null,"abstract":"We propose an experimental method for the unidirectional excitation of spin waves. By structuring Au nanowire arrays within a coplanar waveguide onto a thin yttrium iron garnet (YIG) film, we observe a chiral coupling between the excitation field geometry of the nanowire grating and several well-resolved propagating magnon modes. We report a propagating spin wave spectroscopy study with unprecedented spectral definition, wavelengths down to 130 nm and attenuation lengths well above 100 μm over the 20 GHz frequency band. The proposed experiment paves the way for future non-reciprocal magnonic devices.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43446385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Magnetochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1