The safety of chemical processes is of critical importance. However, traditional fault monitoring methods have insufficiently studied the monitoring accuracy of multi-channel data and have not adequately considered the impact of noise on industrial processes. To address this issue, this paper proposes a neural network-based model, DSCBAM-DenseNet, which integrates depthwise separable convolution and attention modules to fuse multi-channel data features and enhance the model’s noise resistance. We simulated a real environment by adding Gaussian noise with different signal-to-noise ratios to the Tennessee Eastman process dataset and trained the model using multi-channel data. The experimental results show that this model outperforms traditional models in both fault diagnosis accuracy and noise resistance. Further research on a compressor unit engineering instance validated the superiority of the model.
{"title":"Fault Monitoring Method for the Process Industry System Based on the Improved Dense Connection Network","authors":"Jiarula Yasenjiang, Zhigang Lan, Kai Wang, Luhui Lv, Chao He, Yingjun Zhao, Wenhao Wang, Tian Gao","doi":"10.3390/math12182843","DOIUrl":"https://doi.org/10.3390/math12182843","url":null,"abstract":"The safety of chemical processes is of critical importance. However, traditional fault monitoring methods have insufficiently studied the monitoring accuracy of multi-channel data and have not adequately considered the impact of noise on industrial processes. To address this issue, this paper proposes a neural network-based model, DSCBAM-DenseNet, which integrates depthwise separable convolution and attention modules to fuse multi-channel data features and enhance the model’s noise resistance. We simulated a real environment by adding Gaussian noise with different signal-to-noise ratios to the Tennessee Eastman process dataset and trained the model using multi-channel data. The experimental results show that this model outperforms traditional models in both fault diagnosis accuracy and noise resistance. Further research on a compressor unit engineering instance validated the superiority of the model.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"107 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on the principles of biomimicry, evolutionary algorithms (EAs) have been widely applied across diverse domains to tackle practical challenges. However, the inherent limitations of these algorithms call for further refinement to strike a delicate balance between global exploration and local exploitation. Thus, this paper introduces a novel multi-strategy enhanced hybrid algorithm called MHWACO, which integrates a Whale Optimization Algorithm (WOA) and Ant Colony Optimization (ACO). Initially, MHWACO employs Gaussian perturbation optimization for individual initialization. Subsequently, individuals selectively undertake either localized exploration based on the refined WOA or global prospecting anchored in the Golden Sine Algorithm (Golden-SA), determined by transition probabilities. Inspired by the collaborative behavior of ant colonies, a Flight Ant (FA) strategy is proposed to guide unoptimized individuals toward potential global optimal solutions. Finally, the Gaussian scatter search (GSS) strategy is activated during low population activity, striking a balance between global exploration and local exploitation capabilities. Moreover, the efficacy of Support Vector Regression (SVR) and random forest (RF) as regression models heavily depends on parameter selection. In response, we have devised the MHWACO-SVM and MHWACO-RF models to refine the selection of parameters, applying them to various real-world problems such as stock prediction, housing estimation, disease forecasting, fire prediction, and air quality monitoring. Experimental comparisons against 9 newly proposed intelligent optimization algorithms and 9 enhanced algorithms across 34 benchmark test functions and the CEC2022 benchmark suite, highlight the notable superiority and efficacy of MSWOA in addressing global optimization problems. Finally, the proposed MHWACO-SVM and MHWACO-RF models outperform other regression models across key metrics such as the Mean Bias Error (MBE), Coefficient of Determination (R2), Mean Absolute Error (MAE), Explained Variance Score (EVS), and Median Absolute Error (MEAE).
{"title":"A Multi-Strategy Enhanced Hybrid Ant–Whale Algorithm and Its Applications in Machine Learning","authors":"Chenyang Gao, Yahua He , Yuelin Gao","doi":"10.3390/math12182848","DOIUrl":"https://doi.org/10.3390/math12182848","url":null,"abstract":"Based on the principles of biomimicry, evolutionary algorithms (EAs) have been widely applied across diverse domains to tackle practical challenges. However, the inherent limitations of these algorithms call for further refinement to strike a delicate balance between global exploration and local exploitation. Thus, this paper introduces a novel multi-strategy enhanced hybrid algorithm called MHWACO, which integrates a Whale Optimization Algorithm (WOA) and Ant Colony Optimization (ACO). Initially, MHWACO employs Gaussian perturbation optimization for individual initialization. Subsequently, individuals selectively undertake either localized exploration based on the refined WOA or global prospecting anchored in the Golden Sine Algorithm (Golden-SA), determined by transition probabilities. Inspired by the collaborative behavior of ant colonies, a Flight Ant (FA) strategy is proposed to guide unoptimized individuals toward potential global optimal solutions. Finally, the Gaussian scatter search (GSS) strategy is activated during low population activity, striking a balance between global exploration and local exploitation capabilities. Moreover, the efficacy of Support Vector Regression (SVR) and random forest (RF) as regression models heavily depends on parameter selection. In response, we have devised the MHWACO-SVM and MHWACO-RF models to refine the selection of parameters, applying them to various real-world problems such as stock prediction, housing estimation, disease forecasting, fire prediction, and air quality monitoring. Experimental comparisons against 9 newly proposed intelligent optimization algorithms and 9 enhanced algorithms across 34 benchmark test functions and the CEC2022 benchmark suite, highlight the notable superiority and efficacy of MSWOA in addressing global optimization problems. Finally, the proposed MHWACO-SVM and MHWACO-RF models outperform other regression models across key metrics such as the Mean Bias Error (MBE), Coefficient of Determination (R2), Mean Absolute Error (MAE), Explained Variance Score (EVS), and Median Absolute Error (MEAE).","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"18 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A sequence of n trials from a finite population with no replacement is described by the hypergeometric distribution as the number of successes. Calculating the likelihood that factory-produced items would be defective is one of the most popular uses of the hypergeometric distribution in industrial quality control. Very recently, several researchers have applied this distribution on certain families of analytic functions. In this study, we provide certain adequate criteria for the generalized hypergeometric distribution series to be in two families of analytic functions defined in the open unit disk. Furthermore, we consider an integral operator for the hypergeometric distribution. Some corollaries will be implied from our main results.
超几何分布用成功次数来描述从有限群体中进行的 n 次无替换试验序列。计算工厂生产的产品出现缺陷的可能性是超几何分布在工业质量控制中最常用的方法之一。最近,一些研究人员将该分布应用于某些分析函数族。在本研究中,我们为广义超几何分布序列进入定义在开放单位盘中的两个解析函数族提供了某些适当的标准。此外,我们还考虑了超几何分布的积分算子。我们的主要结果将隐含一些推论。
{"title":"Applications of Generalized Hypergeometric Distribution on Comprehensive Families of Analytic Functions","authors":"Tariq Al-Hawary, Basem Frasin, Ibtisam Aldawish","doi":"10.3390/math12182851","DOIUrl":"https://doi.org/10.3390/math12182851","url":null,"abstract":"A sequence of n trials from a finite population with no replacement is described by the hypergeometric distribution as the number of successes. Calculating the likelihood that factory-produced items would be defective is one of the most popular uses of the hypergeometric distribution in industrial quality control. Very recently, several researchers have applied this distribution on certain families of analytic functions. In this study, we provide certain adequate criteria for the generalized hypergeometric distribution series to be in two families of analytic functions defined in the open unit disk. Furthermore, we consider an integral operator for the hypergeometric distribution. Some corollaries will be implied from our main results.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"42 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Chen, Jie Chen, Yangyang Lai, Xiaoqi Yu, Lijun Shang, Rui Peng, Baoliang Liu
With advanced digital technologies as the key support, many scholars and researchers have proposed various random warranty models by integrating mission cycles into the warranty stage. However, these existing warranty models are designed only from the manufacturer’s subjective perspective, ignoring certain consumer requirements. For instance, they overlook a wide range of warranty coverage, the pursuit of reliability improvement rather than mere minimal repair, and the need to limit the delay in repair. To address these consumer requirements, this paper proposes a novel random collaborative preventive maintenance warranty with repair-time threshold (RCPMW-RTT). This model incorporates terms that are jointly designed by manufacturers and consumers to meet specific consumer needs, thereby overcoming the limitations of existing warranty models. The introduction of a repair-time threshold aims to limit the time delay in repairing failures and to compensate for any losses incurred by consumers. Using probability theory, the RCPMW-RTT is evaluated in terms of cost and time, and relevant variants are derived by analyzing key parameters. As an exemplary representation of the RCPMW-RTT, two random replacement policies named the discrete random renewable back replacement (DRRBR) and the discrete random renewable front replacement (DRRFR) are proposed and modelled to ensure reliability after the expiration of the RCPMW-RTT. In both policies, product replacement is triggered either by the occurrence of the first extreme mission cycle or by reaching the limit on the number of non-extreme mission cycles, whichever comes first. Probability theory is used to present cost rates for both policies in order to determine optimal values for decision variables. Finally, numerical analysis is performed on the RCPMW-RTT to reveal hidden variation tendencies and mechanisms; numerical analysis is also performed on the DRRBR and the DRRFR. The numerical results show that the proposed random replacement policies are feasible and unique; the replacement time within the post-warranty coverage increases as the maintenance quality improves and the cost rate can be reduced by setting a smaller repair-time threshold.
{"title":"Discrete Random Renewable Replacements after the Expiration of Collaborative Preventive Maintenance Warranty","authors":"Hui Chen, Jie Chen, Yangyang Lai, Xiaoqi Yu, Lijun Shang, Rui Peng, Baoliang Liu","doi":"10.3390/math12182845","DOIUrl":"https://doi.org/10.3390/math12182845","url":null,"abstract":"With advanced digital technologies as the key support, many scholars and researchers have proposed various random warranty models by integrating mission cycles into the warranty stage. However, these existing warranty models are designed only from the manufacturer’s subjective perspective, ignoring certain consumer requirements. For instance, they overlook a wide range of warranty coverage, the pursuit of reliability improvement rather than mere minimal repair, and the need to limit the delay in repair. To address these consumer requirements, this paper proposes a novel random collaborative preventive maintenance warranty with repair-time threshold (RCPMW-RTT). This model incorporates terms that are jointly designed by manufacturers and consumers to meet specific consumer needs, thereby overcoming the limitations of existing warranty models. The introduction of a repair-time threshold aims to limit the time delay in repairing failures and to compensate for any losses incurred by consumers. Using probability theory, the RCPMW-RTT is evaluated in terms of cost and time, and relevant variants are derived by analyzing key parameters. As an exemplary representation of the RCPMW-RTT, two random replacement policies named the discrete random renewable back replacement (DRRBR) and the discrete random renewable front replacement (DRRFR) are proposed and modelled to ensure reliability after the expiration of the RCPMW-RTT. In both policies, product replacement is triggered either by the occurrence of the first extreme mission cycle or by reaching the limit on the number of non-extreme mission cycles, whichever comes first. Probability theory is used to present cost rates for both policies in order to determine optimal values for decision variables. Finally, numerical analysis is performed on the RCPMW-RTT to reveal hidden variation tendencies and mechanisms; numerical analysis is also performed on the DRRBR and the DRRFR. The numerical results show that the proposed random replacement policies are feasible and unique; the replacement time within the post-warranty coverage increases as the maintenance quality improves and the cost rate can be reduced by setting a smaller repair-time threshold.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"12 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yurong Dong, Hua Liu, Yumei Wei, Qibin Zhang, Gang Ma
The purpose of this paper is to study a predator–prey model with Allee effect and double time delays. This research examines the dynamics of the model, with a focus on positivity, existence, stability and Hopf bifurcations. The stability of the periodic solution and the direction of the Hopf bifurcation are elucidated by applying the normal form theory and the center manifold theorem. To validate the correctness of the theoretical analysis, numerical simulations were conducted. The results suggest that a weak Allee effect delay can promote stability within the model, transitioning it from instability to stability. Nevertheless, the competition delay induces periodic oscillations and chaotic dynamics, ultimately resulting in the population’s collapse.
{"title":"Stability and Hopf Bifurcation Analysis of a Predator–Prey Model with Weak Allee Effect Delay and Competition Delay","authors":"Yurong Dong, Hua Liu, Yumei Wei, Qibin Zhang, Gang Ma","doi":"10.3390/math12182853","DOIUrl":"https://doi.org/10.3390/math12182853","url":null,"abstract":"The purpose of this paper is to study a predator–prey model with Allee effect and double time delays. This research examines the dynamics of the model, with a focus on positivity, existence, stability and Hopf bifurcations. The stability of the periodic solution and the direction of the Hopf bifurcation are elucidated by applying the normal form theory and the center manifold theorem. To validate the correctness of the theoretical analysis, numerical simulations were conducted. The results suggest that a weak Allee effect delay can promote stability within the model, transitioning it from instability to stability. Nevertheless, the competition delay induces periodic oscillations and chaotic dynamics, ultimately resulting in the population’s collapse.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"9 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gunasekaran Nithyakala, George E. Chatzarakis, Govindasamy Ayyappan, Ethiraju Thandapani
The purpose of this paper is to add some new asymptotic and oscillatory results for third-order neutral delay differential equations with noncanonical operators. Without assuming any extra conditions, by using the canonical transform technique, the studied equation is changed to a canonical type equation, and this reduces the number of classes of nonoscillatory solutions into two instead of four. Then, we obtain Myshkis type sufficient conditions for the nonexistence of Kneser type solutions for the studied equation. Finally, employing these newly obtained criteria, we provide conditions for the oscillation of all solutions of the studied equation. Examples are presented to illustrate the importance and the significance of the main results.
{"title":"Third-Order Noncanonical Neutral Delay Differential Equations: Nonexistence of Kneser Solutions via Myshkis Type Criteria","authors":"Gunasekaran Nithyakala, George E. Chatzarakis, Govindasamy Ayyappan, Ethiraju Thandapani","doi":"10.3390/math12182847","DOIUrl":"https://doi.org/10.3390/math12182847","url":null,"abstract":"The purpose of this paper is to add some new asymptotic and oscillatory results for third-order neutral delay differential equations with noncanonical operators. Without assuming any extra conditions, by using the canonical transform technique, the studied equation is changed to a canonical type equation, and this reduces the number of classes of nonoscillatory solutions into two instead of four. Then, we obtain Myshkis type sufficient conditions for the nonexistence of Kneser type solutions for the studied equation. Finally, employing these newly obtained criteria, we provide conditions for the oscillation of all solutions of the studied equation. Examples are presented to illustrate the importance and the significance of the main results.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"45 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zehra Pinar Izgi, Pshtiwan Othman Mohammed, Ravi P. Agarwal, Majeed A. Yousif, Alina Alb Lupas, Mohamed Abdelwahed
Abstract: Metamaterials have emerged as a focal point in contemporary science and technology due to their ability to drive significant innovations. These engineered materials are specifically designed to couple the phenomena of different physical natures, thereby influencing processes through mechanical or thermal effects. While much of the recent research has concentrated on frequency conversion into electromagnetic waves, the field of acoustic frequency conversion still faces considerable technical challenges. To overcome these hurdles, researchers are developing metamaterials with customized acoustic properties. A key equation for modeling nonlinear acoustic wave phenomena is the dissipative Westervelt equation. This study investigates analytical solutions using ansatz-based methods combined with Lie symmetries. The approach presented here provides a versatile framework that is applicable to a wide range of fields in metamaterial design.
{"title":"Efficient Study on Westervelt-Type Equations to Design Metamaterials via Symmetry Analysis","authors":"Zehra Pinar Izgi, Pshtiwan Othman Mohammed, Ravi P. Agarwal, Majeed A. Yousif, Alina Alb Lupas, Mohamed Abdelwahed","doi":"10.3390/math12182855","DOIUrl":"https://doi.org/10.3390/math12182855","url":null,"abstract":"Abstract: Metamaterials have emerged as a focal point in contemporary science and technology due to their ability to drive significant innovations. These engineered materials are specifically designed to couple the phenomena of different physical natures, thereby influencing processes through mechanical or thermal effects. While much of the recent research has concentrated on frequency conversion into electromagnetic waves, the field of acoustic frequency conversion still faces considerable technical challenges. To overcome these hurdles, researchers are developing metamaterials with customized acoustic properties. A key equation for modeling nonlinear acoustic wave phenomena is the dissipative Westervelt equation. This study investigates analytical solutions using ansatz-based methods combined with Lie symmetries. The approach presented here provides a versatile framework that is applicable to a wide range of fields in metamaterial design.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"2 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents an interpretable, spiking neural classifier (IpT-SNC) with time-varying weights. IpT-SNC uses a two-layered spiking neural network (SNN) architecture in which weights of synapses are modeled using amplitude-modulated, time-varying Gaussian functions. Self-regulated particle swarm optimization (SRPSO) is used to update the amplitude, width, and centers of the Gaussian functions and thresholds of neurons in the output layer. IpT-SNC has been developed to improve the interpretability of spiking neural networks. The time-varying weights in IpT-SNC allow us to describe the rationale behind predictions in terms of specific input spikes. The performance of IpT-SNC is evaluated on ten benchmark datasets in the UCI machine learning repository and compared with the performance of other learning algorithms. According to the performance results, IpT-SNC enhances classification performance on testing datasets from a minimum of 0.5% to a maximum of 7.7%. The significance level of IpT-SNC with other learning algorithms is evaluated using statistical tests like the Friedman test and the paired t-test. Furthermore, on the challenging real-world BCI (Brain Computer Interface) competition IV dataset, IpT-SNC outperforms current classifiers by about 8% in terms of classification accuracy. The results indicate that IpT-SNC has better generalization performance than other algorithms.
{"title":"A Particle Swarm Optimization-Based Interpretable Spiking Neural Classifier with Time-Varying Weights","authors":"Mohammed Thousif, Shirin Dora, Suresh Sundaram","doi":"10.3390/math12182846","DOIUrl":"https://doi.org/10.3390/math12182846","url":null,"abstract":"This paper presents an interpretable, spiking neural classifier (IpT-SNC) with time-varying weights. IpT-SNC uses a two-layered spiking neural network (SNN) architecture in which weights of synapses are modeled using amplitude-modulated, time-varying Gaussian functions. Self-regulated particle swarm optimization (SRPSO) is used to update the amplitude, width, and centers of the Gaussian functions and thresholds of neurons in the output layer. IpT-SNC has been developed to improve the interpretability of spiking neural networks. The time-varying weights in IpT-SNC allow us to describe the rationale behind predictions in terms of specific input spikes. The performance of IpT-SNC is evaluated on ten benchmark datasets in the UCI machine learning repository and compared with the performance of other learning algorithms. According to the performance results, IpT-SNC enhances classification performance on testing datasets from a minimum of 0.5% to a maximum of 7.7%. The significance level of IpT-SNC with other learning algorithms is evaluated using statistical tests like the Friedman test and the paired t-test. Furthermore, on the challenging real-world BCI (Brain Computer Interface) competition IV dataset, IpT-SNC outperforms current classifiers by about 8% in terms of classification accuracy. The results indicate that IpT-SNC has better generalization performance than other algorithms.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"22 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study proposes a novel mathematical model for the Multi-Day Tourist Trip Design Problem with Stochastic Travel Time and Partial Charging for Battery Electric Vehicle (MD-TTDP-STT-PCBEV). To the best of our knowledge, no prior study has fully incorporated the use of BEVs into TTDP models. Given the limited driving range of BEVs, the model requires decisions regarding the locations and policy for recharging the vehicle’s battery. The problem also incorporates real-world uncertainty by considering travel time as a random variable subjected to normal distribution. The model is formulated using chance-constraint programming, aiming to find optimal tourist routes for BEVs that maximize tourist satisfaction. Numerical experiments were conducted to compare solutions between stochastic and deterministic environments. Computational experiments using the LINGO optimization solver demonstrated that the total rating scores obtained from the stochastic model with chance-constraint programming were generally lower than those from the deterministic model due to travel time uncertainties. These results highlight the importance of incorporating real-world uncertainty and variability to achieve more accurate and reliable planning.
{"title":"A Novel Tourist Trip Design Problem with Stochastic Travel Times and Partial Charging for Battery Electric Vehicles","authors":"Samita Kedkaew, Warisa Nakkiew, Parida Jewpanya, Wasawat Nakkiew","doi":"10.3390/math12182822","DOIUrl":"https://doi.org/10.3390/math12182822","url":null,"abstract":"This study proposes a novel mathematical model for the Multi-Day Tourist Trip Design Problem with Stochastic Travel Time and Partial Charging for Battery Electric Vehicle (MD-TTDP-STT-PCBEV). To the best of our knowledge, no prior study has fully incorporated the use of BEVs into TTDP models. Given the limited driving range of BEVs, the model requires decisions regarding the locations and policy for recharging the vehicle’s battery. The problem also incorporates real-world uncertainty by considering travel time as a random variable subjected to normal distribution. The model is formulated using chance-constraint programming, aiming to find optimal tourist routes for BEVs that maximize tourist satisfaction. Numerical experiments were conducted to compare solutions between stochastic and deterministic environments. Computational experiments using the LINGO optimization solver demonstrated that the total rating scores obtained from the stochastic model with chance-constraint programming were generally lower than those from the deterministic model due to travel time uncertainties. These results highlight the importance of incorporating real-world uncertainty and variability to achieve more accurate and reliable planning.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"9 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Planar differential systems whose angular velocity is constant are called rigid or uniform differential systems. The first rigid system goes back to the pendulum clock of Christiaan Huygens in 1656; since then, the interest for the rigid systems has been growing. Thus, at this moment, in MathSciNet there are 108 articles with the words rigid systems or uniform systems in their titles. Here, we study the dynamics of the planar rigid polynomial differential systems with homogeneous nonlinearities of arbitrary degree. More precisely, we characterize the existence and non-existence of limit cycles in this class of rigid systems, and we determine the local phase portraits of their finite and infinite equilibrium points in the Poincaré disc. Finally, we classify the global phase portraits in the Poincaré disc of the rigid polynomial differential systems of degree two, and of one class of rigid polynomial differential systems with cubic homogeneous nonlinearities that can exhibit one limit cycle.
{"title":"Rigid Polynomial Differential Systems with Homogeneous Nonlinearities","authors":"Jaume Llibre","doi":"10.3390/math12182806","DOIUrl":"https://doi.org/10.3390/math12182806","url":null,"abstract":"Planar differential systems whose angular velocity is constant are called rigid or uniform differential systems. The first rigid system goes back to the pendulum clock of Christiaan Huygens in 1656; since then, the interest for the rigid systems has been growing. Thus, at this moment, in MathSciNet there are 108 articles with the words rigid systems or uniform systems in their titles. Here, we study the dynamics of the planar rigid polynomial differential systems with homogeneous nonlinearities of arbitrary degree. More precisely, we characterize the existence and non-existence of limit cycles in this class of rigid systems, and we determine the local phase portraits of their finite and infinite equilibrium points in the Poincaré disc. Finally, we classify the global phase portraits in the Poincaré disc of the rigid polynomial differential systems of degree two, and of one class of rigid polynomial differential systems with cubic homogeneous nonlinearities that can exhibit one limit cycle.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}