Ion mobility spectrometry-mass spectrometry (IMS-MS) provides m/z values and collision cross sections (CCSs) of gas-phase ions. In our previous study, an intrinsically disordered protein, the H2A-H2B dimer, was analyzed using IMS-MS, resulting in two conformational populations of CCS. Based on experimental and theoretical approaches, this resulted from a structural diversity of intrinsically disordered regions. We predicted that this phenomenon is related to ion heating in the IMS-MS instrument. In this study, to reveal the effect of ion heating from parameters in the IMS-MS instrument on the conformational population of the H2A-H2B dimer, we investigated the arrival time distributions of the H2A-H2B dimer by changing values of three instrumental parameters, namely, cone voltage located in the first vacuum chamber, trap collision energy (trap CE) for tandem mass spectrometry, and trap bias voltage for the entrance of IMS. These results revealed that the two populations observed for the H2A-H2B dimer were due to the trap bias voltage. Furthermore, to evaluate the internal energies of the analyte ions with respect to each parameter, benzylpyridinium derivatives were used as temperature-sensitive probes. The results showed that the trap CE voltage imparts greater internal energy to the ions than the trap bias voltage. In addition, this slight change in the internal energy caused by the trap bias voltage resulted in the structural diversity of the H2A-H2B dimer. Therefore, the trap bias voltage should be set with attention to the properties of the analytes, even if the effect of the trap bias voltage on the internal energy is negligible.
Carotenoids are tetraterpene pigments that are present in photosynthetic bacteria, some species of archaea and fungi, algae, plants, and animals. Carotenoids are essential pigments in photosynthetic organs along with chlorophylls. Carotenoids also act as photo-protectors, antioxidants, color attractants, and precursors of plant hormones in plants. Carotenoids in animals play important roles, such as precursors of vitamin A, photo-protectors, antioxidants, enhancers of immunity, and contributors to reproduction. More than 850 kinds of carotenoids are present in nature. The structures are similar and all of them are labile. Analysis of natural carotenoids requires the establishment of reliable methods for analyzing them. Liquid chromatography-mass spectrometry (LC-MS) and mass spectrometry/mass spectrometry (MS/MS) coupled with photodiode array detector (DAD) is an important tool for analysis of natural carotenoids. Electrospray ionization and atmospheric pressure chemical ionization are commonly used for ionization of LC-MS of carotenoids. MS and MS/MS provide not only molecular weight information but also some structural information on carotenoids. Ultraviolet-visible spectra from DAD provide information on chromophore systems, which cannot be provided by MS spectral data. In the present review, I report the structural diversity and function of natural carotenoids, and also describe the techniques for analysis of natural carotenoids using the LC-DAD-MS and MS/MS system.
Cancer metabolic variability has a significant impact on both diagnosis and treatment outcomes. The discovery of novel biological indicators and metabolic dysregulation, can significantly rely on comprehension of the modified metabolism in cancer, is a research focus. Tissue histology is a critical feature in the diagnostic testing of many ailments, such as cancer. To assess the surgical margin of the tumour on patients, frozen section histology is a tedious, laborious, and typically arbitrary method. Concurrent monitoring of ion images in tissues facilitated by the latest advancements in mass spectrometry imaging (MSI) is far more efficient than optical tissue image analysis utilized in conventional histopathology examination. This article focuses on the "desorption electrospray ionization (DESI)-MSI" technique's most recent advancements and uses in cancer research. DESI-MSI can provide wealthy information based on the variances in metabolites and lipids in normal and cancerous tissues by acquiring ion images of the lipid and metabolite variances on biopsy samples. As opposed to a systematic review, this article offers a synopsis of the most widely employed cutting-edge DESI-MSI techniques in cancer research.
The gain of the microchannel plate temporally drops after an ion initiates an electron avalanche. Electron multiplication was expected to deplete the charge from the microchannel wall and produce the depleted charge (wall charge). Moreover, it was reported that the gain drop occurred not only in the activated channels, where the electrons are multiplied, but also in the surrounding channels. One mechanism of the gain-drop spatial extension has been considered as that the wall charges in the activated channels change the electric field in the surrounding channels. Anacker et al. assumed that the wall charge is a uniform line charge; the gain-drop spatial extent should be proportional to the amount of the wall charges. We considered that the wall charges exponentially increased in the channel toward the exit. In this study, the electric field produced by the wall charges was calculated, considering the distribution of the wall charges. The transverse electric field generated by the wall charges was expected to disturb the electron trajectory near the channel exit and decrease the number of secondary electrons emitted per collision (gain per collision), resulting in a gain drop. The gain per collision was calculated to decrease by 22% for the position where the gain decreased significantly in the presence of the transverse electric field of 3×105 V/m. In our model, the gain-drop spatial extent extended proportionally to the square root of the wall charges when the distance from the activated channel exceeded 50 μm.
Congenital disorders of glycosylation (CDG) are inherited metabolic diseases that affect the synthesis of glycoconjugates. Defects in mucin-type O-glycosylation occur independently or in combination with N-glycosylation disorders, and the profiling of the O-glycans of apolipoprotein CIII (apoCIII) by mass spectrometry (MS) can be used to support a diagnosis. The biomarkers are site occupancy and sialylation levels, which are indicated by the content of non-glycosylated apoCIII0a isoform and by the ratio of monosialylated apoCIII1 to disialylated apoCIII2 isoforms, respectively. In this report, electrospray ionization (ESI) quadrupole MS of apoCIII was used to identify these biomarkers. Among the instrumental parameters, the declustering potential (DP) induced the fragmentation of the O-glycan moiety including the Thr-GalNAc linkage, resulting in an increase in apoCIII0a ions. This incurs the risk of creating a false positive for reduced site occupancy. The apoCIII1/apoCIII2 ratio was substantially unchanged despite some dissociation of sialic acids. Therefore, appropriate DP settings are especially important when transferrin, which requires a higher DP, for N-glycosylation disorders is analyzed simultaneously with apoCIII in a single ESI MS measurement. Finally, a reference range of diagnostic biomarkers and mass spectra of apoCIII obtained from patients with SLC35A1-, TRAPPC11-, and ATP6V0A2-CDG are presented.