Du-Min Jo, Fazlurrahman Khan, Seul-Ki Park, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Ji-Yul Kim, Gun-Woo Oh, Grace Choi, Dae-Sung Lee, Young-Mog Kim
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.
{"title":"From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides-Mechanisms and Applications.","authors":"Du-Min Jo, Fazlurrahman Khan, Seul-Ki Park, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Ji-Yul Kim, Gun-Woo Oh, Grace Choi, Dae-Sung Lee, Young-Mog Kim","doi":"10.3390/md22100449","DOIUrl":"https://doi.org/10.3390/md22100449","url":null,"abstract":"<p><p>To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC<sub>50</sub> values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haloarchaea are a group of moderate and extreme halophilic microorganisms, belonging to the Archaea domain, that constitute relevant microbial communities in salty environments like coastal and inland salted ponds, marshes, salty lagoons, etc. They can survive in stress conditions such as high salinity and, therefore, high ionic strength, high doses of ultraviolet radiation (UV), high temperature, and extreme pH values. Consequently, most of the species can be considered polyextremophiles owing to their ability to respond to the multiple extreme conditions characterizing their natural habitats. They cope with those stresses thanks to several molecular and metabolic adaptations. Thus, some of the molecules produced by haloarchaea show significantly different biological activities and physicochemical properties compared to their bacterial counterparts. Recent studies have revealed promising applications in biotechnology and medicine for these biomolecules. Among haloarchaeal biomolecules, rare natural pigments (C50 carotenoids) and small peptides called halocins and microhalocins have attracted attention worldwide due to their effects on animal and human commercial tumoral cells, apart from the role as antibiotics described for halocins or the immunomodulatory activity reported from C50 carotenoids like bacterioruberin. This review summarizes recent knowledge on these two types of biomolecules in connection with cancer to shed new light on the design of drugs and new therapies based on natural compounds.
{"title":"Halocins and C<sub>50</sub> Carotenoids from Haloarchaea: Potential Natural Tools against Cancer.","authors":"Rosa María Martínez-Espinosa","doi":"10.3390/md22100448","DOIUrl":"https://doi.org/10.3390/md22100448","url":null,"abstract":"<p><p>Haloarchaea are a group of moderate and extreme halophilic microorganisms, belonging to the Archaea domain, that constitute relevant microbial communities in salty environments like coastal and inland salted ponds, marshes, salty lagoons, etc. They can survive in stress conditions such as high salinity and, therefore, high ionic strength, high doses of ultraviolet radiation (UV), high temperature, and extreme pH values. Consequently, most of the species can be considered polyextremophiles owing to their ability to respond to the multiple extreme conditions characterizing their natural habitats. They cope with those stresses thanks to several molecular and metabolic adaptations. Thus, some of the molecules produced by haloarchaea show significantly different biological activities and physicochemical properties compared to their bacterial counterparts. Recent studies have revealed promising applications in biotechnology and medicine for these biomolecules. Among haloarchaeal biomolecules, rare natural pigments (C<sub>50</sub> carotenoids) and small peptides called halocins and microhalocins have attracted attention worldwide due to their effects on animal and human commercial tumoral cells, apart from the role as antibiotics described for halocins or the immunomodulatory activity reported from C<sub>50</sub> carotenoids like bacterioruberin. This review summarizes recent knowledge on these two types of biomolecules in connection with cancer to shed new light on the design of drugs and new therapies based on natural compounds.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giang Nam Pham, Béatrice Josselin, Arnaud Cousseau, Blandine Baratte, Marie Dayras, Christophe Le Meur, Stella Debaets, Amélie Weill, Thomas Robert, Gaëtan Burgaud, Ian Probert, Fatouma Mohamed Abdoul-Latif, Laurent Boyer, Stéphane Bach, Mohamed Mehiri
Two new fusarochromanone derivatives, deacetylfusarochromene (1) and deacetamidofusarochrom-2',3-diene (2), along with the previously reported metabolites fusarochromanone TDP-2 (3), fusarochromene (4), 2,2-dimethyl-5-amino-6-(2'E-ene-4'-hydroxylbutyryl)-4-chromone (5), fusarochromanone (6), (-)-chrysogine (7), and equisetin (8), were isolated from the marine fungus Fusarium equiseti UBOCC-A-117302. The structures of the compounds were determined by extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses, as well as specific rotation. Among them, 2 and 5 showed inhibition of three protein kinases with IC50 values ranging from 1.42 to 25.48 μM. Cytotoxicity and antimicrobial activity of all isolated compounds were also evaluated. Six fusarochromanone derivatives (1-6) exhibited diverse activities against three cell lines, RPE-1, HCT-116, and U2OS (IC50 values ranging from 0.058 to 84.380 μM). Equisetin (8) showed bactericidal activities against Bacillus cereus and Listeria monocytogenes (MBC values of 7.8 and 31.25 µM, respectively), and bacteriostatic activity against Enterococcus faecalis (MIC value of 31.25 µM). Compounds 2 and 4 showed bacteriostatic activities against Listeria monocytogenes (MIC of 125 µM).
{"title":"New Fusarochromanone Derivatives from the Marine Fungus <i>Fusarium equiseti</i> UBOCC-A-117302.","authors":"Giang Nam Pham, Béatrice Josselin, Arnaud Cousseau, Blandine Baratte, Marie Dayras, Christophe Le Meur, Stella Debaets, Amélie Weill, Thomas Robert, Gaëtan Burgaud, Ian Probert, Fatouma Mohamed Abdoul-Latif, Laurent Boyer, Stéphane Bach, Mohamed Mehiri","doi":"10.3390/md22100444","DOIUrl":"https://doi.org/10.3390/md22100444","url":null,"abstract":"<p><p>Two new fusarochromanone derivatives, deacetylfusarochromene (<b>1</b>) and deacetamidofusarochrom-2',3-diene (<b>2</b>), along with the previously reported metabolites fusarochromanone TDP-2 (<b>3</b>), fusarochromene (<b>4</b>), 2,2-dimethyl-5-amino-6-(2'<i>E</i>-ene-4'-hydroxylbutyryl)-4-chromone (<b>5</b>), fusarochromanone (<b>6</b>), (-)-chrysogine (<b>7</b>), and equisetin (<b>8</b>), were isolated from the marine fungus <i>Fusarium equiseti</i> UBOCC-A-117302. The structures of the compounds were determined by extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses, as well as specific rotation. Among them, <b>2</b> and <b>5</b> showed inhibition of three protein kinases with IC<sub>50</sub> values ranging from 1.42 to 25.48 μM. Cytotoxicity and antimicrobial activity of all isolated compounds were also evaluated. Six fusarochromanone derivatives (<b>1</b>-<b>6</b>) exhibited diverse activities against three cell lines, RPE-1, HCT-116, and U2OS (IC<sub>50</sub> values ranging from 0.058 to 84.380 μM). Equisetin (<b>8</b>) showed bactericidal activities against <i>Bacillus cereus</i> and <i>Listeria monocytogenes</i> (MBC values of 7.8 and 31.25 µM, respectively), and bacteriostatic activity against <i>Enterococcus faecalis</i> (MIC value of 31.25 µM). Compounds <b>2</b> and <b>4</b> showed bacteriostatic activities against <i>Listeria monocytogenes</i> (MIC of 125 µM).</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Pohling, Vegneshwaran Vasudevan Ramakrishnan, Abul Hossain, Sheila Trenholm, Deepika Dave
Shrimp shells are a key source of chitin, commonly extracted through chemical methods, which may cause minor molecular damage. Nowadays, there is great interest in achieving close to zero protein content in crude chitin in order to use it for high-end markets. Therefore, this study optimized the enzymatic deproteination using two commercial proteases (SEB Pro FL100 and Sea-B Zyme L200) for effective and fast removal of residual protein from Northern shrimp (Pandalus borealis) shell chitin for the first time. The protein content was determined using both the Kjeldahl method and amino acid analysis using gas chromatography-mass spectrometry (GC-MS). The performance of papain (Sea B Zyme L200) was superior to fungal protease (SEB Pro FL100) for this application, and it achieved residual protein content of 2.01%, while the calculated optimum for the latter enzyme was 6.18%. A model was developed using 24 factorial design, and it was predicted that the lowest residual protein content using fungal protease and papain could be achieved at the following conditions: a pH of 4.2 and 7, and an enzyme concentration of 4 and 1.5%, respectively. Thus, the low-protein content obtained using enzymatic deproteination could be an alternative approach to the traditional methods, indicating their potential to produce premium-quality chitin.
虾壳是甲壳素的主要来源,通常通过化学方法提取,这可能会造成轻微的分子损伤。如今,人们对实现粗甲壳素中蛋白质含量接近于零以用于高端市场非常感兴趣。因此,本研究首次使用两种商业蛋白酶(SEB Pro FL100 和 Sea-B Zyme L200)对酶解法进行了优化,以有效、快速地去除北方虾(Pandalus borealis)甲壳素中的残余蛋白质。蛋白质含量的测定采用凯氏定氮法和气相色谱-质谱法(GC-MS)进行氨基酸分析。在这一应用中,木瓜蛋白酶(Sea B Zyme L200)的性能优于真菌蛋白酶(SEB Pro FL100),木瓜蛋白酶的残余蛋白质含量为 2.01%,而真菌蛋白酶的最佳计算值为 6.18%。利用 24 个因子设计建立了一个模型,预测在以下条件下使用真菌蛋白酶和木瓜蛋白酶可达到最低的残余蛋白质含量:pH 值分别为 4.2 和 7,酶浓度分别为 4 和 1.5%。因此,利用酶法脱蛋白获得的低蛋白含量可以作为传统方法的替代方法,这表明酶法脱蛋白具有生产优质甲壳素的潜力。
{"title":"Optimization of Enzymatic Deproteination of Northern Shrimp (<i>Pandalus borealis</i>) Shell Chitin Using Commercial Proteases.","authors":"Julia Pohling, Vegneshwaran Vasudevan Ramakrishnan, Abul Hossain, Sheila Trenholm, Deepika Dave","doi":"10.3390/md22100445","DOIUrl":"https://doi.org/10.3390/md22100445","url":null,"abstract":"<p><p>Shrimp shells are a key source of chitin, commonly extracted through chemical methods, which may cause minor molecular damage. Nowadays, there is great interest in achieving close to zero protein content in crude chitin in order to use it for high-end markets. Therefore, this study optimized the enzymatic deproteination using two commercial proteases (SEB Pro FL100 and Sea-B Zyme L200) for effective and fast removal of residual protein from Northern shrimp (<i>Pandalus borealis</i>) shell chitin for the first time. The protein content was determined using both the Kjeldahl method and amino acid analysis using gas chromatography-mass spectrometry (GC-MS). The performance of papain (Sea B Zyme L200) was superior to fungal protease (SEB Pro FL100) for this application, and it achieved residual protein content of 2.01%, while the calculated optimum for the latter enzyme was 6.18%. A model was developed using 2<sup>4</sup> factorial design, and it was predicted that the lowest residual protein content using fungal protease and papain could be achieved at the following conditions: a pH of 4.2 and 7, and an enzyme concentration of 4 and 1.5%, respectively. Thus, the low-protein content obtained using enzymatic deproteination could be an alternative approach to the traditional methods, indicating their potential to produce premium-quality chitin.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sponges are a vital source of pharmaceutically active secondary metabolites, of which the main structural types are alkaloids and terpenoids. Many of these compounds exhibit biological activities. Focusing specifically on diterpenoids, this article reviews the structures and biological activities of 228 diterpenes isolated from more than 33 genera of sponges from 2009 to 2022. The Spongia sponges produce the most diterpenoid molecules among all genera, accounting for 27%. Of the 228 molecules, 110 exhibit cytotoxic, antibacterial, antifungal, antiparasitic, anti-inflammatory, and antifouling activities, among others. The most prevalent activity is cytotoxicity, present in 54 molecules, which represent 24% of the diterpenes reported. These structurally and biologically diverse diterpenoids highlight the vast, yet largely untapped, potential of marine sponges in the discovery of new bioactive molecules for medicinal use.
{"title":"A Review of Sponge-Derived Diterpenes: 2009-2022.","authors":"Jinmei Xia, Xiangwei Chen, Guangyu Li, Peng Qiu, Weiyi Wang, Zongze Shao","doi":"10.3390/md22100447","DOIUrl":"https://doi.org/10.3390/md22100447","url":null,"abstract":"<p><p>Sponges are a vital source of pharmaceutically active secondary metabolites, of which the main structural types are alkaloids and terpenoids. Many of these compounds exhibit biological activities. Focusing specifically on diterpenoids, this article reviews the structures and biological activities of 228 diterpenes isolated from more than 33 genera of sponges from 2009 to 2022. The <i>Spongia</i> sponges produce the most diterpenoid molecules among all genera, accounting for 27%. Of the 228 molecules, 110 exhibit cytotoxic, antibacterial, antifungal, antiparasitic, anti-inflammatory, and antifouling activities, among others. The most prevalent activity is cytotoxicity, present in 54 molecules, which represent 24% of the diterpenes reported. These structurally and biologically diverse diterpenoids highlight the vast, yet largely untapped, potential of marine sponges in the discovery of new bioactive molecules for medicinal use.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zayana Ali, Mohammad Ahmed Al-Ghouti, Haissam Abou-Saleh, Md Mizanur Rahman
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
{"title":"Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging.","authors":"Zayana Ali, Mohammad Ahmed Al-Ghouti, Haissam Abou-Saleh, Md Mizanur Rahman","doi":"10.3390/md22100446","DOIUrl":"https://doi.org/10.3390/md22100446","url":null,"abstract":"<p><p>Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electrospinning of pure chitosan nanofibers is highly sensitive to environmental humidity, which limits their production consistency and applicability. This study investigates the addition of sodium chloride (NaCl) to chitosan solutions to enhance spinnability and mitigate the effigurefects of low humidity. NaCl was incorporated into the electrospun chitosan solution, leading to increased conductivity and decreased viscosity. These modifications improved the electrospinning process. Comparative analyses between chitosan membranes (CM) and sodium-chloride-added chitosan membranes (SCM) revealed no significant differences in chemical structure, mechanical strength, or in vitro cell proliferation. This indicates that the addition of 1% (w/v) NaCl does not adversely affect the fundamental properties of the chitosan membranes. The findings demonstrate that NaCl addition is a viable strategy for producing electrospun chitosan nanofibers in low-humidity environments, maintaining their physicochemical properties while enhancing spinnability.
{"title":"Enhancing Electrospinnability of Chitosan Membranes in Low-Humidity Environments by Sodium Chloride Addition.","authors":"Hengjie Su, Xiaoqi Chen, Linna Mao, Ting Li","doi":"10.3390/md22100443","DOIUrl":"https://doi.org/10.3390/md22100443","url":null,"abstract":"<p><p>The electrospinning of pure chitosan nanofibers is highly sensitive to environmental humidity, which limits their production consistency and applicability. This study investigates the addition of sodium chloride (NaCl) to chitosan solutions to enhance spinnability and mitigate the effigurefects of low humidity. NaCl was incorporated into the electrospun chitosan solution, leading to increased conductivity and decreased viscosity. These modifications improved the electrospinning process. Comparative analyses between chitosan membranes (CM) and sodium-chloride-added chitosan membranes (SCM) revealed no significant differences in chemical structure, mechanical strength, or in vitro cell proliferation. This indicates that the addition of 1% (<i>w</i>/<i>v</i>) NaCl does not adversely affect the fundamental properties of the chitosan membranes. The findings demonstrate that NaCl addition is a viable strategy for producing electrospun chitosan nanofibers in low-humidity environments, maintaining their physicochemical properties while enhancing spinnability.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cili Wang, Jiarui Zhang, Kai Li, Junjie Yang, Lei Li, Sen Wang, Hu Hou, Pinglin Li
The chemical investigation of the South China Sea soft coral Sinularia densa has resulted in the isolation of seven new terpenoids, including two new meroterpenoids, namely sinudenoids F-G (1-2), and five new cembranes, namely sinudenoids H-L (3-7). Their structures and absolute configurations were elucidated based on extensive analyses of spectroscopic data, single-crystal X-ray diffraction, comparison with the literature data, and quantum chemical calculations. Among them, sinudenoid F (1) and sinudenoid G (2) are rare meroterpenoids featuring a methyl benzoate core. Sinudenoid H (3) possesses a rare carbon skeleton of 8, 19-bisnorfuranocembrenolide, which is the second reported compound with this skeleton. In a bioassay, sinudenoid H (3) exhibited better anti-inflammatory activity compared to the positive control indomethacin at 20 µM in CuSO4-treated transgenic fluorescent zebrafish. Moreover, sinudenoid J (5) and sinudenoid L (7) exhibited moderate anti-thrombotic activity in arachidonic acid (AA)-induced thrombotic zebrafish at 20 µM.
{"title":"Terpenoids from the Soft Coral <i>Sinularia densa</i> Collected in the South China Sea.","authors":"Cili Wang, Jiarui Zhang, Kai Li, Junjie Yang, Lei Li, Sen Wang, Hu Hou, Pinglin Li","doi":"10.3390/md22100442","DOIUrl":"https://doi.org/10.3390/md22100442","url":null,"abstract":"<p><p>The chemical investigation of the South China Sea soft coral <i>Sinularia densa</i> has resulted in the isolation of seven new terpenoids, including two new meroterpenoids, namely sinudenoids F-G (<b>1</b>-<b>2</b>), and five new cembranes, namely sinudenoids H-L (<b>3</b>-<b>7</b>). Their structures and absolute configurations were elucidated based on extensive analyses of spectroscopic data, single-crystal X-ray diffraction, comparison with the literature data, and quantum chemical calculations. Among them, sinudenoid F (<b>1</b>) and sinudenoid G (<b>2</b>) are rare meroterpenoids featuring a methyl benzoate core. Sinudenoid H (<b>3</b>) possesses a rare carbon skeleton of 8, 19-bisnorfuranocembrenolide, which is the second reported compound with this skeleton. In a bioassay, sinudenoid H (<b>3</b>) exhibited better anti-inflammatory activity compared to the positive control indomethacin at 20 µM in CuSO<sub>4</sub>-treated transgenic fluorescent zebrafish. Moreover, sinudenoid J (<b>5</b>) and sinudenoid L (<b>7</b>) exhibited moderate anti-thrombotic activity in arachidonic acid (AA)-induced thrombotic zebrafish at 20 µM.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Małgorzata Świerczyńska, Zdzisława Mrozińska, Michał Juszczak, Katarzyna Woźniak, Marcin H Kudzin
Alginate-based materials have gained significant recognition in the medical industry due to their favorable biochemical properties. As a continuation of our previous studies, we have introduced a new composite consisting of cellulose nonwoven fabric charged with a metallic copper core (CNW-Cu0) covered with a calcium alginate (ALG-Ca2+) layer. The preparation process for these materials involved three main steps: coating the cellulose nonwoven fabric with copper via magnetron sputtering (CNW → CNW-Cu0), subsequent deposition with sodium alginate (CNW-Cu0 → CNW-Cu0/ALG-Na+), followed by cross-linking the alginate chains with calcium ions (CNW-Cu0/ALG-Na+ → CNW-Cu0/ALG-Ca2+). The primary objective of the work was to supply these composites with such biological attributes as antibacterial and hemostatic activity. Namely, equipping the antibacterial materials (copper action on representative Gram-positive and Gram-negative bacteria and fungal strains) with induction of blood plasma clotting processes (activated partial thromboplastin time (aPTT) and prothrombin time (PT)). We determined the effect of CNW-Cu0/ALG-Ca2+ materials on the viability of Peripheral blood mononuclear (PBM) cells. Moreover, we studied the interactions of CNW-Cu0/ALG-Ca2+ materials with DNA using the relaxation plasmid assay. However, results showed CNW-Cu0/ALG-Ca2+'s cytotoxic properties against PBM cells in a time-dependent manner. Furthermore, the CNW-Cu0/ALG-Ca2+ composite exhibited the potential to interact directly with DNA. The results demonstrated that the CNW-Cu0/ALG-Ca2+ composites synthesized show promising potential for wound dressing applications.
{"title":"Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation.","authors":"Małgorzata Świerczyńska, Zdzisława Mrozińska, Michał Juszczak, Katarzyna Woźniak, Marcin H Kudzin","doi":"10.3390/md22100436","DOIUrl":"https://doi.org/10.3390/md22100436","url":null,"abstract":"<p><p>Alginate-based materials have gained significant recognition in the medical industry due to their favorable biochemical properties. As a continuation of our previous studies, we have introduced a new composite consisting of cellulose nonwoven fabric charged with a metallic copper core (CNW-Cu<sup>0</sup>) covered with a calcium alginate (ALG<sup>-</sup>Ca<sup>2+</sup>) layer. The preparation process for these materials involved three main steps: coating the cellulose nonwoven fabric with copper via magnetron sputtering (CNW → CNW-Cu<sup>0</sup>), subsequent deposition with sodium alginate (CNW-Cu<sup>0</sup> → CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Na<sup>+</sup>), followed by cross-linking the alginate chains with calcium ions (CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Na<sup>+</sup> → CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup>). The primary objective of the work was to supply these composites with such biological attributes as antibacterial and hemostatic activity. Namely, equipping the antibacterial materials (copper action on representative Gram-positive and Gram-negative bacteria and fungal strains) with induction of blood plasma clotting processes (activated partial thromboplastin time (aPTT) and prothrombin time (PT)). We determined the effect of CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> materials on the viability of Peripheral blood mononuclear (PBM) cells. Moreover, we studied the interactions of CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> materials with DNA using the relaxation plasmid assay. However, results showed CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup>'s cytotoxic properties against PBM cells in a time-dependent manner. Furthermore, the CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> composite exhibited the potential to interact directly with DNA. The results demonstrated that the CNW-Cu<sup>0</sup>/ALG<sup>-</sup>Ca<sup>2+</sup> composites synthesized show promising potential for wound dressing applications.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Existing antithrombotic drugs have side effects such as bleeding, and there is an urgent need to discover antithrombotic drugs with better efficacy and fewer side effects. In this study, a zebrafish thrombosis model was used to evaluate the antithrombotic activity and mechanism of Brevianamide F, a deep-sea natural product, with transcriptome sequencing analysis, RT-qPCR analysis, and molecular docking. The results revealed that Brevianamide F significantly attenuated the degree of platelet aggregation in the thrombus model zebrafish, leading to an increase in the number of circulating platelets, an augmentation in the return of blood to the heart, an elevated heart rate, and a significant restoration of caudal blood flow velocity. Transcriptome sequencing and RT-qPCR validation revealed that Brevianamide F may exert antithrombotic effects through the modulation of the MAPK signaling pathway and the coagulation cascade reaction. Molecular docking analysis further confirmed this result. This study provides a reference for the development of therapeutic drugs for thrombosis.
现有的抗血栓药物都有出血等副作用,因此迫切需要发现疗效更好、副作用更小的抗血栓药物。本研究利用斑马鱼血栓模型,通过转录组测序分析、RT-qPCR分析和分子对接,评估了深海天然产物Brevianamide F的抗血栓活性和机制。结果表明,布雷维那酰胺 F 能显著减轻血栓模型斑马鱼的血小板聚集程度,导致循环血小板数量增加、心脏血液回流加快、心率上升以及尾部血流速度明显恢复。转录组测序和 RT-qPCR 验证表明,布雷维那酰胺 F 可通过调节 MAPK 信号通路和凝血级联反应发挥抗血栓作用。分子对接分析进一步证实了这一结果。这项研究为血栓治疗药物的开发提供了参考。
{"title":"Brevianamide F Exerts Antithrombotic Effects by Modulating the MAPK Signaling Pathway and Coagulation Cascade.","authors":"Huiwen Zhang, Chen Sun, Qing Xia, Peihai Li, Kechun Liu, Yun Zhang","doi":"10.3390/md22100439","DOIUrl":"https://doi.org/10.3390/md22100439","url":null,"abstract":"<p><p>Existing antithrombotic drugs have side effects such as bleeding, and there is an urgent need to discover antithrombotic drugs with better efficacy and fewer side effects. In this study, a zebrafish thrombosis model was used to evaluate the antithrombotic activity and mechanism of Brevianamide F, a deep-sea natural product, with transcriptome sequencing analysis, RT-qPCR analysis, and molecular docking. The results revealed that Brevianamide F significantly attenuated the degree of platelet aggregation in the thrombus model zebrafish, leading to an increase in the number of circulating platelets, an augmentation in the return of blood to the heart, an elevated heart rate, and a significant restoration of caudal blood flow velocity. Transcriptome sequencing and RT-qPCR validation revealed that Brevianamide F may exert antithrombotic effects through the modulation of the MAPK signaling pathway and the coagulation cascade reaction. Molecular docking analysis further confirmed this result. This study provides a reference for the development of therapeutic drugs for thrombosis.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}