Pub Date : 2020-07-30DOI: 10.13005/msri.17.special-issue1.07
Rahul Ashok Shinde, Vishnu A shok Adole, Bapu Sonu Jagdale, Thansing Bhavsing Pawar
The present research deals with the synthesis, characterization and density functional theory (DFT) study of (E)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (DTMPP). For the computational investigation, DFT method at B3LYP/6-311++G(d,p) basis set has been used. Herein, structural properties like molecular structure, bond lengths, and bond angles of the DTMPP have been explored. The all-important examination of the electronic properties; HOMO and LUMO energies were studied by the time-dependent DFT (TD-DFT) method. The experimental and theoretical spectroscopic Investigation on FT-IR, 1HNMR, 13C NMR has been unveiled in the present research. To study the chemical behaviour of the DTMPP, Mulliken atomic charges, molecular electrostatic surface potential, and reactivity descriptors have been explored. The dipole moment of the DTMPP is 1.27 Debye with C1 point group symmetry and -1225.77 a.u. E(B3LYP) energy. The most electropositive carbon and hydrogen atoms in the DTMPP are C14 and H27 respectively. The C1-C6 bond is the longest (1.4089 Å) C=C bond in the DTMPP. The oxygen atom O33 is having short contact interaction with the hydrogen atom H44 with a distance of 3.3258 Å. The molecular electrostatic potential plot predicts the positive electrostatic potential is around hydrogen atoms. The FT-IR assignments were made by comparing the experimental FT-IR absorption peaks with the scaled frequencies obtained using DFT method. Furthermore, some valuable insights on thermochemical data are obtained using the harmonic frequencies at same basis set.
{"title":"Experimental and Theoretical Studies on the Molecular Structure, FT-IR, NMR, HOMO, LUMO, MESP, and Reactivity Descriptors of (E)-1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one","authors":"Rahul Ashok Shinde, Vishnu A shok Adole, Bapu Sonu Jagdale, Thansing Bhavsing Pawar","doi":"10.13005/msri.17.special-issue1.07","DOIUrl":"https://doi.org/10.13005/msri.17.special-issue1.07","url":null,"abstract":"The present research deals with the synthesis, characterization and density functional theory (DFT) study of (E)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (DTMPP). For the computational investigation, DFT method at B3LYP/6-311++G(d,p) basis set has been used. Herein, structural properties like molecular structure, bond lengths, and bond angles of the DTMPP have been explored. The all-important examination of the electronic properties; HOMO and LUMO energies were studied by the time-dependent DFT (TD-DFT) method. The experimental and theoretical spectroscopic Investigation on FT-IR, 1HNMR, 13C NMR has been unveiled in the present research. To study the chemical behaviour of the DTMPP, Mulliken atomic charges, molecular electrostatic surface potential, and reactivity descriptors have been explored. The dipole moment of the DTMPP is 1.27 Debye with C1 point group symmetry and -1225.77 a.u. E(B3LYP) energy. The most electropositive carbon and hydrogen atoms in the DTMPP are C14 and H27 respectively. The C1-C6 bond is the longest (1.4089 Å) C=C bond in the DTMPP. The oxygen atom O33 is having short contact interaction with the hydrogen atom H44 with a distance of 3.3258 Å. The molecular electrostatic potential plot predicts the positive electrostatic potential is around hydrogen atoms. The FT-IR assignments were made by comparing the experimental FT-IR absorption peaks with the scaled frequencies obtained using DFT method. Furthermore, some valuable insights on thermochemical data are obtained using the harmonic frequencies at same basis set.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"13 1","pages":"54-72"},"PeriodicalIF":0.0,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75256330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-30DOI: 10.13005/msri.17.special-issue1.06
Vishnu A. Adole, Prashant B. Koli, Rahul A. Shinde, Rohit S. Shinde
In the current examination, (E)-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one has been studied to investigate geometrical entities, electronic properties, and chemical reactivity viewpoints. To inspect structural, spectroscopic, and chemical reactivity aspects, density functional theory method (DFT) at B3LYP/6-311G(d,p) basis set has been employed. The (E)-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one has been synthesized and characterized by FT-IR, 1HNMR, and 13C NMR spectral techniques. The detailed investigation of bond lengths and bond angles is discussed to comprehend the geometrical framework. To explore its chemical behaviour, Mulliken atomic charges, molecular electrostatic potential surface, and electronic parameters are introduced. The imperative exploration of the electronic properties, such as HOMO and LUMO energies, was studied by the time-dependent DFT (TD-DFT) method. The dipole moment of the title molecule is 2.57 Debye with C1 point group symmetry. The most electropositive carbon and hydrogen atoms in the title molecule are C14 and H27 respectively. Amongst aromatic C=C, the C16-C18 is the longest, and C17-C19 is the shortest bond. The molecular electrostatic potential plot predicts the positive electrostatic potential is around hydrogen atoms. The vibrational assignments were made by comparing the experimental FT-IR absorption peaks with the scaled frequencies obtained using computational work. Besides, some significant thermochemical information is obtained using the same basis set using frequencies.
{"title":"Computational Insights on Molecular Structure, Electronic Properties, and Chemical Reactivity of (E)-3-(4-Chlorophenyl)-1-(2-Hydroxyphenyl)Prop-2-en-1-one","authors":"Vishnu A. Adole, Prashant B. Koli, Rahul A. Shinde, Rohit S. Shinde","doi":"10.13005/msri.17.special-issue1.06","DOIUrl":"https://doi.org/10.13005/msri.17.special-issue1.06","url":null,"abstract":"In the current examination, (E)-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one has been studied to investigate geometrical entities, electronic properties, and chemical reactivity viewpoints. To inspect structural, spectroscopic, and chemical reactivity aspects, density functional theory method (DFT) at B3LYP/6-311G(d,p) basis set has been employed. The (E)-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one has been synthesized and characterized by FT-IR, 1HNMR, and 13C NMR spectral techniques. The detailed investigation of bond lengths and bond angles is discussed to comprehend the geometrical framework. To explore its chemical behaviour, Mulliken atomic charges, molecular electrostatic potential surface, and electronic parameters are introduced. The imperative exploration of the electronic properties, such as HOMO and LUMO energies, was studied by the time-dependent DFT (TD-DFT) method. The dipole moment of the title molecule is 2.57 Debye with C1 point group symmetry. The most electropositive carbon and hydrogen atoms in the title molecule are C14 and H27 respectively. Amongst aromatic C=C, the C16-C18 is the longest, and C17-C19 is the shortest bond. The molecular electrostatic potential plot predicts the positive electrostatic potential is around hydrogen atoms. The vibrational assignments were made by comparing the experimental FT-IR absorption peaks with the scaled frequencies obtained using computational work. Besides, some significant thermochemical information is obtained using the same basis set using frequencies.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"29 1","pages":"41-53"},"PeriodicalIF":0.0,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81468651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-30DOI: 10.13005/msri.17.special-issue1.01
S. Mahmood
he current revolution in Materials Science leading to vast advances in pre-existing and emerging technologies had significantly impacted all aspects of our modern life. The continuous efforts in searching for new functional and smart materials facilitated the design of miniaturized and more efficient devices, and led to great advancements in pharmaceutical, medicinal, agricultural, energy related industries, and many more. Before employment in a given application, a newly developed material needs to be fully characterized and tested for efficient delivery and fulfillment of industrial and technological requirements.
{"title":"Computational Methods in Material Science-Editorial","authors":"S. Mahmood","doi":"10.13005/msri.17.special-issue1.01","DOIUrl":"https://doi.org/10.13005/msri.17.special-issue1.01","url":null,"abstract":"he current revolution in Materials Science leading to vast advances in pre-existing and emerging technologies had significantly impacted all aspects of our modern life. The continuous efforts in searching for new functional and smart materials facilitated the design of miniaturized and more efficient devices, and led to great advancements in pharmaceutical, medicinal, agricultural, energy related industries, and many more. Before employment in a given application, a newly developed material needs to be fully characterized and tested for efficient delivery and fulfillment of industrial and technological requirements.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"7 1","pages":"01-02"},"PeriodicalIF":0.0,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74405857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Opening Remarks Extensive research efforts are ongoing to develop materials that can be used as temporary implants in the human body to perform multiple functions depending on the nature of ailment. Among the metals, zinc and magnesium based materials have garnered significant attention in recent years to serve as temporary implants. This article aims to provide a snapshot of their merits and demerits and accordingly the challenges faced by material scientists.
{"title":"Zinc Versus Magnesium as Biodegradable Metals for Temporary Implants","authors":"M. Gupta","doi":"10.13005/MSRI/170101","DOIUrl":"https://doi.org/10.13005/MSRI/170101","url":null,"abstract":"Opening Remarks Extensive research efforts are ongoing to develop materials that can be used as temporary implants in the human body to perform multiple functions depending on the nature of ailment. Among the metals, zinc and magnesium based materials have garnered significant attention in recent years to serve as temporary implants. This article aims to provide a snapshot of their merits and demerits and accordingly the challenges faced by material scientists.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"111 1","pages":"01-04"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89624449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Mahtab, Pragati S. Joshi, B. Arya, M. Zaidi, T. I. Siddiqui
We have reviewed recent progress on various types of humidity sensors as it is one of the most significant issues in various areas of sensing appliances such as instrumentation, charge storage automated systems, industries and agriculture. Various effective approaches have been discussed to develop ceramic, semiconducting and polymer based graphite sensors. It was found that graphite based nanocomposite materials have unique potential for detecting humidity due to specific structure, high electro thermal conductivities, good mechanical properties, low cost and ultrahigh surface area that increases applications in the field of energy storage devices. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 08-15 CONTACT M.G.H. Zaidia mghzaidi@gmail.com Department of Chemistry, G.B. Pant University of Agriculture & Technology,
{"title":"Effect of Humidity on Electrical Conductivity of Graphite Nanocomposite Based Electrodes: A Review","authors":"S. Mahtab, Pragati S. Joshi, B. Arya, M. Zaidi, T. I. Siddiqui","doi":"10.13005/msri/170103","DOIUrl":"https://doi.org/10.13005/msri/170103","url":null,"abstract":"We have reviewed recent progress on various types of humidity sensors as it is one of the most significant issues in various areas of sensing appliances such as instrumentation, charge storage automated systems, industries and agriculture. Various effective approaches have been discussed to develop ceramic, semiconducting and polymer based graphite sensors. It was found that graphite based nanocomposite materials have unique potential for detecting humidity due to specific structure, high electro thermal conductivities, good mechanical properties, low cost and ultrahigh surface area that increases applications in the field of energy storage devices. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 08-15 CONTACT M.G.H. Zaidia mghzaidi@gmail.com Department of Chemistry, G.B. Pant University of Agriculture & Technology,","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"04 1","pages":"08-15"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86110591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}