Rivers and estuaries are the main link between land and ocean, transferring significant amounts of dissolved organic carbon. These ecosystems receive large amount of dissolved organic matter (DOM) from diverse sources, both allochthonous and autochthonous. Within this pool, dissolved free amino acids (DFAA) represent the most labile fraction, offering valuable insights into DOM composition and diagenetic processes. Our study focused on three Iberian Atlantic estuaries—Guadalquivir, Guadiana, and Tinto-Odiel— that differ in hydrology, land use and DOM sources. We studied the longitudinal distribution of DFAA and their response to tidal cycles across these estuaries. Despite similar DFAA concentrations between estuaries (176.6 nM to 1770 nM) were found, variations in specific amino acids like glutamic acid, taurine, and aspartic acid pointed to a substantial influence of terrestrial inputs in Guadalquivir and Guadiana estuaries and an anthropogenic influence in Tinto-Odiel. Predominant amino acids—serine, glycine, ornithine, and asparagine —comprised more than 50 mol% of the estuarine DFAA pool. The dominance of serine, glycine, and ornithine indicated substantial DOM degradation, possibly associated with the loss of labile DOM during estuarine transport. Concurrently, asparagine prevalence was linked to allochthonous DOM input particularly associated with terrestrial runoff, lateral input, and anthropogenic activities at estuarine margins. Our results underscore the impact of tidal cycles on DFAA distribution and emphasize the potential of DFAA in unraveling estuarine DOM dynamics and their role as indicators of reactivity and composition in estuarine biogeochemistry.
Monthly water samples were collected from the lower Mississippi and Pearl Rivers between January 2009 and August 2011 to investigate the heterogeneity in the dynamic variations of dissolved organic carbon (DOC), colloidal organic carbon, chromophoric and fluorescence dissolved organic matter (CDOM and FDOM), PARAFAC-derived fluorescent components, and other optical properties including spectral slope, specific UV absorbance (SUVA), and fluorescence indices between the two contrasting river systems. The lower Mississippi River exhibits relatively lower concentrations of DOC (306 ± 41 μM C) and CDOM (27.9 ± 5.7 m−1 at 254 nm), featuring lower aromaticity (indicated by SUVA254) and apparent molecular weight (or higher spectral slope) with weak seasonal variability. The Pearl River, in contrast, has elevated levels of DOC (537 ± 212 μM C) and CDOM (66.4 ± 31.4 m−1), characterized by higher aromaticity, higher molecular weight, and significant seasonality, primarily originating from soil-derived allochthonous sources. The abundance of the >1 kDa colloidal DOC was, on average, 58 ± 3 % of the bulk DOC in the lower Mississippi River and 68 ± 6 % in the lower Pearl River. The >1 kDa high-molecular weight DOM (HMW-DOM) consistently had lower spectral slope and biological index (BIX) values, but higher humification index (HIX) values compared to both bulk DOM and low-molecular-weight DOM (LMW-DOM) counterparts. These trends could be representative of other similar large and small rivers. Four PARAFAC-derived fluorescent components (three humic-like and one protein-like) were identified for both rivers. A positive correlation between discharge and terrestrial humic-like fluorescent components indicated their dominant allochthonous sources, while the protein-like component decreased with increasing discharge, consistent with its autochthonic source and a dilution effect during high flow seasons. The occurrence of large flood events during the sampling period contributed to large DOC pulses, with DOM of higher aromaticity and HMW-DOM. This has important implications for coastal ocean ecosystems, which are increasingly impacted by river flooding events under changing climate conditions. Our results also provide an improved understanding of DOM dynamics in two representative rivers and establish a baseline dataset for future studies to assess changes in sources and composition of DOM and their impacts on the coastal ocean in response to climate, hydrological, and anthropogenic influences.
We present a new method for imaging dissolved manganese at millimeter scale by coupling DET (diffusive equilibrium in thin film) and colorimetric techniques. The method is an adaptation of the porphyrin approach for the measurement of dissolved Mn by substitution of Mn(II) and Mn(III) to Cd in the Cd(II)–POR complex. Optimization of the Cd-POR concentrations was required for transposition to 2D-DET. A commercial flatbed scanner and a hyperspectral camera were used for imaging. Using the hyperspectral camera, detection limit is about 5 μM and measuring range is up to 520 μM. The method was applied on the field in a tidal mudflat of the French Atlantic coast and in sediments inhabited by polychaetes. These first images allowed to precisely describe two-dimensional millimeter features such as burrows and highlighted the role of bioirrigation in benthic Mn fluxes. This new technique offers the possibility to investigate the reactivity of microenvironments towards dissolved Mn in two dimensions in a wide range of laboratory and in situ studies using a non-destructive tool.
This study investigated the redox speciation and mobility of V in the acid-extractable fraction of surface sediments from the Krka River estuary using an optimized IC-UV/Vis analytical method. The separation of V(IV) and V(V) redox species was done using anion-exchange based chromatographic method, while pseudo-total V concentrations were measured using HR ICP-MS analytical instrumentation. Extracted V concentrations from the sediment fraction (pH = 5, HCl) and determined pseudo-total V concentrations were used to calculate the Enrichment Factor (EF) and Risk Assessment Code (RAC), indicating potential anthropogenic influence and environmental risk. A simple PHREEQC model was developed to asses V speciation in the oxic bottom seawater layer simulating possible remobilization of the leached sediment phase. The results of the study show that minor fraction of V is present in the acid-extractable phase across the surface sediment of Krka River estuary. Higher V mobility is mostly observed at locations rich with clay minerals, terrigenous input, and carbonates. Anthropogenic influence was linked to higher enrichment but lower mobility, suggesting binding to less mobile sediment phases (reducible, organic and residual fractions). The predominance of reduced V(IV) species in the acid-extractable sediment fraction indicates a potentially low V toxicity risk in the sediments of Krka River estuary, even in cases of high potential remobilization of V. However, the model predicted complete oxidation of V(IV) to V(V) upon remobilization into the oxic bottom water layer. This highlights the complexity of V behavior in natural estuarine systems, where the toxicity risks of possible V remobilization still remain unclear. Results of this study demonstrate the need for the strengthening efforts in speciation of V in the mobile sediment phase to obtain a cohesive outlook on its potential toxicity and biogeochemical cycling.
Dissolved inorganic carbon (DIC) and particulate organic carbon (POC) dynamics in the world's estuaries have been studied extensively at monthly, seasonal, and annual time scales with particular focus on their concentrations and export fluxes to the coastal oceans. However, given the dynamic nature of the estuaries, the effect of tidal and diel cycles on the processes modulating DIC and POC dynamics remains obscure. To decipher the biogeochemical processes at tidal scale, DIC and POC concentrations and their carbon and nitrogen isotopic compositions were measured across the salinity gradient at every high and low tide for nine consecutive days (14–23 October 2019) in the Mahanadi estuary, a tropical estuary at the east coast of India. Showing contrasting differences across salinity gradient in DIC, POC and their isotopic compositions, DIC and POC were significantly different during high and low tide in the mixing zone only during spring duration. This showed the effect of spring-neap tidal cycle owing to water level fluctuations and mixing intensity in the estuarine mixing zone. Linear least-squares regression models indicated carbonate and/or silicate weathering by biogenic CO2 to be the probable DIC source in the freshwater region of the estuary. Deviations of observed DIC concentrations and δ13CDIC from the conservative mixing values suggested pronounced alteration of DIC source signature in the mixing zone. A process-based model approach aimed at delineating possible biogeochemical processes affecting DIC dynamics indicated calcite dissolution during low tide and calcite precipitation during high tide to be dominant processes in the mixing zone. Additionally, signatures of more than one simultaneous biogeochemical process modulating the DIC dynamics were also observed. POC pool in the mixing zone was largely influenced by its removal through rapid remineralization during both high and low tides. Graphical plots also showed that POC in the mixing zone and at the saline location was significantly affected by processes such as degradation, whereas it was only slightly affected in the freshwater region of the estuary. δ13CPOC, along with the C/N ratio of POM, indicated that C3 plants and/or their derived soil were the major source of POM in the freshwater, whereas the higher contribution of riverine POM and marine phytoplankton was observed in the mixing zone and saline location, respectively.
Radiotracers are highly sensitive tools for quantifying the rates of important biogeochemical processes and the fates of specific atoms and/or compounds within major global elemental cycles, especially those that are requisite for life. Important radiolabeled organosulfur compounds, like dimethylsulfide (DMS) and its precursor 3-dimethylsulfoniopropionate (DMSP), are not commercially available, but their well-documented use has been key in furthering our understanding of the marine sulfur cycle. [35S]-DMSP obtained by chemical synthesis has been used extensively in radiotracer studies involving DMS and DMSP, but its synthesis has been restricted to 2 research groups. Presented here is a protocol for the chemical synthesis of [35S]-DMSP from [35S]-L-methionine, though the method could be used for other radiolabels (e.g. [14C], [3H]). The synthesis consists of 2 reaction steps, (1) the sequential oxidative deamination and decarboxylation of [35S]-L-methionine to [35S]-3-methylmercaptopropionate and (2) the methylation of [35S]-methylmercaptopropionate to yield the product [35S]-DMSP. The product is purified by liquid chromatography and two cation-resin exchanges. Average final [35S]-DMSP yield was 5.34% (n = 16; range: 1.26% to 14.84%, excluding failures), although updated instrumentation could likely improve final yields. The objective of this work is to standardize the synthesis of [35S]-DMSP to widen its availability and use among the community and hence facilitate increased understanding of the reduced sulfur and carbon cycles.