首页 > 最新文献

Marine Chemistry最新文献

英文 中文
Spatial and temporal dynamics of groundwater biogeochemistry in the deep subsurface of a high-energy beach 高能海滩深层地下水生物地球化学的时空动态变化
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1016/j.marchem.2024.104461
Anja Reckhardt , Rena Meyer , Stephan L. Seibert , Janek Greskowiak , Magali Roberts , Simone Brick , Grace Abarike , Kojo Amoako , Hannelore Waska , Kai Schwalfenberg , Iris Schmiedinger , Oliver Wurl , Michael Ernst Böttcher , Gudrun Massmann , Katharina Pahnke
Intertidal sandy beach systems are considered complex biogeochemical reactors. At beach sites that are subject to high tidal and wave energy, seawater circulation can reach tens of meters deep into the subsurface and changing environmental conditions are assumed to lead to dynamic groundwater flow paths, saltwater-freshwater mixing zones, and a spatio-temporally variable groundwater biogeochemistry. Previous studies mainly focused on the upper meters of subterranean estuaries (STE), while the deep subsurface remained a black box. This study presents spatial (cross-shore) and temporal (∼ six-weekly, over 1.5 years) dynamics of the groundwater biogeochemistry that were observed down to 24 m below the ground surface (mbgs) of a sandy high-energy beach on Spiekeroog Island (Germany).
In addition to redox conditions along a cross-shore transect ranging from oxic to Fe oxide reducing/slightly sulfidic, we found a previously unknown, distinct vertical redox zonation as well. Temporal variations of the biogeochemistry within low salinity groundwater at the most landward station close to the dune base were mainly driven by storm flood related seawater infiltration. Around the high water line, the extent of the upper saline plume (USP) varied over time. Furthermore, temporal dynamics of the O2 saturation at 6 mbgs indicated a seasonally shifting depth of the oxycline at this location. In the lower intertidal zone, groundwater solute concentrations displayed a temporally variable zone of deep freshwater discharge.
Regarding the impact of the deep STE on the groundwater biogeochemistry of the discharge zone, our data revealed that nutrient, Mn, and Fe release along the deep flow paths through the USP towards the discharge zone was limited, likely due decreasing availability of labile organic matter and subsequent slowing down of metabolic processes with depth. High concentrations of metabolites in the upper ∼ 2 mbgs of the discharge zone were, therefore, rather attributed to the incorporation of labile organic matter during continuous and storm flood related sediment relocation and/or the contribution of older waters, e.g., the subtidal saltwater wedge.
潮间带沙滩系统被认为是复杂的生物地球化学反应器。在潮汐能和波浪能较强的海滩地点,海水循环可深入地下数十米,环境条件的变化被认为会导致动态地下水流路径、咸淡水混合区和时空多变的地下水生物地球化学。以往的研究主要集中在地下河口(STE)的上层,而深层地下水仍是一个黑箱。本研究介绍了在德国斯皮克罗格岛(Spiekeroog Island)高能量沙质海滩地表下 24 米处观察到的地下水生物地球化学的空间(跨海岸)和时间(每六周一次,历时 1.5 年)动态变化。在靠近沙丘基部的最靠近陆地的站点,低盐度地下水中生物地球化学的时间变化主要是由暴雨洪水相关的海水渗透造成的。在高水位线附近,上盐羽流(USP)的范围随时间而变化。此外,6 mbgs 处的氧气饱和度的时间动态变化表明,该处的富氧层深度随季节变化。关于深层 STE 对排泄区地下水生物地球化学的影响,我们的数据显示,营养物质、锰和铁沿着穿过 USP 的深层水流路径向排泄区的释放是有限的,这可能是由于可溶解有机物的可用性降低以及随之而来的新陈代谢过程随深度的减慢。因此,排泄区上部 ∼ 2 mbgs 的代谢物浓度较高,可能是由于在与沉积物迁移相关的持续和暴雨洪水过程中吸附了可溶性有机物,以及/或老水(例如潮下咸水楔)的作用。
{"title":"Spatial and temporal dynamics of groundwater biogeochemistry in the deep subsurface of a high-energy beach","authors":"Anja Reckhardt ,&nbsp;Rena Meyer ,&nbsp;Stephan L. Seibert ,&nbsp;Janek Greskowiak ,&nbsp;Magali Roberts ,&nbsp;Simone Brick ,&nbsp;Grace Abarike ,&nbsp;Kojo Amoako ,&nbsp;Hannelore Waska ,&nbsp;Kai Schwalfenberg ,&nbsp;Iris Schmiedinger ,&nbsp;Oliver Wurl ,&nbsp;Michael Ernst Böttcher ,&nbsp;Gudrun Massmann ,&nbsp;Katharina Pahnke","doi":"10.1016/j.marchem.2024.104461","DOIUrl":"10.1016/j.marchem.2024.104461","url":null,"abstract":"<div><div>Intertidal sandy beach systems are considered complex biogeochemical reactors. At beach sites that are subject to high tidal and wave energy, seawater circulation can reach tens of meters deep into the subsurface and changing environmental conditions are assumed to lead to dynamic groundwater flow paths, saltwater-freshwater mixing zones, and a spatio-temporally variable groundwater biogeochemistry. Previous studies mainly focused on the upper meters of subterranean estuaries (STE), while the deep subsurface remained a black box. This study presents spatial (cross-shore) and temporal (∼ six-weekly, over 1.5 years) dynamics of the groundwater biogeochemistry that were observed down to 24 m below the ground surface (mbgs) of a sandy high-energy beach on Spiekeroog Island (Germany).</div><div>In addition to redox conditions along a cross-shore transect ranging from oxic to Fe oxide reducing/slightly sulfidic, we found a previously unknown, distinct vertical redox zonation as well. Temporal variations of the biogeochemistry within low salinity groundwater at the most landward station close to the dune base were mainly driven by storm flood related seawater infiltration. Around the high water line, the extent of the upper saline plume (USP) varied over time. Furthermore, temporal dynamics of the O<sub>2</sub> saturation at 6 mbgs indicated a seasonally shifting depth of the oxycline at this location. In the lower intertidal zone, groundwater solute concentrations displayed a temporally variable zone of deep freshwater discharge.</div><div>Regarding the impact of the deep STE on the groundwater biogeochemistry of the discharge zone, our data revealed that nutrient, Mn, and Fe release along the deep flow paths through the USP towards the discharge zone was limited, likely due decreasing availability of labile organic matter and subsequent slowing down of metabolic processes with depth. High concentrations of metabolites in the upper ∼ 2 mbgs of the discharge zone were, therefore, rather attributed to the incorporation of labile organic matter during continuous and storm flood related sediment relocation and/or the contribution of older waters, e.g., the subtidal saltwater wedge.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104461"},"PeriodicalIF":3.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbonate system and acidification of the Adriatic Sea 亚得里亚海的碳酸盐系统与酸化
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1016/j.marchem.2024.104462
Carolina Cantoni , Cinzia De Vittor , Jadran Faganeli , Michele Giani , Nives Kovač , Alenka Malej , Nives Ogrinc , Samo Tamše , Valentina Turk
Although the marginal seas represent only 7 % of the total area of the ocean, CO2 fluxes are important for the carbon budget, exposing them to the intense process of anthropogenic ocean acidification. The Adriatic Sea is currently a CO2 sink (−0.5 to −1 mol C m−2 y−1) with an annual flux comparable to the net sink rates in the NW Mediterranean. Based on a comparison of two winter cruises carried out in the 25-years interval between 1983 and 2008, an acidification rate of 0.003 pHT units y−1 was estimated in the northern Adriatic which is similar to the Mediterranean open waters (with recent estimations of −0.0028 ± 0.0003 pHT units y−1) and the surface coastal waters (−0.003 ± 0.001 and − 0.0044 ± 0.00006 pHT units y−1). The computed Revelle factor for the Adriatic Sea (approximately 10) indicates that the buffer capacity is rather high and that the waters do not appear to be particularly exposed to acidification. Total alkalinity (TA) in the Adriatic (2.6–2.7 mmol kg−1) is in the upper range of TA measured in the Mediterranean Sea. This is primarily due to the riverine inputs which transport carbonates dissolved from the Alpine dolomites and karstic watersheds. The Adriatic Sea is the second sub-basin (319 Gmol y−1), following the Aegean Sea (which receives the TA contribution from the Black Sea), that contribute to the riverine TA discharges into the Mediterranean Sea. About 60 % of the TA inflow into the Adriatic Sea is attributed to discharge from the Po River with a TA of ∼3 mmol kg−1 and TA decreases with increasing salinity. The north Adriatic dense water spreading and cascading is an efficient mechanism for exporting TA and DIC at depth, from the northern Adriatic towards the bottom of the South Adriatic Pit and possibly to the eastern Mediterranean. Saturation states indicate that the waters of the Adriatic are supersaturated throughout the year with respect to aragonite (ΩAr). However, the saturation state is considerably lower in the bottom water layers, due to the prevalence of the bottom layer and benthic remineralisation in the stratification period. Effects on calcifying organisms and phytoplankton are expected in the future.
虽然边缘海只占海洋总面积的 7%,但二氧化碳通量对碳预算非常重要,使其受到人为海洋酸化过程的严重影响。亚得里亚海目前是一个二氧化碳汇(-0.5 至 -1 摩尔 C m-2 y-1),其年通量与地中海西北部的净汇率相当。根据对 1983 年至 2008 年 25 年间两次冬季巡航的比较,估计亚得里亚海北部的酸化率为 0.003 pHT 单位年-1,与地中海开阔水域(最近的估计值为-0.0028 ± 0.0003 pHT 单位年-1)和沿岸表层水域(-0.003 ± 0.001 和 - 0.0044 ± 0.00006 pHT 单位年-1)相似。计算得出的亚得里亚海雷维尔因子(约 10)表明,亚得里亚海的缓冲能力相当高,水体似乎并不特别容易酸化。亚得里亚海的总碱度(TA)(2.6-2.7 mmol kg-1)处于地中海测得的总碱度的上限范围。这主要是由于从阿尔卑斯白云岩和喀斯特流域溶解的碳酸盐被河流输入所致。亚得里亚海是继爱琴海(接收来自黑海的 TA 量)之后,第二个向地中海排放河流 TA 量的子流域(319 Gmol y-1)。流入亚得里亚海的 TA 大约有 60% 来自波河,其 TA 为 3 mmol kg-1 左右,TA 随盐度增加而减少。北亚得里亚海稠密水域的扩散和层叠是将 TA 和 DIC 从亚得里亚海北部向南亚得里亚海海坑底部并可能向地中海东部深度输出的有效机制。饱和状态表明,亚得里亚海水域的文石(ΩAr)全年都处于过饱和状态。不过,底层水的饱和状态要低得多,这是由于底层水和底栖生物在分层期的再矿化现象普遍存在。预计未来会对钙化生物和浮游植物产生影响。
{"title":"Carbonate system and acidification of the Adriatic Sea","authors":"Carolina Cantoni ,&nbsp;Cinzia De Vittor ,&nbsp;Jadran Faganeli ,&nbsp;Michele Giani ,&nbsp;Nives Kovač ,&nbsp;Alenka Malej ,&nbsp;Nives Ogrinc ,&nbsp;Samo Tamše ,&nbsp;Valentina Turk","doi":"10.1016/j.marchem.2024.104462","DOIUrl":"10.1016/j.marchem.2024.104462","url":null,"abstract":"<div><div>Although the marginal seas represent only 7 % of the total area of the ocean, CO<sub>2</sub> fluxes are important for the carbon budget, exposing them to the intense process of anthropogenic ocean acidification. The Adriatic Sea is currently a CO<sub>2</sub> sink (−0.5 to −1 mol C m<sup>−2</sup> y<sup>−1</sup>) with an annual flux comparable to the net sink rates in the NW Mediterranean. Based on a comparison of two winter cruises carried out in the 25-years interval between 1983 and 2008, an acidification rate of 0.003 pH<sub>T</sub> units y<sup>−1</sup> was estimated in the northern Adriatic which is similar to the Mediterranean open waters (with recent estimations of −0.0028 ± 0.0003 pH<sub>T</sub> units y<sup>−1</sup>) and the surface coastal waters (−0.003 ± 0.001 and − 0.0044 ± 0.00006 pH<sub>T</sub> units y<sup>−1</sup>). The computed Revelle factor for the Adriatic Sea (approximately 10) indicates that the buffer capacity is rather high and that the waters do not appear to be particularly exposed to acidification. Total alkalinity (TA) in the Adriatic (2.6–2.7 mmol kg<sup>−1</sup>) is in the upper range of TA measured in the Mediterranean Sea. This is primarily due to the riverine inputs which transport carbonates dissolved from the Alpine dolomites and karstic watersheds. The Adriatic Sea is the second sub-basin (319 Gmol y<sup>−1</sup>), following the Aegean Sea (which receives the TA contribution from the Black Sea), that contribute to the riverine TA discharges into the Mediterranean Sea. About 60 % of the TA inflow into the Adriatic Sea is attributed to discharge from the Po River with a TA of ∼3 mmol kg<sup>−1</sup> and TA decreases with increasing salinity. The north Adriatic dense water spreading and cascading is an efficient mechanism for exporting TA and DIC at depth, from the northern Adriatic towards the bottom of the South Adriatic Pit and possibly to the eastern Mediterranean. Saturation states indicate that the waters of the Adriatic are supersaturated throughout the year with respect to aragonite (Ω<sub>Ar</sub>). However, the saturation state is considerably lower in the bottom water layers, due to the prevalence of the bottom layer and benthic remineralisation in the stratification period. Effects on calcifying organisms and phytoplankton are expected in the future.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104462"},"PeriodicalIF":3.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bomb-radiocarbon in the Northern Indian Ocean 北印度洋的炸弹-放射性碳
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-30 DOI: 10.1016/j.marchem.2024.104459
Harsh Raj, Siby Kurian
Bomb-radiocarbon is a useful tracer to study ocean circulation and air-sea CO2 exchange processes. In the present study bomb radiocarbon distribution in dissolved inorganic carbon of the Northern Indian Ocean around late 2010s has been evaluated. In the late 2010s surface waters in the Northern Indian Ocean had ∆14C values ranging between 9 and 17 ‰ which is comparable or even higher than that of the contemporaneous atmospheric ∆14C values. Water column measurements showed that the bomb 14C inventory in the Arabian Sea and the Bay of Bengal has increased between 1990s and 2010s. During the same period, the eastern and western equatorial Indian Ocean showed either no change or a slight decline in the water column bomb 14C inventory. These bomb 14C inventory values were also used to estimate the air-sea CO2 exchange rate and net CO2 flux over the Northern Indian Ocean region. Bomb 14C-based estimate of net CO2 flux from the Arabian Sea is 75 ± 24 Tg C yr−1 and the Bay of Bengal is 1 ± 7 Tg C yr−1, which is comparable to the estimates reported by previous investigations in the region. The present observations show that the bomb 14C is being transferred to the deeper depths of the ocean, emphasizing the need for continued 14C measurements to gain further insights into subsurface processes in the region.
炸弹放射性碳是研究海洋环流和海气二氧化碳交换过程的有用示踪剂。本研究对 2010 年代末期北印度洋溶解无机碳中的炸弹放射性碳分布进行了评估。2010 年代末,北印度洋表层水的∆14C 值介于 9 至 17 ‰之间,与同期大气∆14C 值相当甚至更高。水柱测量结果表明,阿拉伯海和孟加拉湾的弹 14C 库存在 20 世纪 90 年代至 2010 年代期间有所增加。同期,赤道印度洋东部和西部的水柱弹 14C 库存量没有变化或略有下降。这些炸弹 14C 列表值还被用于估算北印度洋地区的海气二氧化碳交换率和二氧化碳净通量。基于炸弹 14C 估算的阿拉伯海二氧化碳净通量为 75 ± 24 Tg C yr-1,孟加拉湾为 1 ± 7 Tg C yr-1,与该地区以往调查报告的估算值相当。目前的观测结果表明,炸弹中的 14C 正在向海洋深处转移,这强调了继续进行 14C 测量以进一步了解该地区次表层过程的必要性。
{"title":"Bomb-radiocarbon in the Northern Indian Ocean","authors":"Harsh Raj,&nbsp;Siby Kurian","doi":"10.1016/j.marchem.2024.104459","DOIUrl":"10.1016/j.marchem.2024.104459","url":null,"abstract":"<div><div>Bomb-radiocarbon is a useful tracer to study ocean circulation and air-sea CO<sub>2</sub> exchange processes. In the present study bomb radiocarbon distribution in dissolved inorganic carbon of the Northern Indian Ocean around late 2010s has been evaluated. In the late 2010s surface waters in the Northern Indian Ocean had ∆<sup>14</sup>C values ranging between 9 and 17 ‰ which is comparable or even higher than that of the contemporaneous atmospheric ∆<sup>14</sup>C values. Water column measurements showed that the bomb <sup>14</sup>C inventory in the Arabian Sea and the Bay of Bengal has increased between 1990s and 2010s. During the same period, the eastern and western equatorial Indian Ocean showed either no change or a slight decline in the water column bomb <sup>14</sup>C inventory. These bomb <sup>14</sup>C inventory values were also used to estimate the air-sea CO<sub>2</sub> exchange rate and net CO<sub>2</sub> flux over the Northern Indian Ocean region. Bomb <sup>14</sup>C-based estimate of net CO<sub>2</sub> flux from the Arabian Sea is 75 ± 24 Tg C yr<sup>−1</sup> and the Bay of Bengal is 1 ± 7 Tg C yr<sup>−1</sup>, which is comparable to the estimates reported by previous investigations in the region. The present observations show that the bomb <sup>14</sup>C is being transferred to the deeper depths of the ocean, emphasizing the need for continued <sup>14</sup>C measurements to gain further insights into subsurface processes in the region.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104459"},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur isotopic fractionation during hydrolysis of carbonyl sulfide 羰基硫化物水解过程中的硫同位素分馏
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1016/j.marchem.2024.104458
Yasmin Avidani , Alon Angert , Chen Davidson , Xinyu Xia , Yongli Gao , Alon Amrani
Carbonyl Sulfide (OCS) is the most abundant sulfur-containing gas in the atmosphere, and it is used as a proxy for terrestrial gross primary productivity (GPP). Oceans are the major source of OCS to the atmosphere, produced by photochemical and “dark” reactions. Hydrolysis to H2S and CO2 is the major removal process of OCS from the ocean's surface. Measuring the sulfur isotope values (δ34S) and the isotopic fractionation (ε) associated with these major OCS sources and sinks could decrease the uncertainties in its fluxes. In the current study, we aim to determine the ε during the hydrolysis process of OCS (εh). We used a purge and trap system coupled to a GC/MC-ICPMS to measure δ34S values during hydrolysis under different temperatures (4–40 °C), salinities (0.2–40 g/L), and pH (4–9), representing various natural environmental conditions. In addition, we use the quantum chemical method to calculate the equilibrium εh and compare it to the empirical results. Our results for the low salinity (S =0.2 g/L; pH 8.0) water show a temperature dependency of the εh from −3.9 ‰ ± 0.2 ‰ (4 °C,) to −2.2 ± 0.6 ‰ (40 °C). The higher fractionation at low temperatures has implication for ice-core data interpretation. However, in natural seawater at 4°C and 22 °C (S = 40 g/L, pH 8.2) there was no such temperature dependency and the εh averaged −2.6 ± 0.3 ‰. Thus, it seems that salinity cancels the temperature effect close to the freezing temperature of water. Varying the pH between 4 and 9 (at 22 °C) did not result in any εh trend. Ab-initio calculations suggest that OCS hydrolysis is not controlled by equilibrium. The εh values we report will aid in quantifying the impact of OCS's hydrolysis on the observable sulfur isotopic signature of OCS in oceanic and in freshwater environments. This in turn will facilitate more accurate mass-balance calculations for the OCS budget from the ocean to the atmosphere.
羰基硫化物(OCS)是大气中最丰富的含硫气体,被用作陆地总初级生产力(GPP)的替代物。海洋是大气中 OCS 的主要来源,由光化反应和 "暗 "反应产生。水解为 H2S 和 CO2 是海洋表面 OCS 的主要清除过程。测量与这些主要 OCS 源和汇相关的硫同位素值(δ34S)和同位素分馏(ε)可以减少其通量的不确定性。本研究旨在测定 OCS 水解过程中的ε(εh)。我们使用了与 GC/MC-ICPMS 相耦合的吹扫捕集系统,测量了在不同温度(4-40 °C)、盐度(0.2-40 g/L)和 pH 值(4-9)条件下水解过程中的δ34S 值,这些条件代表了不同的自然环境条件。此外,我们还使用量子化学方法计算了平衡εh,并将其与经验结果进行了比较。我们对低盐度(S =0.2 g/L;pH 8.0)水的研究结果表明,εh 与温度有关,从 -3.9 ‰ ± 0.2 ‰(4 °C)到 -2.2 ± 0.6 ‰(40 °C)。低温下较高的分馏率对冰芯数据的解释有影响。然而,在 4 ℃ 和 22 ℃ 的天然海水中(S = 40 g/L,pH 值为 8.2),没有这种温度依赖性,εh 平均为 -2.6 ± 0.3 ‰。因此,在接近水的凝固温度时,盐度似乎可以抵消温度效应。在 22 ℃ 条件下,pH 值在 4 和 9 之间变化不会导致任何 εh 变化趋势。Ab-initio 计算表明,OCS 的水解不受平衡控制。我们报告的 εh 值将有助于量化 OCS 的水解作用对海洋和淡水环境中可观测到的 OCS 硫同位素特征的影响。这反过来将有助于更准确地计算从海洋到大气的 OCS 预算的质量平衡。
{"title":"Sulfur isotopic fractionation during hydrolysis of carbonyl sulfide","authors":"Yasmin Avidani ,&nbsp;Alon Angert ,&nbsp;Chen Davidson ,&nbsp;Xinyu Xia ,&nbsp;Yongli Gao ,&nbsp;Alon Amrani","doi":"10.1016/j.marchem.2024.104458","DOIUrl":"10.1016/j.marchem.2024.104458","url":null,"abstract":"<div><div>Carbonyl Sulfide (OCS) is the most abundant sulfur-containing gas in the atmosphere, and it is used as a proxy for terrestrial gross primary productivity (GPP). Oceans are the major source of OCS to the atmosphere, produced by photochemical and “dark” reactions. Hydrolysis to H<sub>2</sub>S and CO<sub>2</sub> is the major removal process of OCS from the ocean's surface. Measuring the sulfur isotope values (δ<sup>34</sup>S) and the isotopic fractionation (ε) associated with these major OCS sources and sinks could decrease the uncertainties in its fluxes. In the current study, we aim to determine the ε during the hydrolysis process of OCS (ε<sub>h</sub>). We used a purge and trap system coupled to a GC/MC-ICPMS to measure δ<sup>34</sup>S values during hydrolysis under different temperatures (4–40 °C), salinities (0.2–40 g/L), and pH (4–9), representing various natural environmental conditions. In addition, we use the quantum chemical method to calculate the equilibrium ε<sub>h</sub> and compare it to the empirical results. Our results for the low salinity (S =0.2 g/L; pH 8.0) water show a temperature dependency of the ε<sub>h</sub> from −3.9 ‰ ± 0.2 ‰ (4 °C,) to −2.2 ± 0.6 ‰ (40 °C). The higher fractionation at low temperatures has implication for ice-core data interpretation. However, in natural seawater at 4<span><math><msup><mrow></mrow><mo>°</mo></msup><mi>C</mi></math></span> and 22 °C (S = 40 g/L, pH 8.2) there was no such temperature dependency and the ε<sub>h</sub> averaged −2.6 ± 0.3 ‰. Thus, it seems that salinity cancels the temperature effect close to the freezing temperature of water. Varying the pH between 4 and 9 (at 22 °C) did not result in any ε<sub>h</sub> trend. Ab-initio calculations suggest that OCS hydrolysis is not controlled by equilibrium. The ε<sub>h</sub> values we report will aid in quantifying the impact of OCS's hydrolysis on the observable sulfur isotopic signature of OCS in oceanic and in freshwater environments. This in turn will facilitate more accurate mass-balance calculations for the OCS budget from the ocean to the atmosphere.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104458"},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastics in wild Saccostrea cucullata oysters in Sri Lanka: Pollution status and risk assessment 斯里兰卡野生 Saccostrea cucullata 牡蛎中的微塑料:污染状况和风险评估
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1016/j.marchem.2024.104457
K.P.G.K.P. Guruge , K.M.S.N. Abeysinghe , Tharindu Bandara , P.B.T.P. Kumara
Microplastics (MPs) have widely been reported in many marine organisms that cause significant environmental concern. Oysters are known to accumulate MPs through their filter-feeding mechanism yet studies focused on MPs pollution in oysters along with ecological risk assessment are scarce. In this study, we investigated MPs pollution in wild Saccostrea cucullata oysters and assessed the ecological risk of MPs pollution in oysters and their habitats along the southern and western coasts of Sri Lanka. Oyster MPs abundance varied from 0.63 to 2.20 particles g−1 wet weight (ww), which showed a significant positive correlation with MPs abundances in surrounding surface seawater and surface sediment. The average MPs abundances in oysters, surface seawater and surface sediment showed significant spatial differences where high MPs abundances were reported in areas that had high anthropogenic activities. Size classification of MPs revealed that small size (100 μm-1 mm) blue fibres were dominant in oysters, surface seawater and surface sediment likely due to the high abundance of discarded fishing nets in studied areas. The abundance of various polymer types indicated that low-density polyethene polymers were most abundant (oysters, 45.74 %; surface seawater, 42.91 % and surface sediment, 39.62 %). Results of the ecological risk assessment indicated that MPs pollution in the environment was low (Level I). However, MPs pollution in oysters ranged from low to moderate risk levels (Level I-II), where moderate risk was reported in the areas with high MPs contamination. Therefore, our study highlights that mitigation of MPs pollution on the southern and western coast of Sri Lanka is important to alleviate the increasing ecological risk of MPs pollution in Saccostrea cucullata.
微塑料(MPs)在许多海洋生物中被广泛报道,引起了重大的环境问题。众所周知,牡蛎会通过其滤食机制积累 MPs,但有关牡蛎中 MPs 污染以及生态风险评估的研究却很少。在这项研究中,我们调查了斯里兰卡南部和西部海岸野生 Saccostrea cucullata 牡蛎中的 MPs 污染情况,并评估了 MPs 污染对牡蛎及其栖息地造成的生态风险。牡蛎的 MPs 丰度在 0.63 至 2.20 微粒 g-1 湿重(ww)之间变化,与周围表层海水和表层沉积物中的 MPs 丰度呈显著正相关。牡蛎、表层海水和表层沉积物中 MPs 的平均丰度显示出明显的空间差异,在人为活动频繁的地区 MPs 丰度较高。MPs的尺寸分类显示,在牡蛎、表层海水和表层沉积物中,小尺寸(100 μm-1 mm)蓝色纤维占主导地位,这可能是由于研究地区存在大量废弃渔网。各类聚合物的含量表明,低密度聚乙烯聚合物含量最高(牡蛎,45.74%;表层海水,42.91%;表层沉积物,39.62%)。生态风险评估结果表明,环境中的多溴联苯醚污染程度较低(I 级)。然而,牡蛎中的 MPs 污染程度从低到中度不等(I-II 级),其中 MPs 污染程度较高的地区报告了中度风险。因此,我们的研究强调,斯里兰卡南部和西部沿海地区必须减轻 MPs 污染,以缓解 Saccostrea cucullata 不断增加的 MPs 污染生态风险。
{"title":"Microplastics in wild Saccostrea cucullata oysters in Sri Lanka: Pollution status and risk assessment","authors":"K.P.G.K.P. Guruge ,&nbsp;K.M.S.N. Abeysinghe ,&nbsp;Tharindu Bandara ,&nbsp;P.B.T.P. Kumara","doi":"10.1016/j.marchem.2024.104457","DOIUrl":"10.1016/j.marchem.2024.104457","url":null,"abstract":"<div><div>Microplastics (MPs) have widely been reported in many marine organisms that cause significant environmental concern. Oysters are known to accumulate MPs through their filter-feeding mechanism yet studies focused on MPs pollution in oysters along with ecological risk assessment are scarce. In this study, we investigated MPs pollution in wild <em>Saccostrea cucullata</em> oysters and assessed the ecological risk of MPs pollution in oysters and their habitats along the southern and western coasts of Sri Lanka. Oyster MPs abundance varied from 0.63 to 2.20 particles g<sup>−1</sup> wet weight (ww), which showed a significant positive correlation with MPs abundances in surrounding surface seawater and surface sediment. The average MPs abundances in oysters, surface seawater and surface sediment showed significant spatial differences where high MPs abundances were reported in areas that had high anthropogenic activities. Size classification of MPs revealed that small size (100 μm-1 mm) blue fibres were dominant in oysters, surface seawater and surface sediment likely due to the high abundance of discarded fishing nets in studied areas. The abundance of various polymer types indicated that low-density polyethene polymers were most abundant (oysters, 45.74 %; surface seawater, 42.91 % and surface sediment, 39.62 %). Results of the ecological risk assessment indicated that MPs pollution in the environment was low (Level I). However, MPs pollution in oysters ranged from low to moderate risk levels (Level I-II), where moderate risk was reported in the areas with high MPs contamination. Therefore, our study highlights that mitigation of MPs pollution on the southern and western coast of Sri Lanka is important to alleviate the increasing ecological risk of MPs pollution in <em>Saccostrea cucullata</em>.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104457"},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking suspended particulate organic matter biochemistry from glacial meltwater runoff to coastal waters of an Antarctic fjord 跟踪从冰川融水径流到南极峡湾沿岸水域的悬浮颗粒有机物生物化学过程
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-22 DOI: 10.1016/j.marchem.2024.104455
Claudia Parodi , Luis Cerpa , Zhuoyi Zhu , Jing Zhang , Pablo Muniz , Natalia Venturini
Increased glacier melting runoff in Antarctica involves intensification of freshwater, nutrients, sediments and organic matter inputs from land to the sea, which is impacting coastal ecosystems. Basic environmental characteristics of water and biochemical composition of suspended particulate organic matter (POM) both in the proglacial melting runoff system (PROGLARS) of Collins Glacier and marine surface waters of Collins Bay was studied based on organic biopolymers and molecular level analysis of amino acids (AAs), to discern among sources and degradation state in the two environments. Hierarchical Clustering Analysis revealed that PROGLARS stations and marine stations form two distinct groups in terms of water physicochemical characteristics and suspended POM biochemical composition. These differences are the consequence of low restricted contribution of freshwater from Collins Glacier runoff into the coastal-marine environment. Our results evidenced low concentrations of terrestrial suspended POM in marine waters of Collins Bay mainly attributed to low meltwater inputs between the 1st and 7th of February 2018. In terms of macromolecular composition, the predominance of proteins, denote the labile nature of suspended POM in the two environments. Suspended POM in Collins Bay is labile, poorly degraded, representing a protein supplemented food resource, with high energetic value and easily assimilated by heterotrophic marine organism. AAs composition supported less degraded suspended POM derived from marine phytoplankton in surface waters of Collins Bay, whereas, great degradation of suspended POM in the proglacial runoff system of Collins Glacier. Changes in the biochemistry of suspended POM caused by glacial melting and retreat, may affect food features and availability, the productivity of ecosystems, and ultimately, the capacity of Antarctic fjords to act as carbon sinks and climate regulators. Considering low influence of Collins Glacier meltwater in coastal marine waters of Collins Bay, due to the relatively slow retreat of Collins Glacier and low development of its meltwater runoff system, the results of our work are relevant as baseline information for comparison with other Antarctic fjords. Further knowledge about meltwater runoff and suspended POM input dynamics in Antarctic coastal ecosystems, is critical, particularly in areas prone to undergo increased glacier melting in the following decades.
南极洲冰川融化径流的增加加剧了淡水、营养物、沉积物和有机物从陆地向海洋的输入,对沿岸生态系统产生了影响。根据有机生物聚合物和氨基酸(AAs)的分子水平分析,研究了科林斯冰川的冰川融化径流系统(PROGRARS)和科林斯湾海洋表层水的水的基本环境特征和悬浮颗粒有机物(POM)的生物化学组成,以区分两种环境的来源和降解状态。分层聚类分析(Hierarchical Clustering Analysis)显示,PROGRLARS 站和海洋站在水理化特征和悬浮 POM 生物化学组成方面形成了两个不同的群体。这些差异是柯林斯冰川径流淡水进入沿岸-海洋环境受限程度低的结果。我们的研究结果表明,柯林斯湾海水中陆地悬浮 POM 浓度较低,主要归因于 2018 年 2 月 1 日至 7 日期间融水输入量较低。在大分子组成方面,蛋白质占主导地位,这表明两种环境中的悬浮 POM 都具有易变性。柯林斯湾的悬浮POM易变、降解性差,是补充蛋白质的食物资源,具有高能量价值,易被海洋异养生物同化。在柯林斯湾表层水域,来自海洋浮游植物的 AAs 成分支持降解程度较低的悬浮 POM,而在柯林斯冰川的冰川径流系统中,悬浮 POM 降解程度很高。冰川融化和后退引起的悬浮 POM 生物化学变化可能会影响食物特征和供应、生态系统的生产力,并最终影响南极峡湾作为碳汇和气候调节器的能力。考虑到柯林斯冰川融水对柯林斯湾沿岸海域的影响较小,因为柯林斯冰川退缩相对较慢,其融水径流系统开发程度较低,我们的研究结果可作为与其他南极峡湾进行比较的基线信息。进一步了解南极沿岸生态系统的融水径流和悬浮 POM 输入动态至关重要,尤其是在未来几十年冰川融化加剧的地区。
{"title":"Tracking suspended particulate organic matter biochemistry from glacial meltwater runoff to coastal waters of an Antarctic fjord","authors":"Claudia Parodi ,&nbsp;Luis Cerpa ,&nbsp;Zhuoyi Zhu ,&nbsp;Jing Zhang ,&nbsp;Pablo Muniz ,&nbsp;Natalia Venturini","doi":"10.1016/j.marchem.2024.104455","DOIUrl":"10.1016/j.marchem.2024.104455","url":null,"abstract":"<div><div>Increased glacier melting runoff in Antarctica involves intensification of freshwater, nutrients, sediments and organic matter inputs from land to the sea, which is impacting coastal ecosystems. Basic environmental characteristics of water and biochemical composition of suspended particulate organic matter (POM) both in the proglacial melting runoff system (PROGLARS) of Collins Glacier and marine surface waters of Collins Bay was studied based on organic biopolymers and molecular level analysis of amino acids (AAs), to discern among sources and degradation state in the two environments. Hierarchical Clustering Analysis revealed that PROGLARS stations and marine stations form two distinct groups in terms of water physicochemical characteristics and suspended POM biochemical composition. These differences are the consequence of low restricted contribution of freshwater from Collins Glacier runoff into the coastal-marine environment. Our results evidenced low concentrations of terrestrial suspended POM in marine waters of Collins Bay mainly attributed to low meltwater inputs between the 1st and 7th of February 2018. In terms of macromolecular composition, the predominance of proteins, denote the labile nature of suspended POM in the two environments. Suspended POM in Collins Bay is labile, poorly degraded, representing a protein supplemented food resource, with high energetic value and easily assimilated by heterotrophic marine organism. AAs composition supported less degraded suspended POM derived from marine phytoplankton in surface waters of Collins Bay, whereas, great degradation of suspended POM in the proglacial runoff system of Collins Glacier. Changes in the biochemistry of suspended POM caused by glacial melting and retreat, may affect food features and availability, the productivity of ecosystems, and ultimately, the capacity of Antarctic fjords to act as carbon sinks and climate regulators. Considering low influence of Collins Glacier meltwater in coastal marine waters of Collins Bay, due to the relatively slow retreat of Collins Glacier and low development of its meltwater runoff system, the results of our work are relevant as baseline information for comparison with other Antarctic fjords. Further knowledge about meltwater runoff and suspended POM input dynamics in Antarctic coastal ecosystems, is critical, particularly in areas prone to undergo increased glacier melting in the following decades.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104455"},"PeriodicalIF":3.0,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial distribution of dissolved free amino acids in three Iberian Atlantic estuaries 伊比利亚大西洋三个河口溶解游离氨基酸的空间分布
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1016/j.marchem.2024.104456
Valentina Amaral , Jesús Forja , Barbara Steger-Mähnert , Gerhard J. Herndl , Cristina Romera-Castillo

Rivers and estuaries are the main link between land and ocean, transferring significant amounts of dissolved organic carbon. These ecosystems receive large amount of dissolved organic matter (DOM) from diverse sources, both allochthonous and autochthonous. Within this pool, dissolved free amino acids (DFAA) represent the most labile fraction, offering valuable insights into DOM composition and diagenetic processes. Our study focused on three Iberian Atlantic estuaries—Guadalquivir, Guadiana, and Tinto-Odiel— that differ in hydrology, land use and DOM sources. We studied the longitudinal distribution of DFAA and their response to tidal cycles across these estuaries. Despite similar DFAA concentrations between estuaries (176.6 nM to 1770 nM) were found, variations in specific amino acids like glutamic acid, taurine, and aspartic acid pointed to a substantial influence of terrestrial inputs in Guadalquivir and Guadiana estuaries and an anthropogenic influence in Tinto-Odiel. Predominant amino acids—serine, glycine, ornithine, and asparagine —comprised more than 50 mol% of the estuarine DFAA pool. The dominance of serine, glycine, and ornithine indicated substantial DOM degradation, possibly associated with the loss of labile DOM during estuarine transport. Concurrently, asparagine prevalence was linked to allochthonous DOM input particularly associated with terrestrial runoff, lateral input, and anthropogenic activities at estuarine margins. Our results underscore the impact of tidal cycles on DFAA distribution and emphasize the potential of DFAA in unraveling estuarine DOM dynamics and their role as indicators of reactivity and composition in estuarine biogeochemistry.

河流和河口是连接陆地和海洋的主要通道,可传输大量溶解有机碳。这些生态系统从不同来源(包括同源和自源)接收大量溶解有机物(DOM)。其中,溶解游离氨基酸(DFAA)是最易变的部分,可为了解 DOM 的组成和成岩过程提供有价值的信息。我们的研究重点是伊比利亚大西洋的三个河口--瓜达尔基维尔河、瓜迪亚纳河和廷托-奥迪尔河,这三个河口在水文、土地利用和 DOM 来源方面各不相同。我们研究了这些河口的 DFAA 纵向分布及其对潮汐周期的响应。尽管发现各河口之间的 DFAA 浓度相似(176.6 nM 至 1770 nM),但谷氨酸、牛磺酸和天冬氨酸等特定氨基酸的变化表明,陆地输入对瓜达尔基维尔河和瓜迪亚纳河口的影响很大,而对 Tinto-Odiel 的影响则是人为的。占主导地位的氨基酸--丝氨酸、甘氨酸、鸟氨酸和天冬酰胺--占河口 DFAA 库的 50 摩尔%以上。丝氨酸、甘氨酸和鸟氨酸占主导地位表明存在大量的 DOM 降解,这可能与河口迁移过程中可溶性 DOM 的损失有关。同时,天门冬酰胺的流行与外源 DOM 输入有关,特别是与陆地径流、横向输入和河口边缘的人为活动有关。我们的研究结果强调了潮汐周期对 DFAA 分布的影响,并强调了 DFAA 在揭示河口 DOM 动态方面的潜力,以及它们作为河口生物地球化学中反应性和组成指标的作用。
{"title":"Spatial distribution of dissolved free amino acids in three Iberian Atlantic estuaries","authors":"Valentina Amaral ,&nbsp;Jesús Forja ,&nbsp;Barbara Steger-Mähnert ,&nbsp;Gerhard J. Herndl ,&nbsp;Cristina Romera-Castillo","doi":"10.1016/j.marchem.2024.104456","DOIUrl":"10.1016/j.marchem.2024.104456","url":null,"abstract":"<div><p>Rivers and estuaries are the main link between land and ocean, transferring significant amounts of dissolved organic carbon. These ecosystems receive large amount of dissolved organic matter (DOM) from diverse sources, both allochthonous and autochthonous. Within this pool, dissolved free amino acids (DFAA) represent the most labile fraction, offering valuable insights into DOM composition and diagenetic processes. Our study focused on three Iberian Atlantic estuaries—Guadalquivir, Guadiana, and Tinto-Odiel— that differ in hydrology, land use and DOM sources. We studied the longitudinal distribution of DFAA and their response to tidal cycles across these estuaries. Despite similar DFAA concentrations between estuaries (176.6 nM to 1770 nM) were found, variations in specific amino acids like glutamic acid, taurine, and aspartic acid pointed to a substantial influence of terrestrial inputs in Guadalquivir and Guadiana estuaries and an anthropogenic influence in Tinto-Odiel. Predominant amino acids—serine, glycine, ornithine, and asparagine —comprised more than 50 mol% of the estuarine DFAA pool. The dominance of serine, glycine, and ornithine indicated substantial DOM degradation, possibly associated with the loss of labile DOM during estuarine transport. Concurrently, asparagine prevalence was linked to allochthonous DOM input particularly associated with terrestrial runoff, lateral input, and anthropogenic activities at estuarine margins. Our results underscore the impact of tidal cycles on DFAA distribution and emphasize the potential of DFAA in unraveling estuarine DOM dynamics and their role as indicators of reactivity and composition in estuarine biogeochemistry.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104456"},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of optical and size properties of dissolved organic matter in the lower Mississippi River and Pearl River 密西西比河下游和珠江溶解有机物的光学和粒度特性比较研究
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-14 DOI: 10.1016/j.marchem.2024.104453
Zhengzhen Zhou , Hui Lin , Eurico J. D'Sa , Laodong Guo

Monthly water samples were collected from the lower Mississippi and Pearl Rivers between January 2009 and August 2011 to investigate the heterogeneity in the dynamic variations of dissolved organic carbon (DOC), colloidal organic carbon, chromophoric and fluorescence dissolved organic matter (CDOM and FDOM), PARAFAC-derived fluorescent components, and other optical properties including spectral slope, specific UV absorbance (SUVA), and fluorescence indices between the two contrasting river systems. The lower Mississippi River exhibits relatively lower concentrations of DOC (306 ± 41 μM C) and CDOM (27.9 ± 5.7 m−1 at 254 nm), featuring lower aromaticity (indicated by SUVA254) and apparent molecular weight (or higher spectral slope) with weak seasonal variability. The Pearl River, in contrast, has elevated levels of DOC (537 ± 212 μM C) and CDOM (66.4 ± 31.4 m−1), characterized by higher aromaticity, higher molecular weight, and significant seasonality, primarily originating from soil-derived allochthonous sources. The abundance of the >1 kDa colloidal DOC was, on average, 58 ± 3 % of the bulk DOC in the lower Mississippi River and 68 ± 6 % in the lower Pearl River. The >1 kDa high-molecular weight DOM (HMW-DOM) consistently had lower spectral slope and biological index (BIX) values, but higher humification index (HIX) values compared to both bulk DOM and low-molecular-weight DOM (LMW-DOM) counterparts. These trends could be representative of other similar large and small rivers. Four PARAFAC-derived fluorescent components (three humic-like and one protein-like) were identified for both rivers. A positive correlation between discharge and terrestrial humic-like fluorescent components indicated their dominant allochthonous sources, while the protein-like component decreased with increasing discharge, consistent with its autochthonic source and a dilution effect during high flow seasons. The occurrence of large flood events during the sampling period contributed to large DOC pulses, with DOM of higher aromaticity and HMW-DOM. This has important implications for coastal ocean ecosystems, which are increasingly impacted by river flooding events under changing climate conditions. Our results also provide an improved understanding of DOM dynamics in two representative rivers and establish a baseline dataset for future studies to assess changes in sources and composition of DOM and their impacts on the coastal ocean in response to climate, hydrological, and anthropogenic influences.

在 2009 年 1 月至 2011 年 8 月期间,每月从密西西比河下游和珠江采集水样,研究这两条对比强烈的河流水系之间溶解有机碳 (DOC)、胶体有机碳、发色和荧光溶解有机物(CDOM 和 FDOM)、PARAFAC 衍生荧光成分以及光谱斜率、特定紫外线吸收率 (SUVA) 和荧光指数等其他光学特性的动态变化的异质性。密西西比河下游的 DOC(306 ± 41 μM C)和 CDOM(254 纳米波长下为 27.9 ± 5.7 m-1)浓度相对较低,芳香度(用 SUVA254 表示)和表观分子量(或光谱斜率较高)较低,季节变化较小。相比之下,珠江的 DOC(537 ± 212 μM C)和 CDOM(66.4 ± 31.4 m-1)含量较高,芳香度较高,分子量较大,季节性明显,主要来源于土壤异源物。在密西西比河下游,1 kDa 胶体 DOC 的丰度平均为总量 DOC 的 58 ± 3 %,在珠江下游为 68 ± 6 %。与块状 DOM 和低分子量 DOM 相比,1 kDa 高分子量 DOM(HMW-DOM)的光谱斜率和生物指数(BIX)值一直较低,但腐殖化指数(HIX)值较高。这些趋势可能在其他类似的大小河流中具有代表性。在这两条河流中发现了四种 PARAFAC 衍生的荧光成分(三种类腐殖质和一种类蛋白质)。排水量与陆生腐殖质类荧光成分之间呈正相关,表明其主要来源于同源物,而蛋白质类荧光成分则随着排水量的增加而减少,这与其自生来源和大流量季节的稀释效应相一致。采样期间发生的大洪水事件导致了大量 DOC 的产生,其中包括芳香度较高的 DOM 和高分子量 DOM。这对沿岸海洋生态系统具有重要意义,因为在不断变化的气候条件下,河流洪水事件对沿岸海洋生态系统的影响越来越大。我们的研究结果还加深了对两条代表性河流中 DOM 动态变化的了解,并为今后评估 DOM 来源和组成的变化及其对沿岸海洋在气候、水文和人为影响下的影响建立了基线数据集。
{"title":"A comparative study of optical and size properties of dissolved organic matter in the lower Mississippi River and Pearl River","authors":"Zhengzhen Zhou ,&nbsp;Hui Lin ,&nbsp;Eurico J. D'Sa ,&nbsp;Laodong Guo","doi":"10.1016/j.marchem.2024.104453","DOIUrl":"10.1016/j.marchem.2024.104453","url":null,"abstract":"<div><p>Monthly water samples were collected from the lower Mississippi and Pearl Rivers between January 2009 and August 2011 to investigate the heterogeneity in the dynamic variations of dissolved organic carbon (DOC), colloidal organic carbon, chromophoric and fluorescence dissolved organic matter (CDOM and FDOM), PARAFAC-derived fluorescent components, and other optical properties including spectral slope, specific UV absorbance (SUVA), and fluorescence indices between the two contrasting river systems. The lower Mississippi River exhibits relatively lower concentrations of DOC (306 ± 41 μM C) and CDOM (27.9 ± 5.7 m<sup>−1</sup> at 254 nm), featuring lower aromaticity (indicated by SUVA<sub>254</sub>) and apparent molecular weight (or higher spectral slope) with weak seasonal variability. The Pearl River, in contrast, has elevated levels of DOC (537 ± 212 μM C) and CDOM (66.4 ± 31.4 m<sup>−1</sup>), characterized by higher aromaticity, higher molecular weight, and significant seasonality, primarily originating from soil-derived allochthonous sources. The abundance of the &gt;1 kDa colloidal DOC was, on average, 58 ± 3 % of the bulk DOC in the lower Mississippi River and 68 ± 6 % in the lower Pearl River. The &gt;1 kDa high-molecular weight DOM (HMW-DOM) consistently had lower spectral slope and biological index (BIX) values, but higher humification index (HIX) values compared to both bulk DOM and low-molecular-weight DOM (LMW-DOM) counterparts. These trends could be representative of other similar large and small rivers. Four PARAFAC-derived fluorescent components (three humic-like and one protein-like) were identified for both rivers. A positive correlation between discharge and terrestrial humic-like fluorescent components indicated their dominant allochthonous sources, while the protein-like component decreased with increasing discharge, consistent with its autochthonic source and a dilution effect during high flow seasons. The occurrence of large flood events during the sampling period contributed to large DOC pulses, with DOM of higher aromaticity and HMW-DOM. This has important implications for coastal ocean ecosystems, which are increasingly impacted by river flooding events under changing climate conditions. Our results also provide an improved understanding of DOM dynamics in two representative rivers and establish a baseline dataset for future studies to assess changes in sources and composition of DOM and their impacts on the coastal ocean in response to climate, hydrological, and anthropogenic influences.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104453"},"PeriodicalIF":3.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional determination of dissolved manganese in sediment porewaters 沉积物孔隙水中溶解锰的二维测定
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-14 DOI: 10.1016/j.marchem.2024.104454
Aurélia Mouret , Constance Choquel , Aubin Thibault de Chanvalon , Florian Cesbron , Thierry Jauffrais , Didier Jézéquel , Patrick Launeau , Anthony Barbe , Romain Levrard , Alan Nicol , Céline Charbonnier , Edouard Metzger

We present a new method for imaging dissolved manganese at millimeter scale by coupling DET (diffusive equilibrium in thin film) and colorimetric techniques. The method is an adaptation of the porphyrin approach for the measurement of dissolved Mn by substitution of Mn(II) and Mn(III) to Cd in the Cd(II)–POR complex. Optimization of the Cd-POR concentrations was required for transposition to 2D-DET. A commercial flatbed scanner and a hyperspectral camera were used for imaging. Using the hyperspectral camera, detection limit is about 5 μM and measuring range is up to 520 μM. The method was applied on the field in a tidal mudflat of the French Atlantic coast and in sediments inhabited by polychaetes. These first images allowed to precisely describe two-dimensional millimeter features such as burrows and highlighted the role of bioirrigation in benthic Mn fluxes. This new technique offers the possibility to investigate the reactivity of microenvironments towards dissolved Mn in two dimensions in a wide range of laboratory and in situ studies using a non-destructive tool.

我们介绍了一种通过将 DET(薄膜中的扩散平衡)和比色技术相结合,在毫米尺度上对溶解的锰进行成像的新方法。该方法是通过在 Cd(II)-POR 复合物中用锰(II)和锰(III)取代镉来测量溶解锰的卟啉方法的改良。在转用二维 DET 时需要优化 Cd-POR 的浓度。使用商用平板扫描仪和高光谱照相机进行成像。使用高光谱照相机,检测限约为 5 μM,测量范围可达 520 μM。该方法已在法国大西洋沿岸的潮汐泥滩和多毛目动物栖息的沉积物中实地应用。这些首批图像能够精确描述洞穴等二维毫米特征,并突出了生物灌溉在底栖锰通量中的作用。这项新技术提供了一种可能性,可以利用一种非破坏性工具,在广泛的实验室和现场研究中调查微环境对二维溶解锰的反应性。
{"title":"Two-dimensional determination of dissolved manganese in sediment porewaters","authors":"Aurélia Mouret ,&nbsp;Constance Choquel ,&nbsp;Aubin Thibault de Chanvalon ,&nbsp;Florian Cesbron ,&nbsp;Thierry Jauffrais ,&nbsp;Didier Jézéquel ,&nbsp;Patrick Launeau ,&nbsp;Anthony Barbe ,&nbsp;Romain Levrard ,&nbsp;Alan Nicol ,&nbsp;Céline Charbonnier ,&nbsp;Edouard Metzger","doi":"10.1016/j.marchem.2024.104454","DOIUrl":"10.1016/j.marchem.2024.104454","url":null,"abstract":"<div><p>We present a new method for imaging dissolved manganese at millimeter scale by coupling DET (diffusive equilibrium in thin film) and colorimetric techniques. The method is an adaptation of the porphyrin approach for the measurement of dissolved Mn by substitution of Mn(II) and Mn(III) to Cd in the Cd(II)–POR complex. Optimization of the Cd-POR concentrations was required for transposition to 2D-DET. A commercial flatbed scanner and a hyperspectral camera were used for imaging. Using the hyperspectral camera, detection limit is about 5 μM and measuring range is up to 520 μM. The method was applied on the field in a tidal mudflat of the French Atlantic coast and in sediments inhabited by polychaetes. These first images allowed to precisely describe two-dimensional millimeter features such as burrows and highlighted the role of bioirrigation in benthic Mn fluxes. This new technique offers the possibility to investigate the reactivity of microenvironments towards dissolved Mn in two dimensions in a wide range of laboratory and <em>in situ</em> studies using a non-destructive tool.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104454"},"PeriodicalIF":3.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304420324001051/pdfft?md5=d3dee2023242a4aa1fbe4587bffaa871&pid=1-s2.0-S0304420324001051-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vanadium redox speciation in the acid-extractable phase of Krka River estuary surface sediment 克尔卡河河口表层沉积物酸萃取相中钒的氧化还原分型
IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1016/j.marchem.2024.104452
Lucija Knežević , Nuša Cukrov , Elvira Bura Nakić

This study investigated the redox speciation and mobility of V in the acid-extractable fraction of surface sediments from the Krka River estuary using an optimized IC-UV/Vis analytical method. The separation of V(IV) and V(V) redox species was done using anion-exchange based chromatographic method, while pseudo-total V concentrations were measured using HR ICP-MS analytical instrumentation. Extracted V concentrations from the sediment fraction (pH = 5, HCl) and determined pseudo-total V concentrations were used to calculate the Enrichment Factor (EF) and Risk Assessment Code (RAC), indicating potential anthropogenic influence and environmental risk. A simple PHREEQC model was developed to asses V speciation in the oxic bottom seawater layer simulating possible remobilization of the leached sediment phase. The results of the study show that minor fraction of V is present in the acid-extractable phase across the surface sediment of Krka River estuary. Higher V mobility is mostly observed at locations rich with clay minerals, terrigenous input, and carbonates. Anthropogenic influence was linked to higher enrichment but lower mobility, suggesting binding to less mobile sediment phases (reducible, organic and residual fractions). The predominance of reduced V(IV) species in the acid-extractable sediment fraction indicates a potentially low V toxicity risk in the sediments of Krka River estuary, even in cases of high potential remobilization of V. However, the model predicted complete oxidation of V(IV) to V(V) upon remobilization into the oxic bottom water layer. This highlights the complexity of V behavior in natural estuarine systems, where the toxicity risks of possible V remobilization still remain unclear. Results of this study demonstrate the need for the strengthening efforts in speciation of V in the mobile sediment phase to obtain a cohesive outlook on its potential toxicity and biogeochemical cycling.

本研究采用优化的 IC-UV/Vis 分析方法,研究了克尔卡河口地表沉积物酸萃取部分中 V 的氧化还原分型和迁移率。使用基于阴离子交换的色谱法分离了 V(IV) 和 V(V) 氧化还原物种,同时使用 HR ICP-MS 分析仪器测量了假总 V 浓度。从沉积物部分(pH = 5,盐酸)提取的 V 浓度和确定的假总 V 浓度用于计算富集因子(EF)和风险评估代码(RAC),以显示潜在的人为影响和环境风险。开发了一个简单的 PHREEQC 模型,以模拟沥滤沉积物相可能的再移动,评估氧底层海水中的钒分 子。研究结果表明,在克尔卡河口的表层沉积物中,酸萃取相中存在少量的钒。在富含粘土矿物、陆相沉积物和碳酸盐的地方,主要观察到较高的钒迁移率。受人类活动影响,富集程度较高,但流动性较低,这表明与流动性较低的沉积物相(可还原、有机和残留组分)结合。在酸性可萃取沉积物组分中,还原型 V(IV)物种占主导地位,这表明克尔卡河口沉积物中 V 的潜在毒性风险较低,即使在 V 的潜在再移动性较高的情况下也是如此。这凸显了 V 在自然河口系统中行为的复杂性,V 在自然河口系统中可能的再移动所带来的毒性风险仍不明确。这项研究的结果表明,有必要加强对流动沉积物相中 V 的标本分析,以便对其潜在毒性和生物地球化学循环有一个全面的认识。
{"title":"Vanadium redox speciation in the acid-extractable phase of Krka River estuary surface sediment","authors":"Lucija Knežević ,&nbsp;Nuša Cukrov ,&nbsp;Elvira Bura Nakić","doi":"10.1016/j.marchem.2024.104452","DOIUrl":"10.1016/j.marchem.2024.104452","url":null,"abstract":"<div><p>This study investigated the redox speciation and mobility of V in the acid-extractable fraction of surface sediments from the Krka River estuary using an optimized IC-UV/Vis analytical method. The separation of V(IV) and V(V) redox species was done using anion-exchange based chromatographic method, while pseudo-total V concentrations were measured using HR ICP-MS analytical instrumentation. Extracted V concentrations from the sediment fraction (pH = 5, HCl) and determined pseudo-total V concentrations were used to calculate the Enrichment Factor (EF) and Risk Assessment Code (RAC), indicating potential anthropogenic influence and environmental risk. A simple PHREEQC model was developed to asses V speciation in the oxic bottom seawater layer simulating possible remobilization of the leached sediment phase. The results of the study show that minor fraction of V is present in the acid-extractable phase across the surface sediment of Krka River estuary. Higher V mobility is mostly observed at locations rich with clay minerals, terrigenous input, and carbonates. Anthropogenic influence was linked to higher enrichment but lower mobility, suggesting binding to less mobile sediment phases (reducible, organic and residual fractions). The predominance of reduced V(IV) species in the acid-extractable sediment fraction indicates a potentially low V toxicity risk in the sediments of Krka River estuary, even in cases of high potential remobilization of V. However, the model predicted complete oxidation of V(IV) to V(V) upon remobilization into the oxic bottom water layer. This highlights the complexity of V behavior in natural estuarine systems, where the toxicity risks of possible V remobilization still remain unclear. Results of this study demonstrate the need for the strengthening efforts in speciation of V in the mobile sediment phase to obtain a cohesive outlook on its potential toxicity and biogeochemical cycling.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104452"},"PeriodicalIF":3.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Marine Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1