Pub Date : 2024-09-14DOI: 10.1016/j.mtbio.2024.101239
Fuxin Xue , Xitong Ren , Chaoying Kong , Jianfeng Wang , Linlin Liu , Junli Hu , Na Shen , Zhaohui Tang
Immune checkpoint blockade (ICB) therapy, particularly PD1/PDL1 inhibition, has demonstrated success in bolstering durable responses in patients. However, the response rate remains below 30 %. In this study, we developed a polymeric bispecific antibody (BsAb) targeting PD1/PDL1 to enhance ICB therapy. Specifically, poly(L-glutamic acid) (PGLU) was conjugated with a double cyclic Fc binding peptide, Fc-III-4C, through condensation reactions between the -COOH group of PGLU and the -NH2 group of Fc-III-4C. This conjugate was then mixed with αPD1 and αPDL1 monoclonal antibodies (mAbs) in an aqueous solution. Mechanistically, the PD1/PDL1 BsAb (BsAbαPD1+αPDL1) acts as a bridge between tumor cells and CD8+ T cells, continuously activating CD8+ T cells to a greater extent. This leads to significantly suppressed tumor growth and prolonged survival in a mouse model of colon cancer compared to treatment with either a single mAb or a mixture of free mAbs. The tumor suppression rate achieved by the BsAbαPD1+αPDL1 was 90.1 %, with a corresponding survival rate of 83.3 % after 48 days. Thus, this study underscores the effectiveness of the BsAbαPD1+αPDL1 as a synchronizing T cell engager and dual ICBs, offering theoretical guidance for clinical ICB therapy.
免疫检查点阻断(ICB)疗法,尤其是 PD1/PDL1 抑制疗法,在增强患者的持久应答方面取得了成功。然而,应答率仍低于30%。在这项研究中,我们开发了一种靶向 PD1/PDL1 的聚合物双特异性抗体 (BsAb),以增强 ICB 疗法。具体来说,通过 PGLU 的 -COOH 基团和 Fc-III-4C 的 -NH2 基团之间的缩合反应,聚(L-谷氨酸)(PGLU)与双环 Fc 结合肽 Fc-III-4C 共轭。然后将这种共轭物与水溶液中的αPD1和αPDL1单克隆抗体(mAbs)混合。从机理上讲,PD1/PDL1 BsAb(BsAbαPD1+αPDL1)可作为肿瘤细胞和 CD8+ T 细胞之间的桥梁,持续激活 CD8+ T 细胞。与使用单一 mAb 或游离 mAb 混合物治疗相比,这种方法能明显抑制肿瘤生长,延长小鼠结肠癌模型的存活时间。BsAbαPD1+αPDL1 的肿瘤抑制率为 90.1%,48 天后的相应存活率为 83.3%。因此,本研究强调了 BsAbαPD1+αPDL1 作为同步 T 细胞吞噬剂和双重 ICB 的有效性,为临床 ICB 治疗提供了理论指导。
{"title":"Polymeric PD1/PDL1 bispecific antibody enhances immune checkpoint blockade therapy","authors":"Fuxin Xue , Xitong Ren , Chaoying Kong , Jianfeng Wang , Linlin Liu , Junli Hu , Na Shen , Zhaohui Tang","doi":"10.1016/j.mtbio.2024.101239","DOIUrl":"10.1016/j.mtbio.2024.101239","url":null,"abstract":"<div><p>Immune checkpoint blockade (ICB) therapy, particularly PD1/PDL1 inhibition, has demonstrated success in bolstering durable responses in patients. However, the response rate remains below 30 %. In this study, we developed a polymeric bispecific antibody (BsAb) targeting PD1/PDL1 to enhance ICB therapy. Specifically, poly(<sub>L</sub>-glutamic acid) (PGLU) was conjugated with a double cyclic Fc binding peptide, Fc-III-4C, through condensation reactions between the -COOH group of PGLU and the -NH<sub>2</sub> group of Fc-III-4C. This conjugate was then mixed with αPD1 and αPDL1 monoclonal antibodies (mAbs) in an aqueous solution. Mechanistically, the PD1/PDL1 BsAb (BsAb<sub>αPD1+αPDL1</sub>) acts as a bridge between tumor cells and CD8<sup>+</sup> T cells, continuously activating CD8<sup>+</sup> T cells to a greater extent. This leads to significantly suppressed tumor growth and prolonged survival in a mouse model of colon cancer compared to treatment with either a single mAb or a mixture of free mAbs. The tumor suppression rate achieved by the BsAb<sub>αPD1+αPDL1</sub> was 90.1 %, with a corresponding survival rate of 83.3 % after 48 days. Thus, this study underscores the effectiveness of the BsAb<sub>αPD1+αPDL1</sub> as a synchronizing T cell engager and dual ICBs, offering theoretical guidance for clinical ICB therapy.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101239"},"PeriodicalIF":8.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003004/pdfft?md5=9b006b2ebddadc48b0fc7609aa138200&pid=1-s2.0-S2590006424003004-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.mtbio.2024.101254
So-Yeon Park , Jun-Kyu Lee , Sang-Hyeok Lee , Da-Seul Kim , Ji-Won Jung , Jun Hyuk Kim , Seung-Woon Baek , Seungkwon You , Dong-Youn Hwang , Dong Keun Han
Guiding endogenous regeneration of bone defects using biomaterials and regenerative medicine is considered an optimal strategy. One of the effective therapeutic approaches involves using transgene-expressed stem cells to treat tissue destruction and replace damaged parts. Among the various gene editing techniques for cells, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is considered as a promising method owing to the increasing therapeutic potential of cells by targeting specific sites. Herein, a vitamin D-incorporated poly(lactic-co-glycolic acid) (PLGA) scaffold with bone morphogenetic protein 2 (BMP2)/vascular endothelial growth factor (VEGF)-overexpressed tonsil-derived MSCs (ToMSCs) via CRISPR/Cas9 was introduced for bone tissue regeneration. The optimized seeding ratio of engineered ToMSCs on the scaffold demonstrated favorable immunomodulatory function, angiogenesis, and osteogenic activity in vitro. The multifunctional scaffold could potentially support stem cell in vivo and induce the transition from M1 to M2 macrophage with magnesium hydroxide and vitamin D. This study highlights the improved synergistic effect of a vitamin D-incorporated PLGA scaffold and a gene-edited ToMSCs for bone tissue engineering and regenerative medicine.
利用生物材料和再生医学引导骨缺损的内源性再生被认为是一种最佳策略。其中一种有效的治疗方法是利用转基因表达的干细胞来治疗组织破坏和替代受损部位。在各种细胞基因编辑技术中,簇状规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)被认为是一种很有前景的方法,因为通过靶向特定位点,细胞的治疗潜力越来越大。在本文中,通过CRISPR/Cas9将维生素D与骨形态发生蛋白2(BMP2)/血管内皮生长因子(VEGF)表达的扁桃体来源间充质干细胞(ToMSCs)结合在一起的聚乳酸(PLGA)支架引入到骨组织再生中。经过优化的工程 ToMSCs 在支架上的播种比例在体外显示出了良好的免疫调节功能、血管生成和成骨活性。该多功能支架有可能在体内支持干细胞,并通过氢氧化镁和维生素 D 诱导巨噬细胞从 M1 向 M2 转变。该研究强调了添加维生素 D 的 PLGA 支架和基因编辑 ToMSCs 在骨组织工程和再生医学中的协同作用。
{"title":"Multifunctional vitamin D-incorporated PLGA scaffold with BMP/VEGF-overexpressed tonsil-derived MSC via CRISPR/Cas9 for bone tissue regeneration","authors":"So-Yeon Park , Jun-Kyu Lee , Sang-Hyeok Lee , Da-Seul Kim , Ji-Won Jung , Jun Hyuk Kim , Seung-Woon Baek , Seungkwon You , Dong-Youn Hwang , Dong Keun Han","doi":"10.1016/j.mtbio.2024.101254","DOIUrl":"10.1016/j.mtbio.2024.101254","url":null,"abstract":"<div><p>Guiding endogenous regeneration of bone defects using biomaterials and regenerative medicine is considered an optimal strategy. One of the effective therapeutic approaches involves using transgene-expressed stem cells to treat tissue destruction and replace damaged parts. Among the various gene editing techniques for cells, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is considered as a promising method owing to the increasing therapeutic potential of cells by targeting specific sites. Herein, a vitamin D-incorporated poly(lactic-co-glycolic acid) (PLGA) scaffold with bone morphogenetic protein 2 (BMP2)/vascular endothelial growth factor (VEGF)-overexpressed tonsil-derived MSCs (ToMSCs) via CRISPR/Cas9 was introduced for bone tissue regeneration. The optimized seeding ratio of engineered ToMSCs on the scaffold demonstrated favorable immunomodulatory function, angiogenesis, and osteogenic activity <em>in vitro</em>. The multifunctional scaffold could potentially support stem cell <em>in vivo</em> and induce the transition from M1 to M2 macrophage with magnesium hydroxide and vitamin D. This study highlights the improved synergistic effect of a vitamin D-incorporated PLGA scaffold and a gene-edited ToMSCs for bone tissue engineering and regenerative medicine.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101254"},"PeriodicalIF":8.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003156/pdfft?md5=bf243ccb3a040b857f200eee3764c7ba&pid=1-s2.0-S2590006424003156-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.mtbio.2024.101249
Yujie Chen , Wei Xu , Zhen Pan , Bohui Li , Xiumei Mo , Yucai Li , Jielin Wang , Yuan Wang , Zhenyuan Wei , Yicheng Chen , Zhaopu Han , Chen Lin , Yu Liu , Xiaojian Ye , Jiangming Yu
Inflammation is a major impediment to the healing of cartilage injuries, yet bioactive scaffolds suitable for cartilage repair in inflammatory environments are extremely rare. Herein, we utilized electrospinning to fabricate a two-dimensional nanofiber scaffold (2DS), which was then subjected to gas foaming to obtain a three-dimensional scaffold (3DS). 3DS was modified with metal phenolic networks (MPNs) composed of epigallocatechin gallate (EGCG) and strontium ions (Sr2+) to afford a MPNs-modified 3D scaffold (3DS-E). Gas-foamed scaffold exhibited multilayered structure conducive to cellular infiltration and proliferation. Compared to other groups, 3DS-E better preserved chondrocytes under interleukin (IL)-1β induced inflammatory environment, showing less apoptosis of chondrocytes and higher expression of cartilage matrix. Additionally, 3DS-E facilitated the regeneration of more mature cartilage in vivo, reduced cell apoptosis, and decreased the expression of pro-inflammatory cytokines.
Taken together, 3DS-E may offer an ideal candidate for cartilage regeneration.
{"title":"Three-dimensional gas-foamed scaffolds decorated with metal phenolic networks for cartilage regeneration","authors":"Yujie Chen , Wei Xu , Zhen Pan , Bohui Li , Xiumei Mo , Yucai Li , Jielin Wang , Yuan Wang , Zhenyuan Wei , Yicheng Chen , Zhaopu Han , Chen Lin , Yu Liu , Xiaojian Ye , Jiangming Yu","doi":"10.1016/j.mtbio.2024.101249","DOIUrl":"10.1016/j.mtbio.2024.101249","url":null,"abstract":"<div><p>Inflammation is a major impediment to the healing of cartilage injuries, yet bioactive scaffolds suitable for cartilage repair in inflammatory environments are extremely rare. Herein, we utilized electrospinning to fabricate a two-dimensional nanofiber scaffold (2DS), which was then subjected to gas foaming to obtain a three-dimensional scaffold (3DS). 3DS was modified with metal phenolic networks (MPNs) composed of epigallocatechin gallate (EGCG) and strontium ions (Sr<sup>2+</sup>) to afford a MPNs-modified 3D scaffold (3DS-E). Gas-foamed scaffold exhibited multilayered structure conducive to cellular infiltration and proliferation. Compared to other groups, 3DS-E better preserved chondrocytes under interleukin (IL)-1β induced inflammatory environment, showing less apoptosis of chondrocytes and higher expression of cartilage matrix. Additionally, 3DS-E facilitated the regeneration of more mature cartilage <em>in vivo</em>, reduced cell apoptosis, and decreased the expression of pro-inflammatory cytokines.</p><p>Taken together, 3DS-E may offer an ideal candidate for cartilage regeneration.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101249"},"PeriodicalIF":8.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003107/pdfft?md5=ab4c760f50b36efebb811bc7f1572d90&pid=1-s2.0-S2590006424003107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.mtbio.2024.101251
Junwu Wang , Yu Zhang , Yilong Huang , Zhuowen Hao , Guang Shi , Lanhong Guo , Chunyu Chang , Jingfeng Li
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the “four core factors”, hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
{"title":"Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review","authors":"Junwu Wang , Yu Zhang , Yilong Huang , Zhuowen Hao , Guang Shi , Lanhong Guo , Chunyu Chang , Jingfeng Li","doi":"10.1016/j.mtbio.2024.101251","DOIUrl":"10.1016/j.mtbio.2024.101251","url":null,"abstract":"<div><p>Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the “four core factors”, hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101251"},"PeriodicalIF":8.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003120/pdfft?md5=7395ca53b698dbf60b5359e9757ac6ec&pid=1-s2.0-S2590006424003120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.mtbio.2024.101238
Yong Ho Cho , Seokho Kim , Tae Kyung Won , Sunki Cho , Dong June Ahn
This study introduces the time-gated analysis of room-temperature phosphorescence (RTP) for the in-situ analysis of the visible and spectral information of photons. Time-gated analysis is performed using a microscopic system consisting of a spectrometer, which is advantageous for in-situ analysis since it facilitates the real-time measurement of luminescence signal changes. An RTP material hybridized with a DNA aptamer that targets a specific protein enhances the intensity and lifetime of phosphorescence after selective recognition with the target protein. In addition, time-gated analysis allows for the millisecond-scale imaging of phosphorescence signals, excluding autofluorescence, and improves the signal-to-background ratio (SBR) through the accumulation of signals. While collecting the time-gated images and spectra of RTP and autofluorescent materials simultaneously, we develop a method for obtaining phosphorescence signals by means of selective exclusion of autofluorescence signals in simulated or real cell conditions. It is confirmed that the accumulated time-gated analysis can provide ample information about luminescence signals for bioimaging and biosensing applications.
本研究介绍了室温磷光(RTP)的时间门控分析,用于原位分析光子的可见光和光谱信息。时间门控分析是利用光谱仪组成的显微系统进行的,这对于原位分析非常有利,因为它有助于实时测量发光信号的变化。与针对特定蛋白质的 DNA 类似物杂交的 RTP 材料在与目标蛋白质进行选择性识别后,会增强磷光的强度和寿命。此外,时间门控分析可对磷光信号进行毫秒级成像,排除自发荧光,并通过信号积累提高信噪比(SBR)。在同时收集 RTP 和自发荧光材料的时间门控图像和光谱的同时,我们开发了一种在模拟或真实细胞条件下通过选择性排除自发荧光信号来获取磷光信号的方法。经证实,累积的时间门控分析可为生物成像和生物传感应用提供有关发光信号的充足信息。
{"title":"Accumulated in-situ spectral information analysis of room-temperature phosphorescence with time-gated bioimaging","authors":"Yong Ho Cho , Seokho Kim , Tae Kyung Won , Sunki Cho , Dong June Ahn","doi":"10.1016/j.mtbio.2024.101238","DOIUrl":"10.1016/j.mtbio.2024.101238","url":null,"abstract":"<div><p>This study introduces the time-gated analysis of room-temperature phosphorescence (RTP) for the in-situ analysis of the visible and spectral information of photons. Time-gated analysis is performed using a microscopic system consisting of a spectrometer, which is advantageous for in-situ analysis since it facilitates the real-time measurement of luminescence signal changes. An RTP material hybridized with a DNA aptamer that targets a specific protein enhances the intensity and lifetime of phosphorescence after selective recognition with the target protein. In addition, time-gated analysis allows for the millisecond-scale imaging of phosphorescence signals, excluding autofluorescence, and improves the signal-to-background ratio (SBR) through the accumulation of signals. While collecting the time-gated images and spectra of RTP and autofluorescent materials simultaneously, we develop a method for obtaining phosphorescence signals by means of selective exclusion of autofluorescence signals in simulated or real cell conditions. It is confirmed that the accumulated time-gated analysis can provide ample information about luminescence signals for bioimaging and biosensing applications.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101238"},"PeriodicalIF":8.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424002990/pdfft?md5=d4a8408d3840fab5ae74eaeefdb58eb1&pid=1-s2.0-S2590006424002990-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1016/j.mtbio.2024.101233
Jun Li , Guoxian Deng , Xianping Li , Lingxuan Yin , Chunhui Yuan , Wei Shao , Xiaowen Xia , Junan Yan , Jiwei Yao
Lower urinary tract dysfunction (LUTD) is a prevalent condition characterized by symptoms such as urinary frequency, urgency, incontinence, and difficulty in urination, which can significantly impair patient's quality of life and lead to severe physiological complications. Despite the availability of diverse treatment options, including pharmaceutical and behavioral therapies, these approaches are not without challenges. The objective of this study was to enhance treatment options for LUTD by developing a wireless, battery-free device for managing bladder contractions. We designed and validated a compact, fully implantable, battery-free pulse generator using the magnetic induction coupling mechanism of wireless power transmission. Weighing less than 0.2 g and with a volume of less than 0.1 cubic centimeters, this device enables precise stimulation of muscles or neurons at voltages ranging from 0 to 10 V. Wireless technology allows real-time adjustment of key stimulation parameters such as voltage, duration, frequency, pulse width, and pulse interval. Our findings demonstrate that the device effectively controlled bladder contractions in mice when used to stimulate the Major Pelvic Ganglion (MPG). Additionally, the device successfully managed micturition in mice with bilateral transection of the pudendal nerve. In conclusion, the development of this innovative wireless pulse generator provides a safer and more cost-effective alternative to conventional battery-powered neurostimulators for bladder control, addressing the limitations of such devices. We anticipate that this novel technology will play a pivotal role in the future of electrical stimulation therapies for voiding dysfunctions.
{"title":"A wireless, battery-free device for electrical neuromodulation of bladder contractions","authors":"Jun Li , Guoxian Deng , Xianping Li , Lingxuan Yin , Chunhui Yuan , Wei Shao , Xiaowen Xia , Junan Yan , Jiwei Yao","doi":"10.1016/j.mtbio.2024.101233","DOIUrl":"10.1016/j.mtbio.2024.101233","url":null,"abstract":"<div><p>Lower urinary tract dysfunction (LUTD) is a prevalent condition characterized by symptoms such as urinary frequency, urgency, incontinence, and difficulty in urination, which can significantly impair patient's quality of life and lead to severe physiological complications. Despite the availability of diverse treatment options, including pharmaceutical and behavioral therapies, these approaches are not without challenges. The objective of this study was to enhance treatment options for LUTD by developing a wireless, battery-free device for managing bladder contractions. We designed and validated a compact, fully implantable, battery-free pulse generator using the magnetic induction coupling mechanism of wireless power transmission. Weighing less than 0.2 g and with a volume of less than 0.1 cubic centimeters, this device enables precise stimulation of muscles or neurons at voltages ranging from 0 to 10 V. Wireless technology allows real-time adjustment of key stimulation parameters such as voltage, duration, frequency, pulse width, and pulse interval. Our findings demonstrate that the device effectively controlled bladder contractions in mice when used to stimulate the Major Pelvic Ganglion (MPG). Additionally, the device successfully managed micturition in mice with bilateral transection of the pudendal nerve. In conclusion, the development of this innovative wireless pulse generator provides a safer and more cost-effective alternative to conventional battery-powered neurostimulators for bladder control, addressing the limitations of such devices. We anticipate that this novel technology will play a pivotal role in the future of electrical stimulation therapies for voiding dysfunctions.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101233"},"PeriodicalIF":8.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424002941/pdfft?md5=17547b73f6791b80aff2b083d1120774&pid=1-s2.0-S2590006424002941-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corneal opacity and deformation, which often require corneal transplantation for treatment, are among the leading causes of monocular blindness. To restore corneal clarity and integrity, there is a need for an artificial stroma that not only matches the transparency of donated human cornea but also effectively integrates to the corneal tissue. In this study, a transparent decellularized cornea was successfully developed using the high hydrostatic pressure method with processing conditions optimized for corneal decellularization. Biochemical analyses demonstrated the effective removal of cellular components from the transparent decellularized corneas, while preserving collagen and glycosaminoglycans. Proteome analysis also revealed that core matrisome and matrisome-associated proteins remained following decellularization, similar to the composition observed in untreated corneas. The light transmittance of the transparent decellularized corneas was 86.4 ± 1.5 % in the visible region, comparable to that of donated human corneas. No complications, such as angiogenesis, were observed following interlamellar corneal transplantation in rabbits. The grafts were almost imperceptible immediately following surgery and achieved complete transparency within a few days, becoming indistinguishable even under a microscope. The transparent decellularized cornea presented here has promising potential as a material for application in lamellar keratoplasty.
{"title":"Preparation, physico-biochemical characterization, and proteomic analysis of highly transparent corneal extracellular matrices for lamellar keratoplasty and tissue-engineered cornea construction","authors":"Yoshihide Hashimoto , Jun Negishi , Seiichi Funamoto , Tsuyoshi Kimura , Hisatoshi Kobayashi , Tetsuro Oshika , Akio Kishida","doi":"10.1016/j.mtbio.2024.101241","DOIUrl":"10.1016/j.mtbio.2024.101241","url":null,"abstract":"<div><p>Corneal opacity and deformation, which often require corneal transplantation for treatment, are among the leading causes of monocular blindness. To restore corneal clarity and integrity, there is a need for an artificial stroma that not only matches the transparency of donated human cornea but also effectively integrates to the corneal tissue. In this study, a transparent decellularized cornea was successfully developed using the high hydrostatic pressure method with processing conditions optimized for corneal decellularization. Biochemical analyses demonstrated the effective removal of cellular components from the transparent decellularized corneas, while preserving collagen and glycosaminoglycans. Proteome analysis also revealed that core matrisome and matrisome-associated proteins remained following decellularization, similar to the composition observed in untreated corneas. The light transmittance of the transparent decellularized corneas was 86.4 ± 1.5 % in the visible region, comparable to that of donated human corneas. No complications, such as angiogenesis, were observed following interlamellar corneal transplantation in rabbits. The grafts were almost imperceptible immediately following surgery and achieved complete transparency within a few days, becoming indistinguishable even under a microscope. The transparent decellularized cornea presented here has promising potential as a material for application in lamellar keratoplasty.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101241"},"PeriodicalIF":8.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003028/pdfft?md5=d265a3c226bcf533ac4f851c0091fdd3&pid=1-s2.0-S2590006424003028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.mtbio.2024.101237
Fei Li , Chuwei Zhang , Xiaoping Zhong , Bo Li , Mengnan Zhang , Wanqian Li , Lifei Zheng , Xinghua Zhu , Shixuan Chen , Yi Zhang
Diabetic foot ulcers, pressure ulcers, and bedsores can easily develop into chronic wounds with bacterial infections, complicating wound healing. This work reports a two-step strategy for treating infected chronic wounds. Firstly, LL37 mimetic peptide-W379 peptides were rapidly released to eliminate the bacterial biofilm on the wound. Then, 3D radially aligned nanofiber scaffolds loaded with W379 antimicrobial peptide and PDGF-BB were used to treat the wound to prevent bacterial infection recurrence and promote angiogenesis and granulation tissue regeneration, thereby accelerating wound healing. In the presented study, we found that the combined use of burst and controlled release of W379 antimicrobial peptide effectively clears the bacterial biofilm and prevents the recurrence of bacterial infection. Additionally, we found that the removal of the bacterial biofilm contributed to modulating the local inflammatory response from a pro-inflammatory type to a pro-regenerative type. Furthermore, the use of PDGF-BB significantly promotes neovascularization and granulation tissue regeneration in the wound bed, resulting in accelerating re-epithelialization and wound closure. Our study provides a promising treatment method for the repair of infected chronic wounds.
{"title":"A 3D radially aligned nanofiber scaffold co-loaded with LL37 mimetic peptide and PDGF-BB for the management of infected chronic wounds","authors":"Fei Li , Chuwei Zhang , Xiaoping Zhong , Bo Li , Mengnan Zhang , Wanqian Li , Lifei Zheng , Xinghua Zhu , Shixuan Chen , Yi Zhang","doi":"10.1016/j.mtbio.2024.101237","DOIUrl":"10.1016/j.mtbio.2024.101237","url":null,"abstract":"<div><p>Diabetic foot ulcers, pressure ulcers, and bedsores can easily develop into chronic wounds with bacterial infections, complicating wound healing. This work reports a two-step strategy for treating infected chronic wounds. Firstly, LL37 mimetic peptide-W379 peptides were rapidly released to eliminate the bacterial biofilm on the wound. Then, 3D radially aligned nanofiber scaffolds loaded with W379 antimicrobial peptide and PDGF-BB were used to treat the wound to prevent bacterial infection recurrence and promote angiogenesis and granulation tissue regeneration, thereby accelerating wound healing. In the presented study, we found that the combined use of burst and controlled release of W379 antimicrobial peptide effectively clears the bacterial biofilm and prevents the recurrence of bacterial infection. Additionally, we found that the removal of the bacterial biofilm contributed to modulating the local inflammatory response from a pro-inflammatory type to a pro-regenerative type. Furthermore, the use of PDGF-BB significantly promotes neovascularization and granulation tissue regeneration in the wound bed, resulting in accelerating re-epithelialization and wound closure. Our study provides a promising treatment method for the repair of infected chronic wounds.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101237"},"PeriodicalIF":8.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424002989/pdfft?md5=9db1fccfdc71ff755d256982b1bd59fa&pid=1-s2.0-S2590006424002989-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.mtbio.2024.101235
Xiaomu Ma , Qiang Yue , Su Fu, Chunjun Liu , Jie Luan
The adipogenic property of decellularized adipose-derived matrix (DAM) varies widely across reports, making it difficult to make a horizontal comparison between reports and posing challenges for the stable clinical translation of DAM. It is possibly due to differences in donor characteristics, but the exact relationship remains unclear. Despite extensive research on the differences between superficial and deep layers of abdominal subcutaneous fat, a main donor of DAM, little is known about their extracellular matrix (ECM) which is promising in regenerative medicine. In this study, we first confirmed the distinct compositional profiles and adipogenic potential between superficial and deep DAM (S-DAM and D-DAM). Both in vitro and in vivo assays confirmed superior adipogenic induction potential in S-DAM over D-DAM. Total amounts of ECM proteins like collagen and laminin were similar, however, the predominant types differed, with collagen I dominating S-DAM and collagen XIV prevailing in D-DAM. S-DAM was enriched with mitochondrial and immunological proteins, whereas D-DAM featured more neuronal, vascular, muscular, and endocrine-related proteins. More proteins involved in mRNA processing were found in D-DAM, with Protein-Protein Interaction (PPI) analysis revealing HNRNPA2B1, HNRNPA1, and HNRNPC as the most tightly interacting members. These findings not only deepen our comprehension of the structural and functional heterogeneity of adipose tissues but also become one of the reason for the large variability between batches of DAM products, providing guidance for constructing more efficient and stable bio-scaffolds.
脱细胞脂肪衍生基质(DAM)的成脂特性在不同报道中差异很大,因此很难对不同报道进行横向比较,也给 DAM 稳定的临床转化带来了挑战。这可能是由于供体特征的差异造成的,但具体关系仍不清楚。腹部皮下脂肪是 DAM 的主要供体,尽管人们对腹部皮下脂肪浅层和深层的差异进行了大量研究,但对其细胞外基质(ECM)却知之甚少,而 ECM 在再生医学中大有可为。在这项研究中,我们首先证实了浅层和深层 DAM(S-DAM 和 D-DAM)之间不同的组成特征和成脂潜力。体外和体内试验都证实了 S-DAM 比 D-DAM 具有更高的诱导成脂潜力。胶原蛋白和层粘连蛋白等 ECM 蛋白的总量相似,但主要类型不同,胶原蛋白 I 在 S-DAM 中占主导地位,而胶原蛋白 XIV 在 D-DAM 中占主导地位。S-DAM富含线粒体和免疫蛋白,而D-DAM则含有更多神经元、血管、肌肉和内分泌相关蛋白。在 D-DAM 中发现了更多参与 mRNA 处理的蛋白质,蛋白质-蛋白质相互作用(PPI)分析显示 HNRNPA2B1、HNRNPA1 和 HNRNPC 是相互作用最紧密的成员。这些发现不仅加深了我们对脂肪组织结构和功能异质性的理解,而且也成为不同批次的 DAM 产品之间存在巨大差异的原因之一,为构建更高效、更稳定的生物支架提供了指导。
{"title":"Decellularized adipose-derived matrix from Superficial layers of abdominal adipose tissue exhibits superior capacity of adipogenesis compared to deep layers","authors":"Xiaomu Ma , Qiang Yue , Su Fu, Chunjun Liu , Jie Luan","doi":"10.1016/j.mtbio.2024.101235","DOIUrl":"10.1016/j.mtbio.2024.101235","url":null,"abstract":"<div><p>The adipogenic property of decellularized adipose-derived matrix (DAM) varies widely across reports, making it difficult to make a horizontal comparison between reports and posing challenges for the stable clinical translation of DAM. It is possibly due to differences in donor characteristics, but the exact relationship remains unclear. Despite extensive research on the differences between superficial and deep layers of abdominal subcutaneous fat, a main donor of DAM, little is known about their extracellular matrix (ECM) which is promising in regenerative medicine. In this study, we first confirmed the distinct compositional profiles and adipogenic potential between superficial and deep DAM (S-DAM and D-DAM). Both in vitro and in vivo assays confirmed superior adipogenic induction potential in S-DAM over D-DAM. Total amounts of ECM proteins like collagen and laminin were similar, however, the predominant types differed, with collagen I dominating S-DAM and collagen XIV prevailing in D-DAM. S-DAM was enriched with mitochondrial and immunological proteins, whereas D-DAM featured more neuronal, vascular, muscular, and endocrine-related proteins. More proteins involved in mRNA processing were found in D-DAM, with Protein-Protein Interaction (PPI) analysis revealing HNRNPA2B1, HNRNPA1, and HNRNPC as the most tightly interacting members. These findings not only deepen our comprehension of the structural and functional heterogeneity of adipose tissues but also become one of the reason for the large variability between batches of DAM products, providing guidance for constructing more efficient and stable bio-scaffolds.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101235"},"PeriodicalIF":8.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424002965/pdfft?md5=a87afc1211964ece3544b154f2dbd0bf&pid=1-s2.0-S2590006424002965-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.mtbio.2024.101240
Li Xu , Li Chen , Hongwen Liu , Xingwang Chen , Shenghang Zhang
Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.
{"title":"In vivo targeted-imaging of mitochondrial acidification in an aristolochic acid I-induced nephrotoxicity mouse model by a fluorescent/photoacoustic bimodal probe","authors":"Li Xu , Li Chen , Hongwen Liu , Xingwang Chen , Shenghang Zhang","doi":"10.1016/j.mtbio.2024.101240","DOIUrl":"10.1016/j.mtbio.2024.101240","url":null,"abstract":"<div><p>Aristolochic acid I (AAI), a natural compound in aristolochia type Chinese medicinal herb, is generally acknowledged to have nephrotoxicity, which may be associated with mitophagy. Mitophagy is a cellular process with important functions that drive AAI-induced renal injury. Mitochondrial pH is currently measured by fluorescent probes in cell culture, but existing probes do not allow for in situ imaging of AAI-induced mitophagy in vivo. We developed a ratiometric fluorescent/PA dual-modal probe with a silicon rhodamine fluorophore and a pH-sensitive hemicyanine dye covalently linked via a short chain to obtain a FRET type probe. The probe was used to measure AAI-mediated mitochondrial acidification in live cells and in vivo. The Förster resonance energy transfer (FRET)-mediated ratiometric and bimodal method can efficiently eliminate signal variability associated with the commonly used one-emission and single detection mode by ratiometric two channels of the donor and acceptor. The probe has good water-solubility and low molecular weight with two positively charged, facilitating its precise targeting into renal mitochondria, where the fluorescent/PA changes in response to mitochondrial acidification, enabling dynamic and semi-quantitative mapping of subtle changes in mitochondrial pH in AAI-induced nephrotoxicity mouse model for the first time. Also, the joint use of L-carnitine could mitigate the mitophagy in AAI-induced nephrotoxicity.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"28 ","pages":"Article 101240"},"PeriodicalIF":8.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003016/pdfft?md5=06839d4d87b8973e74ad4bf8992f6a8a&pid=1-s2.0-S2590006424003016-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}