Matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) mass spectrometry (MS), which can detect biomolecules and polymers, are widely used in biochemistry and material science. Some compounds that are difficult to ionize using MALDI can be ionized using SALDI. However, it is difficult to obtain high ion yields using SALDI/MS. In this study, a fabricated platinum (Pt) film with nanostructures on the sample surface using a sputtering method was evaluated to determine the optimal metal film for ion yield in SALDI. The surface morphology of the Pt film was analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray reflectivity (XRR), and ultraviolet-visible-near-infrared (UV-Vis-NIR) reflectance spectroscopy. The SEM, AFM, and TEM images of the Pt film showed the deposited metal film giving high ion yields of polyethylene glycol (PEG) in SALDI/MS with a Pt film (Pt-SALDI) that had a rough surface. The densities and reflectivity of films were analyzed by XRR and UV-Vis-NIR. The higher ion yields of PEG were obtained by Pt-SALDI with the Pt films with lower densities and reflectivity. This indicates that the deposition conditions for the Pt films significantly improved the ion yield in Pt-SALDI/MS. The Pt-SALDI has ionization capabilities different from those of MALDI. Therefore, optimization of Pt film for SALDI/MS and the MS imaging allows more compounds to be detected with higher sensitivity.
{"title":"Effect of the Surface Morphology of a Metal Film on Ion Yields in a Platinum-Film Surface-Assisted Laser Desorption/Ionization Mass Spectrometry.","authors":"Kotaro Hashimoto, Kyosuke Kaneda, Taichi Shimazaki, Chouma Kurihashi, Shuhei Yamamoto, Riko Takata, Shota Nakanishi, Issey Osaka","doi":"10.5702/massspectrometry.A0154","DOIUrl":"10.5702/massspectrometry.A0154","url":null,"abstract":"<p><p>Matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) mass spectrometry (MS), which can detect biomolecules and polymers, are widely used in biochemistry and material science. Some compounds that are difficult to ionize using MALDI can be ionized using SALDI. However, it is difficult to obtain high ion yields using SALDI/MS. In this study, a fabricated platinum (Pt) film with nanostructures on the sample surface using a sputtering method was evaluated to determine the optimal metal film for ion yield in SALDI. The surface morphology of the Pt film was analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray reflectivity (XRR), and ultraviolet-visible-near-infrared (UV-Vis-NIR) reflectance spectroscopy. The SEM, AFM, and TEM images of the Pt film showed the deposited metal film giving high ion yields of polyethylene glycol (PEG) in SALDI/MS with a Pt film (Pt-SALDI) that had a rough surface. The densities and reflectivity of films were analyzed by XRR and UV-Vis-NIR. The higher ion yields of PEG were obtained by Pt-SALDI with the Pt films with lower densities and reflectivity. This indicates that the deposition conditions for the Pt films significantly improved the ion yield in Pt-SALDI/MS. The Pt-SALDI has ionization capabilities different from those of MALDI. Therefore, optimization of Pt film for SALDI/MS and the MS imaging allows more compounds to be detected with higher sensitivity.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0154"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mass spectrometry imaging (MSI) is a technique that visualizes the distribution of molecules by ionizing the components on the surface of a sample and directly detecting them. Previously, MSI using hair has primarily been used in the forensic field to detect illegal drugs. On the other hand, there are few examples of using this technology for health monitoring. In this study, hair and clinical data were collected from 24 subjects, and the correlation between blood cholesterol levels and cholesterol detected from cross-sectional hair slices was analyzed. As a result, a positive correlation with a correlation coefficient of 0.43 was observed between blood cholesterol and cholesterol detected from hair. Furthermore, when comparing the results of fluorescence staining (FS) of hair cholesterol with Filipin III and the MSI results, it was found that while FS could visualize detailed hair structures, there were cases where the results differed from MSI, possibly due to some cholesterol loss during the staining process. In the future, if various disease biomarkers can be detected using hair MSI, it could potentially become a non-invasive diagnostic method.
{"title":"Analysis of the Correlation between Cholesterol Levels in Blood Using Clinical Data and Hair Using Mass Spectrometry Imaging.","authors":"Erika Nagano, Hiromi Saito, Tetsuya Mannari, Munekazu Kuge, Kazuki Odake, Shuichi Shimma","doi":"10.5702/massspectrometry.A0149","DOIUrl":"10.5702/massspectrometry.A0149","url":null,"abstract":"<p><p>Mass spectrometry imaging (MSI) is a technique that visualizes the distribution of molecules by ionizing the components on the surface of a sample and directly detecting them. Previously, MSI using hair has primarily been used in the forensic field to detect illegal drugs. On the other hand, there are few examples of using this technology for health monitoring. In this study, hair and clinical data were collected from 24 subjects, and the correlation between blood cholesterol levels and cholesterol detected from cross-sectional hair slices was analyzed. As a result, a positive correlation with a correlation coefficient of 0.43 was observed between blood cholesterol and cholesterol detected from hair. Furthermore, when comparing the results of fluorescence staining (FS) of hair cholesterol with Filipin III and the MSI results, it was found that while FS could visualize detailed hair structures, there were cases where the results differed from MSI, possibly due to some cholesterol loss during the staining process. In the future, if various disease biomarkers can be detected using hair MSI, it could potentially become a non-invasive diagnostic method.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0149"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-11DOI: 10.5702/massspectrometry.A0147
Que N N Tran, Takeshi Moriguchi, Masateru Ueno, Tomohiko Iwano, Kentaro Yoshimura
Aims: The purpose of this study is to establish a novel diagnosis system in early acute coronary syndrome (ACS) using probe electrospray ionization-mass spectrometry (PESI-MS) and machine learning (ML) and to validate the diagnostic accuracy. Methods: A total of 32 serum samples derived from 16 ACS patients and 16 control patients were analyzed by PESI-MS. The acquired mass spectrum dataset was subsequently analyzed by partial least squares (PLS) regression to find the relationship between the two groups. A support vector machine, an ML method, was applied to the dataset to construct the diagnostic algorithm. Results: Control and ACS groups were separated into the two clusters in the PLS plot, indicating ACS patients differed from the control in the profile of serum composition obtained by PESI-MS. The sensitivity, specificity, and accuracy of our diagnostic system were all 93.8%, and the area under the receiver operating characteristic curve showed 0.965 (95% CI: 0.84-1). Conclusion: The PESI-MS and ML-based diagnosis system are likely an optimal solution to assist physicians in ACS diagnosis with its remarkably predictive accuracy.
{"title":"Ambient Mass Spectrometry and Machine Learning-Based Diagnosis System for Acute Coronary Syndrome.","authors":"Que N N Tran, Takeshi Moriguchi, Masateru Ueno, Tomohiko Iwano, Kentaro Yoshimura","doi":"10.5702/massspectrometry.A0147","DOIUrl":"10.5702/massspectrometry.A0147","url":null,"abstract":"<p><p><b>Aims:</b> The purpose of this study is to establish a novel diagnosis system in early acute coronary syndrome (ACS) using probe electrospray ionization-mass spectrometry (PESI-MS) and machine learning (ML) and to validate the diagnostic accuracy. <b>Methods:</b> A total of 32 serum samples derived from 16 ACS patients and 16 control patients were analyzed by PESI-MS. The acquired mass spectrum dataset was subsequently analyzed by partial least squares (PLS) regression to find the relationship between the two groups. A support vector machine, an ML method, was applied to the dataset to construct the diagnostic algorithm. <b>Results:</b> Control and ACS groups were separated into the two clusters in the PLS plot, indicating ACS patients differed from the control in the profile of serum composition obtained by PESI-MS. The sensitivity, specificity, and accuracy of our diagnostic system were all 93.8%, and the area under the receiver operating characteristic curve showed 0.965 (95% CI: 0.84-1). <b>Conclusion:</b> The PESI-MS and ML-based diagnosis system are likely an optimal solution to assist physicians in ACS diagnosis with its remarkably predictive accuracy.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0147"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skin dryness and irritant contact dermatitis induced by the prolonged use of surgical gloves are issues faced by physicians. To address these concerns, manufacturers have introduced surgical gloves that incorporate a moisturizing component on their inner surface, resulting in documented results showing a reduction in hand dermatitis. However, the spatial distribution of moisturizers applied to surgical gloves within the integument remains unclear. Using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI), we investigated the spatial distribution of moisturizers in surgical gloves within artificial membranes. Recently, dermal permeation assessments using three-dimensional models, silicone membranes, and Strat-M have gained attention as alternative approaches to animal testing. Therefore, in this study, we established an in vitro dermal permeation assessment of commercially available moisturizers in surgical gloves using artificial membranes. In this study, we offer a methodology to visualize the infiltration of moisturizers applied to surgical gloves into an artificial membrane using MALDI-MSI, while evaluating commercially available moisturizer-coated surgical gloves. Using our penetration evaluation method, we confirmed the infiltration of the moisturizers into the polyethersulfone 2 and polyolefin layers, which correspond to the epidermis and dermis of the skin, after the use of surgical gloves. The MSI-based method presented herein demonstrated the efficacy of evaluating the permeation of samples containing active ingredients.
{"title":"Development of a Mass Spectrometry Imaging Method to Evaluate the Penetration of Moisturizing Components Coated on Surgical Gloves into Artificial Membranes.","authors":"Erika Nagano, Kazuki Odake, Toru Akiyoshi, Shuichi Shimma","doi":"10.5702/massspectrometry.A0145","DOIUrl":"10.5702/massspectrometry.A0145","url":null,"abstract":"<p><p>Skin dryness and irritant contact dermatitis induced by the prolonged use of surgical gloves are issues faced by physicians. To address these concerns, manufacturers have introduced surgical gloves that incorporate a moisturizing component on their inner surface, resulting in documented results showing a reduction in hand dermatitis. However, the spatial distribution of moisturizers applied to surgical gloves within the integument remains unclear. Using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI), we investigated the spatial distribution of moisturizers in surgical gloves within artificial membranes. Recently, dermal permeation assessments using three-dimensional models, silicone membranes, and Strat-M have gained attention as alternative approaches to animal testing. Therefore, in this study, we established an <i>in vitro</i> dermal permeation assessment of commercially available moisturizers in surgical gloves using artificial membranes. In this study, we offer a methodology to visualize the infiltration of moisturizers applied to surgical gloves into an artificial membrane using MALDI-MSI, while evaluating commercially available moisturizer-coated surgical gloves. Using our penetration evaluation method, we confirmed the infiltration of the moisturizers into the polyethersulfone 2 and polyolefin layers, which correspond to the epidermis and dermis of the skin, after the use of surgical gloves. The MSI-based method presented herein demonstrated the efficacy of evaluating the permeation of samples containing active ingredients.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0145"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-12DOI: 10.5702/massspectrometry.A0146
Jürgen H Gross
The areoles and spines of cacti can be used to desorb ions of ionic liquids (ILs) by the mere action of an electric field into the atmospheric pressure (AP) interface of a mass spectrometer. The small cactus species Opuntia microdasys bears numerous very fine hairs on its areoles and tiny sharp spines that appeared suited to serve as needle electrodes sharp enough for field desorption of ions to occur. In fact, positive and negative ions of four ILs could be desorbed by a process analogous to AP field desorption (APFD). In contrast to APFD where activated field emitters are employed, the ILs were deposited onto one or two adjacent areoles by applying 1-3 µL of a dilute solution in methanol. After evaporation of the solvent, the cactus was positioned next to the spray shield electrode of a trapped ion mobility-quadrupole-time-of-flight instrument. Desorption of IL cations and IL anions, respectively, did occur as soon as the electrode was set to potentials in the order of ±4.5 kV, while the cactus at ground potential was manually positioned in front of the entrance electrode to bring the areole covered with a film of the sample into the right position. Neither did mixing of ILs occur between neighboring areoles nor did the cactus suffer any damage upon its use as a botanical field emitter.
仙人掌的小孔和尖刺可用于解吸离子液体(IL)中的离子,只需将电场作用到质谱仪的大气压(AP)界面上即可。小型仙人掌物种 Opuntia microdasys 的小孔上长有许多非常细的绒毛和尖锐的小刺,似乎适合用作针状电极,其锋利程度足以使离子在电场作用下解吸。事实上,四种 IL 的正离子和负离子可以通过类似于 APFD 的过程解吸。与采用活化场发射器的 APFD 不同,IL 是通过施加 1-3 µL 的甲醇稀释溶液沉积到一个或两个相邻的小孔上的。蒸发溶剂后,将仙人掌置于捕获离子淌度四极杆飞行时间仪器的喷雾屏蔽电极旁。当电极的电位设定在 ±4.5 kV 左右时,IL 阳离子和 IL 阴离子分别发生解吸,而接地电位的仙人掌则被手动放置在入口电极的前面,使覆盖着一层样品薄膜的小孔处于正确的位置。在将仙人掌用作植物场发射器时,相邻小孔之间既没有发生 IL 混合,也没有受到任何损坏。
{"title":"Desorption of Positive and Negative Ions from Areoles of <i>Opuntia microdasys</i> Cactus at Atmospheric Pressure: Cactus-MS.","authors":"Jürgen H Gross","doi":"10.5702/massspectrometry.A0146","DOIUrl":"10.5702/massspectrometry.A0146","url":null,"abstract":"<p><p>The areoles and spines of cacti can be used to desorb ions of ionic liquids (ILs) by the mere action of an electric field into the atmospheric pressure (AP) interface of a mass spectrometer. The small cactus species <i>Opuntia microdasys</i> bears numerous very fine hairs on its areoles and tiny sharp spines that appeared suited to serve as needle electrodes sharp enough for field desorption of ions to occur. In fact, positive and negative ions of four ILs could be desorbed by a process analogous to AP field desorption (APFD). In contrast to APFD where activated field emitters are employed, the ILs were deposited onto one or two adjacent areoles by applying 1-3 µL of a dilute solution in methanol. After evaporation of the solvent, the cactus was positioned next to the spray shield electrode of a trapped ion mobility-quadrupole-time-of-flight instrument. Desorption of IL cations and IL anions, respectively, did occur as soon as the electrode was set to potentials in the order of ±4.5 kV, while the cactus at ground potential was manually positioned in front of the entrance electrode to bring the areole covered with a film of the sample into the right position. Neither did mixing of ILs occur between neighboring areoles nor did the cactus suffer any damage upon its use as a botanical field emitter.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0146"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-11-12DOI: 10.5702/massspectrometry.A0155
Fumio Matsuda
Several database search methods have been employed in untargeted metabolomics utilizing high-resolution mass spectrometry to comprehensively annotate acquired product ion spectra. Recent technical advancements in in silico analyses have facilitated the sorting of the degree of coincidence between a query product ion spectrum, and the molecular structures in the database. However, certain search results may be false positives, necessitating a method for controlling the false discovery rate (FDR). This study proposes 4 simple methods for controlling the FDR in compound search results. Instead of preparing a decoy compound database, a decoy spectral dataset was created from the measured product-ion spectral dataset (target). Target and decoy product ion spectra were searched against an identical compound database to obtain target and decoy hits. FDR was estimated based on the number of target and decoy hits. In this study, 3 decoy generation methods, polarity switching, mirroring, and spectral sampling, were compared. Additionally, the second-rank method was examined using second-ranked hits in the target search results as decoy hits. The performances of these 4 methods were evaluated by annotating product ion spectra from the MassBank database using the SIRIUS 5 CSI:FingerID scoring method. The results indicate that the FDRs estimated using the second-rank method were the closest to the true FDR of 0.05. Using this method, a compound search was performed on 4 human metabolomic data-dependent acquisition datasets with an FDR of 0.05. The FDR-controlled compound search successfully identified several compounds not present in the Human Metabolome Database.
{"title":"Data Processing of Product Ion Spectra: Methods to Control False Discovery Rate in Compound Search Results for Untargeted Metabolomics.","authors":"Fumio Matsuda","doi":"10.5702/massspectrometry.A0155","DOIUrl":"10.5702/massspectrometry.A0155","url":null,"abstract":"<p><p>Several database search methods have been employed in untargeted metabolomics utilizing high-resolution mass spectrometry to comprehensively annotate acquired product ion spectra. Recent technical advancements in <i>in silico</i> analyses have facilitated the sorting of the degree of coincidence between a query product ion spectrum, and the molecular structures in the database. However, certain search results may be false positives, necessitating a method for controlling the false discovery rate (FDR). This study proposes 4 simple methods for controlling the FDR in compound search results. Instead of preparing a decoy compound database, a decoy spectral dataset was created from the measured product-ion spectral dataset (target). Target and decoy product ion spectra were searched against an identical compound database to obtain target and decoy hits. FDR was estimated based on the number of target and decoy hits. In this study, 3 decoy generation methods, polarity switching, mirroring, and spectral sampling, were compared. Additionally, the second-rank method was examined using second-ranked hits in the target search results as decoy hits. The performances of these 4 methods were evaluated by annotating product ion spectra from the MassBank database using the SIRIUS 5 CSI:FingerID scoring method. The results indicate that the FDRs estimated using the second-rank method were the closest to the true FDR of 0.05. Using this method, a compound search was performed on 4 human metabolomic data-dependent acquisition datasets with an FDR of 0.05. The FDR-controlled compound search successfully identified several compounds not present in the Human Metabolome Database.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0155"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-17DOI: 10.5702/massspectrometry.A0148
Takeshi Matsuda, Lee Chuin Chen
Electrospray ionization mass spectrometry of neat undiluted ionic liquid (IL) and the analysis of protein with the doping of IL were performed using high-pressure electrospray. The use of disposable micropipette tips as emitters eased the handling of viscous and easy-to-clog samples and improved the reproducibility of the measurement. A high-pressure operation enabled the stable electrospray of the highly conductive IL from these relatively large bore emitters. The measurement of the current-voltage relationship of 1-ethyl-3-methylimidazolium tetrafluoroborate (Emim BF4) revealed an unusual negative differential resistance that has not been seen in the typical atmospheric or high-pressure electrospray. Mass spectrometric analysis of this IL also showed the characteristic response of various ion species with the emitter voltage. When added to the commonly used protein solution, the mass spectrum also showed protein peaks that correspond to the adduction of fluoroboric acid molecules (HBF4).
利用高压电喷雾技术对未稀释离子液体(IL)进行了电喷雾离子化质谱分析,并分析了掺入 IL 的蛋白质。使用一次性微量移液器吸头作为发射器简化了对粘性和易堵塞样品的处理,并提高了测量的可重复性。高压操作使这些孔径相对较大的发射器能够稳定地电喷雾高导电性 IL。对 1-ethyl-3-methylimidazolium tetrafluoroborate (Emim BF4) 的电流-电压关系进行测量后,发现了一种不寻常的负差分电阻,这在典型的常压或高压电喷雾中是没有出现过的。对这种 IL 的质谱分析还显示了各种离子种类对发射器电压的特征响应。当添加到常用的蛋白质溶液中时,质谱还显示出与氟硼酸分子 (HBF4) 的吸附相对应的蛋白质峰。
{"title":"Direct ESI-MS of Ionic Liquids Using High-Pressure Electrospray From Large-Bore Emitters Made of Micropipette Tips.","authors":"Takeshi Matsuda, Lee Chuin Chen","doi":"10.5702/massspectrometry.A0148","DOIUrl":"10.5702/massspectrometry.A0148","url":null,"abstract":"<p><p>Electrospray ionization mass spectrometry of neat undiluted ionic liquid (IL) and the analysis of protein with the doping of IL were performed using high-pressure electrospray. The use of disposable micropipette tips as emitters eased the handling of viscous and easy-to-clog samples and improved the reproducibility of the measurement. A high-pressure operation enabled the stable electrospray of the highly conductive IL from these relatively large bore emitters. The measurement of the current-voltage relationship of 1-ethyl-3-methylimidazolium tetrafluoroborate (Emim BF<sub>4</sub>) revealed an unusual negative differential resistance that has not been seen in the typical atmospheric or high-pressure electrospray. Mass spectrometric analysis of this IL also showed the characteristic response of various ion species with the emitter voltage. When added to the commonly used protein solution, the mass spectrum also showed protein peaks that correspond to the adduction of fluoroboric acid molecules (HBF<sub>4</sub>).</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0148"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-14DOI: 10.5702/massspectrometry.A0152
Ryota Tomioka, Kosuke Ogata, Yasushi Ishihama
Host cell protein (HCP) impurities are considered a critical quality attribute of biopharmaceuticals because of their potential to compromise safety and efficacy, and LC/MS-based analytical methods have been developed to identify and quantify individual proteins instead of employing enzyme-linked immunosorbent assay to assess total HCP levels. Native digestion enables highly sensitive detection of HCPs but requires overnight incubation to generate peptides, limiting the throughput of sample preparation. In this study, we developed an approach employing native digestion on a trypsin-immobilized column to improve the sensitivity and throughput. We examined suitable databases for the identification of HCPs derived from Chinese hamster ovary (CHO) cells and selected RefSeq's Chinese Hamster as the optimal database. Then, we investigated methods to identify HCPs with greater efficiency than that of denatured in-solution digestion. Native in-column digestion not only reduced the digestion time from overnight to 10 min but also increased the number of quantified HCPs from 154 to 226. In addition to this rapid digestion methodology, we developed high-throughput LC/MS/MS with a monolithic silica column and parallel reaction monitoring-parallel accumulation-serial fragmentation. The optimized system was validated with synthetic peptides derived from high-risk HCPs, confirming excellent linearity, precision, accuracy, and low limit of detection (LOD) and limit of quantification (LOQ) (1-3 ppm). The optimized digestion and analysis method enabled high-throughput quantification of HCPs, and is expected to be useful for quality control and characterization of HCPs in antibody drugs.
{"title":"Quantitation of Host Cell Proteins by Capillary LC/IMS/MS/MS in Combination with Rapid Digestion on Immobilized Trypsin Column Under Native Conditions.","authors":"Ryota Tomioka, Kosuke Ogata, Yasushi Ishihama","doi":"10.5702/massspectrometry.A0152","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0152","url":null,"abstract":"<p><p>Host cell protein (HCP) impurities are considered a critical quality attribute of biopharmaceuticals because of their potential to compromise safety and efficacy, and LC/MS-based analytical methods have been developed to identify and quantify individual proteins instead of employing enzyme-linked immunosorbent assay to assess total HCP levels. Native digestion enables highly sensitive detection of HCPs but requires overnight incubation to generate peptides, limiting the throughput of sample preparation. In this study, we developed an approach employing native digestion on a trypsin-immobilized column to improve the sensitivity and throughput. We examined suitable databases for the identification of HCPs derived from Chinese hamster ovary (CHO) cells and selected RefSeq's Chinese Hamster as the optimal database. Then, we investigated methods to identify HCPs with greater efficiency than that of denatured in-solution digestion. Native in-column digestion not only reduced the digestion time from overnight to 10 min but also increased the number of quantified HCPs from 154 to 226. In addition to this rapid digestion methodology, we developed high-throughput LC/MS/MS with a monolithic silica column and parallel reaction monitoring-parallel accumulation-serial fragmentation. The optimized system was validated with synthetic peptides derived from high-risk HCPs, confirming excellent linearity, precision, accuracy, and low limit of detection (LOD) and limit of quantification (LOQ) (1-3 ppm). The optimized digestion and analysis method enabled high-throughput quantification of HCPs, and is expected to be useful for quality control and characterization of HCPs in antibody drugs.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0152"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-23DOI: 10.5702/massspectrometry.A0144
Takemichi Nakamura, Yayoi Hongo, Ken-Ichi Harada
The collision-induced dissociation (CID) behaviors of protonated molecules of anabaenopeptins, a group of cyanobacterial cyclic peptides, were investigated in detail using liquid chromatography-tandem mass spectrometry. Although anabaenopeptin A and B share a macrocyclic peptide structure, they give strikingly different fragmentation patterns; the former gives a variety of product ions including cleavages in the cyclic peptide structure, which is useful for structural analysis; whereas the latter gives far fewer product ions and no fragmentation in the cyclic moiety. Energy-resolved CID experiments clarified the mechanism behind the striking difference attributable to the difference in exocyclic amino acid residues, Tyr or Arg. The guanidino group in Arg-containing analogue, anabaenopeptin B, should be by far the most preferred protonation site; the proton would be sequestered at the guanidino group in the protonated molecule, with the lack of proton mobility prohibiting opening of the charge-directed fragmentation channels in the cyclic moiety. Enzymatic hydrolysis of the guanidino group to give citrullinated-anabaenopeptin B restored proton mobility. The fragmentation pattern of the citrullinated peptide became almost identical to that of anabaenopeptin A. The observed fragmentation behaviors of these cyclic peptides were consistent with those of linear peptides, which have been well understood based on the mobile proton model.
使用液相色谱-串联质谱法详细研究了蓝藻环肽类质子化分子的碰撞诱导解离(CID)行为。尽管anabaenopeptin A和B具有相同的大环肽结构,但它们的碎片模式却截然不同;前者产生了多种产物离子,包括环肽结构的裂解,这对结构分析非常有用;而后者产生的产物离子要少得多,而且环分子中没有碎片。能量分辨 CID 实验澄清了由于外环氨基酸残基(Tyr 或 Arg)的不同而产生的显著差异背后的机制。含 Arg 的类似物安纳本肽 B 中的胍基应该是迄今为止最理想的质子化位点;质子将被螯合在质子化分子中的胍基上,由于缺乏质子流动性,环分子中的电荷定向碎片通道无法打开。酶水解鸟苷酸基团后,瓜氨酸化安乃近肽 B 恢复了质子流动性。观察到的这些环肽的碎裂行为与线性肽的碎裂行为一致。
{"title":"Mobilize a Proton to Transform the Collision-Induced Dissociation Spectral Pattern of a Cyclic Peptide.","authors":"Takemichi Nakamura, Yayoi Hongo, Ken-Ichi Harada","doi":"10.5702/massspectrometry.A0144","DOIUrl":"10.5702/massspectrometry.A0144","url":null,"abstract":"<p><p>The collision-induced dissociation (CID) behaviors of protonated molecules of anabaenopeptins, a group of cyanobacterial cyclic peptides, were investigated in detail using liquid chromatography-tandem mass spectrometry. Although anabaenopeptin A and B share a macrocyclic peptide structure, they give strikingly different fragmentation patterns; the former gives a variety of product ions including cleavages in the cyclic peptide structure, which is useful for structural analysis; whereas the latter gives far fewer product ions and no fragmentation in the cyclic moiety. Energy-resolved CID experiments clarified the mechanism behind the striking difference attributable to the difference in exocyclic amino acid residues, Tyr or Arg. The guanidino group in Arg-containing analogue, anabaenopeptin B, should be by far the most preferred protonation site; the proton would be sequestered at the guanidino group in the protonated molecule, with the lack of proton mobility prohibiting opening of the charge-directed fragmentation channels in the cyclic moiety. Enzymatic hydrolysis of the guanidino group to give citrullinated-anabaenopeptin B restored proton mobility. The fragmentation pattern of the citrullinated peptide became almost identical to that of anabaenopeptin A. The observed fragmentation behaviors of these cyclic peptides were consistent with those of linear peptides, which have been well understood based on the mobile proton model.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0144"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In metabolomic analysis, one of the most commonly used techniques to support the detection sensitivity and quantitation of mass spectrometry is combining it with liquid chromatography. Recently, we developed a method that enables comprehensive single-run measurement of hydrophilic metabolites using unified-hydrophilic interaction/anion exchange liquid chromatography/high-resolution mass spectrometry (unified-HILIC/AEX/HRMS) with a polymer-based mixed amines column (Gelpack GL-HilicAex). However, the importance of stationary phase functional groups and mobile phase conditions for the separation mechanisms and sensitive detection in unified-HILIC/AEX/HRMS is not yet fully understood. This study aimed to understand the importance of the mobile and stationary phases in unified-HILIC/AEX/HRMS. Two different alkali-resistant polymer-based amines-modified columns (Gelpack GL-HilicAex, primary, secondary, tertiary, and quaternary amine-modified polyglycerol dimethacrylate gel; Asahipak NH2P-50 2D, secondary amine-modified polyvinyl alcohol gel) and two eluents (acetonitrile and ammonium bicarbonate solution, pH 9.8) were used for comparative validation. A comparison of mobile phase conditions using both columns confirmed that the two-step separation from HILIC to AEX characteristic of unified-HILIC/AEX requires a linear gradient condition from acetonitrile to nearly 50% water and AEX with up to 40 mM bicarbonate ions. We found that when alkali-resistant hydrophilic polymer packing materials are modified with amines, unified-HILIC/AEX separation can be reproduced if at least one secondary amine associated with the amine series is present in the stationary phase. Furthermore, the difference in sensitivity in the HILIC and AEX modes owing to the different columns indicates the need for further improvements in the mobile phase composition and stationary phase.
{"title":"Comparison of Amine-Modified Polymeric Stationary Phases for Polar Metabolomic Analysis Based on Unified-Hydrophilic Interaction/Anion Exchange Liquid Chromatography/High-Resolution Mass Spectrometry (Unified-HILIC/AEX/HRMS).","authors":"Kazuki Ikeda, Masatomo Takahashi, Takeshi Bamba, Yoshihiro Izumi","doi":"10.5702/massspectrometry.A0143","DOIUrl":"10.5702/massspectrometry.A0143","url":null,"abstract":"<p><p>In metabolomic analysis, one of the most commonly used techniques to support the detection sensitivity and quantitation of mass spectrometry is combining it with liquid chromatography. Recently, we developed a method that enables comprehensive single-run measurement of hydrophilic metabolites using unified-hydrophilic interaction/anion exchange liquid chromatography/high-resolution mass spectrometry (unified-HILIC/AEX/HRMS) with a polymer-based mixed amines column (Gelpack GL-HilicAex). However, the importance of stationary phase functional groups and mobile phase conditions for the separation mechanisms and sensitive detection in unified-HILIC/AEX/HRMS is not yet fully understood. This study aimed to understand the importance of the mobile and stationary phases in unified-HILIC/AEX/HRMS. Two different alkali-resistant polymer-based amines-modified columns (Gelpack GL-HilicAex, primary, secondary, tertiary, and quaternary amine-modified polyglycerol dimethacrylate gel; Asahipak NH2P-50 2D, secondary amine-modified polyvinyl alcohol gel) and two eluents (acetonitrile and ammonium bicarbonate solution, pH 9.8) were used for comparative validation. A comparison of mobile phase conditions using both columns confirmed that the two-step separation from HILIC to AEX characteristic of unified-HILIC/AEX requires a linear gradient condition from acetonitrile to nearly 50% water and AEX with up to 40 mM bicarbonate ions. We found that when alkali-resistant hydrophilic polymer packing materials are modified with amines, unified-HILIC/AEX separation can be reproduced if at least one secondary amine associated with the amine series is present in the stationary phase. Furthermore, the difference in sensitivity in the HILIC and AEX modes owing to the different columns indicates the need for further improvements in the mobile phase composition and stationary phase.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0143"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}