首页 > 最新文献

Mathematical Programming最新文献

英文 中文
Accelerated stochastic approximation with state-dependent noise 带有状态相关噪声的加速随机逼近
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-27 DOI: 10.1007/s10107-024-02138-4
Sasila Ilandarideva, Anatoli Juditsky, Guanghui Lan, Tianjiao Li

We consider a class of stochastic smooth convex optimization problems under rather general assumptions on the noise in the stochastic gradient observation. As opposed to the classical problem setting in which the variance of noise is assumed to be uniformly bounded, herein we assume that the variance of stochastic gradients is related to the “sub-optimality” of the approximate solutions delivered by the algorithm. Such problems naturally arise in a variety of applications, in particular, in the well-known generalized linear regression problem in statistics. However, to the best of our knowledge, none of the existing stochastic approximation algorithms for solving this class of problems attain optimality in terms of the dependence on accuracy, problem parameters, and mini-batch size. We discuss two non-Euclidean accelerated stochastic approximation routines—stochastic accelerated gradient descent (SAGD) and stochastic gradient extrapolation (SGE)—which carry a particular duality relationship. We show that both SAGD and SGE, under appropriate conditions, achieve the optimal convergence rate, attaining the optimal iteration and sample complexities simultaneously. However, corresponding assumptions for the SGE algorithm are more general; they allow, for instance, for efficient application of the SGE to statistical estimation problems under heavy tail noises and discontinuous score functions. We also discuss the application of the SGE to problems satisfying quadratic growth conditions, and show how it can be used to recover sparse solutions. Finally, we report on some simulation experiments to illustrate numerical performance of our proposed algorithms in high-dimensional settings.

我们考虑了一类随机平滑凸优化问题,并对随机梯度观测中的噪声作了相当宽泛的假设。在经典问题中,噪声方差被假定为均匀有界,而在这里,我们假定随机梯度的方差与算法提供的近似解的 "次优性 "有关。这种问题自然会在各种应用中出现,特别是在统计学中著名的广义线性回归问题中。然而,据我们所知,现有的解决这类问题的随机近似算法中,没有一种能在精度、问题参数和小批量规模的依赖性方面达到最优。我们讨论了两种非欧几里得加速随机逼近例程--随机加速梯度下降算法(SAGD)和随机梯度外推法(SGE),这两种算法具有特殊的对偶关系。我们的研究表明,在适当条件下,SAGD 和 SGE 都能达到最佳收敛速度,同时获得最佳迭代和样本复杂度。然而,SGE 算法的相应假设更为宽泛;例如,它们允许 SGE 有效地应用于重尾噪声和不连续得分函数下的统计估计问题。我们还讨论了 SGE 在满足二次增长条件的问题中的应用,并展示了它如何用于恢复稀疏解。最后,我们报告了一些模拟实验,以说明我们提出的算法在高维环境下的数值性能。
{"title":"Accelerated stochastic approximation with state-dependent noise","authors":"Sasila Ilandarideva, Anatoli Juditsky, Guanghui Lan, Tianjiao Li","doi":"10.1007/s10107-024-02138-4","DOIUrl":"https://doi.org/10.1007/s10107-024-02138-4","url":null,"abstract":"<p>We consider a class of stochastic smooth convex optimization problems under rather general assumptions on the noise in the stochastic gradient observation. As opposed to the classical problem setting in which the variance of noise is assumed to be uniformly bounded, herein we assume that the variance of stochastic gradients is related to the “sub-optimality” of the approximate solutions delivered by the algorithm. Such problems naturally arise in a variety of applications, in particular, in the well-known generalized linear regression problem in statistics. However, to the best of our knowledge, none of the existing stochastic approximation algorithms for solving this class of problems attain optimality in terms of the dependence on accuracy, problem parameters, and mini-batch size. We discuss two non-Euclidean accelerated stochastic approximation routines—stochastic accelerated gradient descent (SAGD) and stochastic gradient extrapolation (SGE)—which carry a particular duality relationship. We show that both SAGD and SGE, under appropriate conditions, achieve the optimal convergence rate, attaining the optimal iteration and sample complexities simultaneously. However, corresponding assumptions for the SGE algorithm are more general; they allow, for instance, for efficient application of the SGE to statistical estimation problems under heavy tail noises and discontinuous score functions. We also discuss the application of the SGE to problems satisfying quadratic growth conditions, and show how it can be used to recover sparse solutions. Finally, we report on some simulation experiments to illustrate numerical performance of our proposed algorithms in high-dimensional settings.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"62 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast combinatorial algorithm for the bilevel knapsack problem with interdiction constraints 带拦截约束的双层knapsack问题的快速组合算法
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-22 DOI: 10.1007/s10107-024-02133-9
Noah Weninger, Ricardo Fukasawa

We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel integer programming problem which generalizes the 0–1 knapsack problem. In this problem, there are two knapsacks and n items. The objective is to select some items to pack into the first knapsack such that the maximum profit attainable from packing some of the remaining items into the second knapsack is minimized. We present a combinatorial branch-and-bound algorithm which outperforms the current state-of-the-art solution method in computational experiments for 99% of the instances reported in the literature. On many of the harder instances, our algorithm is orders of magnitude faster, which enabled it to solve 53 of the 72 previously unsolved instances. Our result relies fundamentally on a new dynamic programming algorithm which computes very strong lower bounds. This dynamic program solves a relaxation of the problem from bilevel to 2n-level where the items are processed in an online fashion. The relaxation is easier to solve but approximates the original problem surprisingly well in practice. We believe that this same technique may be useful for other interdiction problems.

我们考虑的是带拦截约束的双层背包问题,这是一个基本的双层整数编程问题,是 0-1 背包问题的一般化。在这个问题中,有两个背包和 n 个物品。问题的目标是选择一些物品装入第一个背包,使得将剩余物品装入第二个背包所获得的最大利润最小。我们提出了一种分支与边界组合算法,在文献报道的 99% 的实例中,该算法在计算实验中的表现优于目前最先进的求解方法。在许多较难的实例中,我们的算法要快上几个数量级,这使得它能够解决 72 个以前未解决的实例中的 53 个。我们的成果从根本上依赖于一种新的动态编程算法,它能计算出非常强的下限。该动态程序将问题从双级放宽到 2n 级,在 2n 级中,项目以在线方式处理。这种松弛更容易求解,但在实践中却能出人意料地逼近原始问题。我们相信,同样的技术对其他拦截问题也很有用。
{"title":"A fast combinatorial algorithm for the bilevel knapsack problem with interdiction constraints","authors":"Noah Weninger, Ricardo Fukasawa","doi":"10.1007/s10107-024-02133-9","DOIUrl":"https://doi.org/10.1007/s10107-024-02133-9","url":null,"abstract":"<p>We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel integer programming problem which generalizes the 0–1 knapsack problem. In this problem, there are two knapsacks and <i>n</i> items. The objective is to select some items to pack into the first knapsack such that the maximum profit attainable from packing some of the remaining items into the second knapsack is minimized. We present a combinatorial branch-and-bound algorithm which outperforms the current state-of-the-art solution method in computational experiments for 99% of the instances reported in the literature. On many of the harder instances, our algorithm is orders of magnitude faster, which enabled it to solve 53 of the 72 previously unsolved instances. Our result relies fundamentally on a new dynamic programming algorithm which computes very strong lower bounds. This dynamic program solves a relaxation of the problem from bilevel to 2<i>n</i>-level where the items are processed in an online fashion. The relaxation is easier to solve but approximates the original problem surprisingly well in practice. We believe that this same technique may be useful for other interdiction problems.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"2 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear conjugate gradient methods: worst-case convergence rates via computer-assisted analyses 非线性共轭梯度方法:通过计算机辅助分析实现最坏情况收敛率
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-22 DOI: 10.1007/s10107-024-02127-7
Shuvomoy Das Gupta, Robert M. Freund, Xu Andy Sun, Adrien Taylor

We propose a computer-assisted approach to the analysis of the worst-case convergence of nonlinear conjugate gradient methods (NCGMs). Those methods are known for their generally good empirical performances for large-scale optimization, while having relatively incomplete analyses. Using our computer-assisted approach, we establish novel complexity bounds for the Polak-Ribière-Polyak (PRP) and the Fletcher-Reeves (FR) NCGMs for smooth strongly convex minimization. In particular, we construct mathematical proofs that establish the first non-asymptotic convergence bound for FR (which is historically the first developed NCGM), and a much improved non-asymptotic convergence bound for PRP. Additionally, we provide simple adversarial examples on which these methods do not perform better than gradient descent with exact line search, leaving very little room for improvements on the same class of problems.

我们提出了一种计算机辅助方法,用于分析非线性共轭梯度方法(NCGMs)的最坏收敛情况。众所周知,这些方法在大规模优化方面具有普遍良好的经验性能,但分析却相对不完整。利用我们的计算机辅助方法,我们为用于平滑强凸最小化的 Polak-Ribière-Polyak (PRP) 和 Fletcher-Reeves (FR) NCGMs 建立了新的复杂度边界。特别是,我们构建了数学证明,为 FR(历史上第一个开发的 NCGM)建立了第一个非渐近收敛约束,并为 PRP 建立了一个大大改进的非渐近收敛约束。此外,我们还提供了一些简单的对抗性示例,在这些示例中,这些方法的性能并不比使用精确线性搜索的梯度下降法更好,因此在同一类问题上的改进空间很小。
{"title":"Nonlinear conjugate gradient methods: worst-case convergence rates via computer-assisted analyses","authors":"Shuvomoy Das Gupta, Robert M. Freund, Xu Andy Sun, Adrien Taylor","doi":"10.1007/s10107-024-02127-7","DOIUrl":"https://doi.org/10.1007/s10107-024-02127-7","url":null,"abstract":"<p>We propose a computer-assisted approach to the analysis of the worst-case convergence of nonlinear conjugate gradient methods (NCGMs). Those methods are known for their generally good empirical performances for large-scale optimization, while having relatively incomplete analyses. Using our computer-assisted approach, we establish novel complexity bounds for the Polak-Ribière-Polyak (PRP) and the Fletcher-Reeves (FR) NCGMs for smooth strongly convex minimization. In particular, we construct mathematical proofs that establish the first non-asymptotic convergence bound for FR (which is historically the first developed NCGM), and a much improved non-asymptotic convergence bound for PRP. Additionally, we provide simple adversarial examples on which these methods do not perform better than gradient descent with exact line search, leaving very little room for improvements on the same class of problems.\u0000</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"32 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning augmented branch and bound for mixed integer linear programming 混合整数线性规划的机器学习增强分支与约束
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-22 DOI: 10.1007/s10107-024-02130-y
Lara Scavuzzo, Karen Aardal, Andrea Lodi, Neil Yorke-Smith

Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. The main engine for solving MILPs is the branch-and-bound algorithm. Adding to the enormous algorithmic progress in MILP solving of the past decades, in more recent years there has been an explosive development in the use of machine learning for enhancing all main tasks involved in the branch-and-bound algorithm. These include primal heuristics, branching, cutting planes, node selection and solver configuration decisions. This article presents a survey of such approaches, addressing the vision of integration of machine learning and mathematical optimization as complementary technologies, and how this integration can benefit MILP solving. In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency. We also address appropriate MILP representations, benchmarks and software tools used in the context of applying learning algorithms.

混合整数线性规划(MILP)是数学优化的支柱,为广泛的应用提供了强大的建模语言。求解 MILP 的主要引擎是分支与边界算法。在过去几十年 MILP 求解算法取得巨大进步的基础上,近年来,机器学习在增强分支与边界算法所涉及的所有主要任务方面取得了爆炸性的发展。这些任务包括原始启发式、分支、切割平面、节点选择和求解器配置决策。本文概述了这些方法,探讨了机器学习与数学优化作为互补技术进行整合的前景,以及这种整合如何有利于 MILP 求解。特别是,我们详细介绍了自动优化分支边界效率指标的机器学习算法。我们还讨论了在应用学习算法时使用的适当 MILP 表示法、基准和软件工具。
{"title":"Machine learning augmented branch and bound for mixed integer linear programming","authors":"Lara Scavuzzo, Karen Aardal, Andrea Lodi, Neil Yorke-Smith","doi":"10.1007/s10107-024-02130-y","DOIUrl":"https://doi.org/10.1007/s10107-024-02130-y","url":null,"abstract":"<p>Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. The main engine for solving MILPs is the branch-and-bound algorithm. Adding to the enormous algorithmic progress in MILP solving of the past decades, in more recent years there has been an explosive development in the use of machine learning for enhancing all main tasks involved in the branch-and-bound algorithm. These include primal heuristics, branching, cutting planes, node selection and solver configuration decisions. This article presents a survey of such approaches, addressing the vision of integration of machine learning and mathematical optimization as complementary technologies, and how this integration can benefit MILP solving. In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency. We also address appropriate MILP representations, benchmarks and software tools used in the context of applying learning algorithms.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"6 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the strength of Lagrangian duality in multiobjective integer programming 论多目标整数编程中拉格朗日对偶性的强度
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-20 DOI: 10.1007/s10107-024-02121-z
Matthew Brun, Tyler Perini, Saumya Sinha, Andrew J. Schaefer

This paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.

本文研究了拉格朗日松弛在生成多目标整数程序(MOIP)非主图像质量约束方面的潜力。在松弛约束的某些条件下,我们证明了一组拉格朗日松弛可以提供与凸壳松弛产生的每个约束重合的约束。我们还为无支撑解的拉格朗日约束的相对质量提供了保证。这些结果意味着,如果松弛的可行区域是有界的,那么某些拉格朗日约束将严格优于某些凸壳约束。我们证明,存在稀疏的、满足互补松弛特性的拉格朗日乘子,并能在有支撑解处产生紧松弛。然而,如果所有约束条件都是二元化的,那么在无支撑解处的松弛就永远不会紧密。这些结果说明了在 MOIP 的有效解中拉格朗日对偶的强度。
{"title":"On the strength of Lagrangian duality in multiobjective integer programming","authors":"Matthew Brun, Tyler Perini, Saumya Sinha, Andrew J. Schaefer","doi":"10.1007/s10107-024-02121-z","DOIUrl":"https://doi.org/10.1007/s10107-024-02121-z","url":null,"abstract":"<p>This paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convexification techniques for fractional programs 分数程序的凸化技术
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-16 DOI: 10.1007/s10107-024-02131-x
Taotao He, Siyue Liu, Mohit Tawarmalani

This paper develops a correspondence relating convex hulls of fractional functions with those of polynomial functions over the same domain. Using this result, we develop a number of new reformulations and relaxations for fractional programming problems. First, we relate (0mathord {-}1) problems involving a ratio of affine functions with the boolean quadric polytope, and use inequalities for the latter to develop tighter formulations for the former. Second, we derive a new formulation to optimize a ratio of quadratic functions over a polytope using copositive programming. Third, we show that univariate fractional functions can be convexified using moment hulls. Fourth, we develop a new hierarchy of relaxations that converges finitely to the simultaneous convex hull of a collection of ratios of affine functions of (0mathord {-}1) variables. Finally, we demonstrate theoretically and computationally that our techniques close a significant gap relative to state-of-the-art relaxations, require much less computational effort, and can solve larger problem instances.

本文提出了分式函数的凸壳与同一域上多项式函数的凸壳之间的对应关系。利用这一结果,我们为分式编程问题开发了许多新的重构和松弛方法。首先,我们将涉及仿射函数之比的(0mathord {-}1)问题与布尔二次多面体联系起来,并利用后者的不等式为前者建立了更严密的公式。其次,我们推导出一种新的公式,利用共正编程优化多面体上的二次函数之比。第三,我们证明了单变量分式函数可以利用矩壳进行凸化。第四,我们开发了一种新的松弛层次,它可以有限地收敛到 (0mathord {-}1) 变量的仿射函数比率集合的同时凸壳。最后,我们从理论和计算上证明,我们的技术与最先进的松弛技术相比缩小了很大差距,所需的计算量也小得多,而且可以解决更大的问题实例。
{"title":"Convexification techniques for fractional programs","authors":"Taotao He, Siyue Liu, Mohit Tawarmalani","doi":"10.1007/s10107-024-02131-x","DOIUrl":"https://doi.org/10.1007/s10107-024-02131-x","url":null,"abstract":"<p>This paper develops a correspondence relating convex hulls of fractional functions with those of polynomial functions over the same domain. Using this result, we develop a number of new reformulations and relaxations for fractional programming problems. First, we relate <span>(0mathord {-}1)</span> problems involving a ratio of affine functions with the boolean quadric polytope, and use inequalities for the latter to develop tighter formulations for the former. Second, we derive a new formulation to optimize a ratio of quadratic functions over a polytope using copositive programming. Third, we show that univariate fractional functions can be convexified using moment hulls. Fourth, we develop a new hierarchy of relaxations that converges finitely to the simultaneous convex hull of a collection of ratios of affine functions of <span>(0mathord {-}1)</span> variables. Finally, we demonstrate theoretically and computationally that our techniques close a significant gap relative to state-of-the-art relaxations, require much less computational effort, and can solve larger problem instances.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"33 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the correlation gap of matroids 关于矩阵的相关性差距
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-08 DOI: 10.1007/s10107-024-02116-w
Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh

A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least (1-1/e), and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.

集合函数可以通过各种方式扩展到单位立方体;相关性差距测量两个自然扩展之间的比率。在一系列近似算法和机制设计设置中,这个量被认为是性能保证。众所周知,单调亚模态函数的相关性差距至少为 (1-1/e/),这对于简单的矩阵秩函数来说是很严格的。我们开始对 matroid 秩函数的相关间隙进行精细研究。特别是,我们提出了以 matroid 的秩和周长为参数的相关差距的改进下界。我们还证明,对于任何 matroid,其加权秩函数的相关差距在统一权重下都是最小的。这种改进的下界可直接用于矩阵约束下的子模最大化、机制设计和争用解决方案。
{"title":"On the correlation gap of matroids","authors":"Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh","doi":"10.1007/s10107-024-02116-w","DOIUrl":"https://doi.org/10.1007/s10107-024-02116-w","url":null,"abstract":"<p>A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least <span>(1-1/e)</span>, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Configuration balancing for stochastic requests 随机请求的配置平衡
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-08 DOI: 10.1007/s10107-024-02132-w
Franziska Eberle, Anupam Gupta, Nicole Megow, Benjamin Moseley, Rudy Zhou

The configuration balancing problem with stochastic requests generalizes well-studied resource allocation problems such as load balancing and virtual circuit routing. There are given m resources and n requests; each request has multiple possible configurations, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize the makespan: the load of the most-loaded resource. In the stochastic setting, the amount by which a configuration increases the resource load is uncertain until the configuration is chosen, but we are given a probability distribution. We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that (O(frac{log m}{log log m}))-approximates the optimal adaptive policy, which matches a known lower bound for the special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is (O(log m)) competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing on related machines to obtain a constant-factor approximation offline and an (O(log log m))-approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions.

随机请求的配置平衡问题概括了负载平衡和虚拟电路路由等已被充分研究的资源分配问题。给定 m 个资源和 n 个请求;每个请求都有多个可能的配置,每个配置都会使每个资源的负载增加一定量。我们的目标是为每个请求选择一种配置,以最小化跨度(makespan),即负载最大的资源的负载。在随机设置中,在选择配置之前,配置增加资源负载的数量是不确定的,但我们得到了一个概率分布。我们为随机请求的配置平衡开发了离线和在线算法。当离线请求已知时,我们给出了一种非自适应的随机请求配置平衡策略,该策略(O(frac{log m}{log log m})接近最优自适应策略,与已知的相同机器负载平衡特例下限相匹配。当请求以列表形式在线到达时,我们给出的非自适应策略具有 (O(log m))竞争力。同样,由于特殊情况(如在不相关机器上的负载均衡)的信息论下限,这一结果在渐近上是紧密的。最后,我们展示了如何在相关机器上的负载均衡这种特殊情况下利用适应性来获得离线恒因子近似和在线(O(loglog m))近似。我们所有结果中的一个关键技术要素是最优自适应策略的新结构特征,它允许我们限制其决策之间的相关性。
{"title":"Configuration balancing for stochastic requests","authors":"Franziska Eberle, Anupam Gupta, Nicole Megow, Benjamin Moseley, Rudy Zhou","doi":"10.1007/s10107-024-02132-w","DOIUrl":"https://doi.org/10.1007/s10107-024-02132-w","url":null,"abstract":"<p>The configuration balancing problem with stochastic requests generalizes well-studied resource allocation problems such as load balancing and virtual circuit routing. There are given <i>m</i> resources and <i>n</i> requests; each request has multiple possible <i>configurations</i>, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize the <i>makespan</i>: the load of the most-loaded resource. In the stochastic setting, the amount by which a configuration increases the resource load is uncertain until the configuration is chosen, but we are given a probability distribution. We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that <span>(O(frac{log m}{log log m}))</span>-approximates the optimal adaptive policy, which matches a known lower bound for the special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is <span>(O(log m))</span> competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing on <i>related</i> machines to obtain a constant-factor approximation offline and an <span>(O(log log m))</span>-approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions.\u0000</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"30 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonsmooth convex–concave saddle point problems with cardinality penalties 有数量惩罚的非光滑凸凹鞍点问题
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-08 DOI: 10.1007/s10107-024-02123-x
Wei Bian, Xiaojun Chen

In this paper, we focus on a class of convexly constrained nonsmooth convex–concave saddle point problems with cardinality penalties. Although such nonsmooth nonconvex–nonconcave and discontinuous min–max problems may not have a saddle point, we show that they have a local saddle point and a global minimax point, and some local saddle points have the lower bound properties. We define a class of strong local saddle points based on the lower bound properties for stability of variable selection. Moreover, we give a framework to construct continuous relaxations of the discontinuous min–max problems based on convolution, such that they have the same saddle points with the original problem. We also establish the relations between the continuous relaxation problems and the original problems regarding local saddle points, global minimax points, local minimax points and stationary points. Finally, we illustrate our results with distributionally robust sparse convex regression, sparse robust bond portfolio construction and sparse convex–concave logistic regression saddle point problems.

在本文中,我们重点研究了一类带有万有引力惩罚的凸约束非光滑凸凹鞍点问题。虽然这类非光滑非凸非凹且不连续的最小极大问题可能不存在鞍点,但我们证明了它们存在局部鞍点和全局最小极大点,而且一些局部鞍点具有下界特性。我们根据变量选择稳定性的下界特性定义了一类强局部鞍点。此外,我们还给出了一个基于卷积的非连续最小最大问题的连续松弛框架,使它们与原始问题具有相同的鞍点。我们还建立了连续松弛问题与原始问题在局部鞍点、全局最小点、局部最小点和静止点方面的关系。最后,我们用分布稳健稀疏凸回归、稀疏稳健债券组合构建和稀疏凸凹逻辑回归鞍点问题来说明我们的结果。
{"title":"Nonsmooth convex–concave saddle point problems with cardinality penalties","authors":"Wei Bian, Xiaojun Chen","doi":"10.1007/s10107-024-02123-x","DOIUrl":"https://doi.org/10.1007/s10107-024-02123-x","url":null,"abstract":"<p>In this paper, we focus on a class of convexly constrained nonsmooth convex–concave saddle point problems with cardinality penalties. Although such nonsmooth nonconvex–nonconcave and discontinuous min–max problems may not have a saddle point, we show that they have a local saddle point and a global minimax point, and some local saddle points have the lower bound properties. We define a class of strong local saddle points based on the lower bound properties for stability of variable selection. Moreover, we give a framework to construct continuous relaxations of the discontinuous min–max problems based on convolution, such that they have the same saddle points with the original problem. We also establish the relations between the continuous relaxation problems and the original problems regarding local saddle points, global minimax points, local minimax points and stationary points. Finally, we illustrate our results with distributionally robust sparse convex regression, sparse robust bond portfolio construction and sparse convex–concave logistic regression saddle point problems.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"85 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unified smoothing approach for best hyperparameter selection problem using a bilevel optimization strategy 使用双层优化策略解决最佳超参数选择问题的统一平滑法
IF 2.7 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-08 DOI: 10.1007/s10107-024-02113-z
Jan Harold Alcantara, Chieu Thanh Nguyen, Takayuki Okuno, Akiko Takeda, Jein-Shan Chen

Strongly motivated from applications in various fields including machine learning, the methodology of sparse optimization has been developed intensively so far. Especially, the advancement of algorithms for solving problems with nonsmooth regularizers has been remarkable. However, those algorithms suppose that weight parameters of regularizers, called hyperparameters hereafter, are pre-fixed, but it is a crucial matter how the best hyperparameter should be selected. In this paper, we focus on the hyperparameter selection of regularizers related to the (ell _p) function with (0<ple 1) and apply a bilevel programming strategy, wherein we need to solve a bilevel problem, whose lower-level problem is nonsmooth, possibly nonconvex and non-Lipschitz. Recently, for solving a bilevel problem for hyperparameter selection of the pure (ell _p (0<p le 1)) regularizer Okuno et al. discovered new necessary optimality conditions, called SB(scaled bilevel)-KKT conditions, and further proposed a smoothing-type algorithm using a specific smoothing function. However, this optimality measure is loose in the sense that there could be many points that satisfy the SB-KKT conditions. In this work, we propose new bilevel KKT conditions, which are new necessary optimality conditions tighter than the ones proposed by Okuno et al. Moreover, we propose a unified smoothing approach using smoothing functions that belong to the Chen-Mangasarian class, and then prove that generated iteration points accumulate at bilevel KKT points under milder constraint qualifications. Another contribution is that our approach and analysis are applicable to a wider class of regularizers. Numerical comparisons demonstrate which smoothing functions work well for hyperparameter optimization via bilevel optimization approach.

在包括机器学习在内的各个领域的应用的强烈推动下,稀疏优化方法学迄今已得到了深入的发展。特别是,解决非光滑正则问题的算法取得了显著的进步。然而,这些算法都假定正则器(下文称为超参数)的权重参数是预先固定的,但如何选择最佳超参数却是一个关键问题。在本文中,我们重点研究了与 (0<ple 1) 函数相关的正则器的超参数选择,并应用了双层次编程策略,即我们需要求解一个双层次问题,其下层问题是非光滑的、可能是非凸的和非 Lipschitz 的。最近,Okuno 等人发现了新的必要最优条件,即 SB(scaled bilevel)-KKT 条件,并进一步提出了一种使用特定平滑函数的平滑型算法。然而,这种最优度量是松散的,因为可能有很多点都满足 SB-KKT 条件。在这项工作中,我们提出了新的双级 KKT 条件,这是比 Okuno 等人提出的条件更严格的新的必要最优性条件。此外,我们还提出了一种使用属于 Chen-Mangasarian 类的平滑函数的统一平滑方法,并证明了在较温和的约束条件下,生成的迭代点会累积到双级 KKT 点。另一个贡献是,我们的方法和分析适用于更广泛的正则器类别。数值比较证明了哪些平滑函数能很好地通过双级优化方法进行超参数优化。
{"title":"Unified smoothing approach for best hyperparameter selection problem using a bilevel optimization strategy","authors":"Jan Harold Alcantara, Chieu Thanh Nguyen, Takayuki Okuno, Akiko Takeda, Jein-Shan Chen","doi":"10.1007/s10107-024-02113-z","DOIUrl":"https://doi.org/10.1007/s10107-024-02113-z","url":null,"abstract":"<p>Strongly motivated from applications in various fields including machine learning, the methodology of sparse optimization has been developed intensively so far. Especially, the advancement of algorithms for solving problems with nonsmooth regularizers has been remarkable. However, those algorithms suppose that weight parameters of regularizers, called hyperparameters hereafter, are pre-fixed, but it is a crucial matter how the best hyperparameter should be selected. In this paper, we focus on the hyperparameter selection of regularizers related to the <span>(ell _p)</span> function with <span>(0&lt;ple 1)</span> and apply a bilevel programming strategy, wherein we need to solve a bilevel problem, whose lower-level problem is nonsmooth, possibly nonconvex and non-Lipschitz. Recently, for solving a bilevel problem for hyperparameter selection of the pure <span>(ell _p (0&lt;p le 1))</span> regularizer Okuno et al. discovered new necessary optimality conditions, called SB(scaled bilevel)-KKT conditions, and further proposed a smoothing-type algorithm using a specific smoothing function. However, this optimality measure is loose in the sense that there could be many points that satisfy the SB-KKT conditions. In this work, we propose new bilevel KKT conditions, which are new necessary optimality conditions tighter than the ones proposed by Okuno et al. Moreover, we propose a unified smoothing approach using smoothing functions that belong to the Chen-Mangasarian class, and then prove that generated iteration points accumulate at bilevel KKT points under milder constraint qualifications. Another contribution is that our approach and analysis are applicable to a wider class of regularizers. Numerical comparisons demonstrate which smoothing functions work well for hyperparameter optimization via bilevel optimization approach.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematical Programming
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1