The persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is a key obstacle for HBV cure. This study aims to comprehensively assess the effect of interferon (IFN) and small-interfering RNA (siRNA) combination on the cccDNA minichromosome. Utilizing both cell and mouse cccDNA models, we compared the inhibitory effects of IFNα, siRNA, and their combination on cccDNA activity and assessed its epigenetic state. IFNα2 treatment alone reduced HBV RNAs, HBeAg, and HBsAg levels by approximately 50%, accompanied by a low-level reconstitution of SMC5/6-a chromatin modulator that restricts cccDNA transcription. HBx-targeting siRNA (siHBx) achieved significant suppression of viral antigens and reconstitution of SMC5/6, but this effect could be reversed by the deacetylase inhibitor Belinostat. The combination of IFN with siHBx resulted in over 95% suppression of virological markers, reduction in epigenetic activation modifications (H3Ac and H4Ac) on cccDNA, and further reduced cccDNA accessibility, with the effect not reversible by Belinostat. In an extracellular humanized IFNAR C57BL/6 mouse model harboring recombinant cccDNA, the effect of combination of clinically used pegylated IFNα2 and GalNac-siHBx was further clarified, indicating a higher and more durable suppression of cccDNA activity compared to either therapy alone. In conclusion, the combination of IFNα and siRNA achieves a more potent and durable epigenetic inhibition of cccDNA activity in cell and mouse models, compared to monotherapy. These findings deepen the understanding of cccDNA modulation and strengthen the scientific basis for the potential of combination therapy.
Importance: Since there are currently no approved drugs targeting and silencing covalently closed circular DNA (cccDNA), achieving a "functional cure" remains difficult. This study aims to comprehensively compare the effects of IFNα, small-interfering RNA targeting hepatitis B virus (HBV), and their combination on the activity, accessibility, and epigenetic modifications of cccDNA minichromosomes in cell models. A more durable and stable inhibition of HBV RNAs and antigens expression by IFNα and HBx-targeting siRNA (siHBx) synergy was observed, associated with augmented epigenetic repression of the cccDNA minichromosome. Besides, in an extracellular humanized IFNAR mouse model harboring recombinant cccDNA with an intact response to human IFNα, the synergistic effect of clinically used pegylated IFNα2 and in-house-developed GalNac-siHBx was further clarified.
{"title":"Augmented epigenetic repression of hepatitis B virus covalently closed circular DNA by interferon-α and small-interfering RNA synergy.","authors":"Kongying Hu, Wenjing Zai, Mingzhu Xu, Haiyu Wang, Xinluo Song, Chao Huang, Jiangxia Liu, Juan Chen, Qiang Deng, Zhenghong Yuan, Jieliang Chen","doi":"10.1128/mbio.02415-24","DOIUrl":"https://doi.org/10.1128/mbio.02415-24","url":null,"abstract":"<p><p>The persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is a key obstacle for HBV cure. This study aims to comprehensively assess the effect of interferon (IFN) and small-interfering RNA (siRNA) combination on the cccDNA minichromosome. Utilizing both cell and mouse cccDNA models, we compared the inhibitory effects of IFNα, siRNA, and their combination on cccDNA activity and assessed its epigenetic state. IFNα2 treatment alone reduced HBV RNAs, HBeAg, and HBsAg levels by approximately 50%, accompanied by a low-level reconstitution of SMC5/6-a chromatin modulator that restricts cccDNA transcription. HBx-targeting siRNA (siHBx) achieved significant suppression of viral antigens and reconstitution of SMC5/6, but this effect could be reversed by the deacetylase inhibitor Belinostat. The combination of IFN with siHBx resulted in over 95% suppression of virological markers, reduction in epigenetic activation modifications (H3Ac and H4Ac) on cccDNA, and further reduced cccDNA accessibility, with the effect not reversible by Belinostat. In an extracellular humanized IFNAR C57BL/6 mouse model harboring recombinant cccDNA, the effect of combination of clinically used pegylated IFNα2 and GalNac-siHBx was further clarified, indicating a higher and more durable suppression of cccDNA activity compared to either therapy alone. In conclusion, the combination of IFNα and siRNA achieves a more potent and durable epigenetic inhibition of cccDNA activity in cell and mouse models, compared to monotherapy. These findings deepen the understanding of cccDNA modulation and strengthen the scientific basis for the potential of combination therapy.</p><p><strong>Importance: </strong>Since there are currently no approved drugs targeting and silencing covalently closed circular DNA (cccDNA), achieving a \"functional cure\" remains difficult. This study aims to comprehensively compare the effects of IFNα, small-interfering RNA targeting hepatitis B virus (HBV), and their combination on the activity, accessibility, and epigenetic modifications of cccDNA minichromosomes in cell models. A more durable and stable inhibition of HBV RNAs and antigens expression by IFNα and HBx-targeting siRNA (siHBx) synergy was observed, associated with augmented epigenetic repression of the cccDNA minichromosome. Besides, in an extracellular humanized IFNAR mouse model harboring recombinant cccDNA with an intact response to human IFNα, the synergistic effect of clinically used pegylated IFNα2 and in-house-developed GalNac-siHBx was further clarified.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0241524"},"PeriodicalIF":5.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nectin cell adhesion molecule 1 (NECTIN1) is a cell adhesion molecule that belongs to the immunoglobulin superfamily. It has been considered the most ubiquitous receptor for herpesviruses. However, in the context of flavivirus infection, its role was previously unknown. In this study, we described an arrayed siRNA screen mainly targeting Ig-like proteins that showed NECTIN1-restricted bovine viral diarrhea virus (BVDV) infection. We demonstrated that the depletion of NECTIN1 could significantly enhance the infection of both biotypes and multiple genotypes of BVDV, including BVDV-1a, -1b, -1c, -1p, -1m, -1v, and -2a. Notably, the IgV of NECTIN1 has emerged as the key domain restricting BVDV infection. Moreover, NECTIN1 inhibited BVDV attachment without exerting a significant influence on BVDV translation or transcription. Furthermore, we demonstrated that both NECTIN1 and CD46 could bind to BVDV E2, while the binding affinity of NECTIN1 for BVDV E2 was greater than that for CD46. We further identified that the BVDV E2 domain DD was a key domain of BVDV interacting with NECTIN1. In addition, we showed that NECTIN1 inhibited infections by classical swine fever virus (CSFV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), which belong to the Flaviviridae family, but had limited effects on bluetongue virus (BTV), vesicular stomatitis virus (VSV), Akabane virus (AKAV), and Sindbis virus (SINV). Overall, our study has important implications for understanding the entry of BVDV and revealed a novel role for NECTIN1 as a restriction factor that inhibits flavivirus infection.
Importance: NECTIN1, also known as CD111 or PVRL1, has been recognized as the primary receptor for several alpha herpesviruses, including herpes simplex virus (HSV), pseudorabies virus (PRV), and bovine herpesvirus 1 (BHV-1). However, our study revealed a novel role for NECTIN1 in the virus life cycle by influencing BVDV infection. Contrary to its role as a receptor for alpha herpesviruses, NECTIN1 acts as a restriction factor for BVDV by inhibiting viral attachment via competition with CD46 for binding to the domain DD of BVDV E2. We further revealed that the replication of members of the Flaviviridae family was inhibited by NECTIN1, while the replication of other RNA viruses did not significantly differ. Our results demonstrate that NECTIN1 is a novel factor restricting Flaviviridae family virus replication and highlight the complexity of virus-host interactions and the multifaceted nature of host factors involved in viral infection.
{"title":"Identification of NECTIN1 as a novel restriction factor for flavivirus infection.","authors":"Shuhui Qi, Chao Sun, Jing Wang, Lijing Wo, Yongfeng Li, Chaonan Wang, Ying Zhang, Haiqiao Bian, Yongqi Guo, Ming Gao, Menghang Wang, Yandong Tang, Yuanmao Zhu, Fei Xue, Quanhai Pang, Zhigang Jiang, Xin Yin","doi":"10.1128/mbio.02708-24","DOIUrl":"https://doi.org/10.1128/mbio.02708-24","url":null,"abstract":"<p><p>Nectin cell adhesion molecule 1 (NECTIN1) is a cell adhesion molecule that belongs to the immunoglobulin superfamily. It has been considered the most ubiquitous receptor for herpesviruses. However, in the context of flavivirus infection, its role was previously unknown. In this study, we described an arrayed siRNA screen mainly targeting Ig-like proteins that showed NECTIN1-restricted bovine viral diarrhea virus (BVDV) infection. We demonstrated that the depletion of NECTIN1 could significantly enhance the infection of both biotypes and multiple genotypes of BVDV, including BVDV-1a, -1b, -1c, -1p, -1m, -1v, and -2a. Notably, the IgV of NECTIN1 has emerged as the key domain restricting BVDV infection. Moreover, NECTIN1 inhibited BVDV attachment without exerting a significant influence on BVDV translation or transcription. Furthermore, we demonstrated that both NECTIN1 and CD46 could bind to BVDV E2, while the binding affinity of NECTIN1 for BVDV E2 was greater than that for CD46. We further identified that the BVDV E2 domain DD was a key domain of BVDV interacting with NECTIN1. In addition, we showed that NECTIN1 inhibited infections by classical swine fever virus (CSFV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), which belong to the <i>Flaviviridae</i> family, but had limited effects on bluetongue virus (BTV), vesicular stomatitis virus (VSV), Akabane virus (AKAV), and Sindbis virus (SINV). Overall, our study has important implications for understanding the entry of BVDV and revealed a novel role for NECTIN1 as a restriction factor that inhibits flavivirus infection.</p><p><strong>Importance: </strong>NECTIN1, also known as CD111 or PVRL1, has been recognized as the primary receptor for several alpha herpesviruses, including herpes simplex virus (HSV), pseudorabies virus (PRV), and bovine herpesvirus 1 (BHV-1). However, our study revealed a novel role for NECTIN1 in the virus life cycle by influencing BVDV infection. Contrary to its role as a receptor for alpha herpesviruses, NECTIN1 acts as a restriction factor for BVDV by inhibiting viral attachment via competition with CD46 for binding to the domain DD of BVDV E2. We further revealed that the replication of members of the <i>Flaviviridae</i> family was inhibited by NECTIN1, while the replication of other RNA viruses did not significantly differ. Our results demonstrate that NECTIN1 is a novel factor restricting <i>Flaviviridae</i> family virus replication and highlight the complexity of virus-host interactions and the multifaceted nature of host factors involved in viral infection.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0270824"},"PeriodicalIF":5.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salmonella is a common causative agent of infectious intestinal and systemic disease and has been extensively studied for several decades. Yet, much of Salmonella pathogenicity remains a mystery due in part to the highly complex virulence and adaptation strategies at the pathogen's disposal. One of the more influential tools within the field, an attenuated aroA-deficient Salmonella strain, has been used for many years to probe the host immune response that would otherwise be impossible with a fully virulent strain. Now, new work by Rooke et al. (J. L. Rooke, E. C. A. Goodall, K. Pullela, R. Da Costa, et al., mBio 15:e03319-23, 2024, https://doi.org/10.1128/mbio.03319-23) utilizes in-depth transposon-directed insertion-site sequencing to elucidate the contribution of genes to Salmonella fitness within isogenic wild-type and aroA-deficient strains. Specifically, Rooke et al. demonstrate that the deletion of the aroA gene leads to iron-dependent membrane instability, raising several exciting new ideas surrounding Salmonella biology and therapeutic strategies.
沙门氏菌是肠道传染病和全身性疾病的常见致病菌,几十年来人们对它进行了广泛的研究。然而,沙门氏菌的致病性仍然是一个谜,部分原因是病原体具有高度复杂的毒力和适应策略。该领域最具影响力的工具之一是减毒roA缺陷沙门氏菌菌株,多年来一直被用于探究宿主的免疫反应,而完全毒力菌株则不可能做到这一点。现在,Rooke 等人的新研究(J. L. Rooke, E. C. A. Goodall, K. Pullela, R. Da Costa, et al., mBio 15:e03319-23, 2024, https://doi.org/10.1128/mbio.03319-23)利用深入的转座子定向插入位点测序,阐明了基因对野生型和roA缺陷型同源菌株中沙门氏菌适应性的贡献。具体而言,Rooke 等人证明了 aroA 基因的缺失会导致铁依赖性膜不稳定,从而提出了有关沙门氏菌生物学和治疗策略的几个令人兴奋的新观点。
{"title":"New insights on an old friend: AroA linked to iron-dependent outer membrane stability.","authors":"Priscilla Chin, Christopher J Anderson","doi":"10.1128/mbio.02799-24","DOIUrl":"https://doi.org/10.1128/mbio.02799-24","url":null,"abstract":"<p><p><i>Salmonella</i> is a common causative agent of infectious intestinal and systemic disease and has been extensively studied for several decades. Yet, much of <i>Salmonella</i> pathogenicity remains a mystery due in part to the highly complex virulence and adaptation strategies at the pathogen's disposal. One of the more influential tools within the field, an attenuated <i>aroA-</i>deficient <i>Salmonella</i> strain, has been used for many years to probe the host immune response that would otherwise be impossible with a fully virulent strain. Now, new work by Rooke et al. (J. L. Rooke, E. C. A. Goodall, K. Pullela, R. Da Costa, et al., mBio 15:e03319-23, 2024, https://doi.org/10.1128/mbio.03319-23) utilizes in-depth transposon-directed insertion-site sequencing to elucidate the contribution of genes to <i>Salmonella</i> fitness within isogenic wild-type and <i>aroA</i>-deficient strains. Specifically, Rooke et al. demonstrate that the deletion of the <i>aroA</i> gene leads to iron-dependent membrane instability, raising several exciting new ideas surrounding <i>Salmonella</i> biology and therapeutic strategies.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0279924"},"PeriodicalIF":5.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Zmuda, Eliska Sedlackova, Barbora Pravdova, Monika Cizkova, Marketa Dalecka, Ondrej Cerny, Tania Romero Allsop, Tomas Grousl, Ivana Malcova, Jana Kamanova
Bordetella pertussis is the causative agent of whooping cough in humans, a disease that has recently experienced a resurgence. In contrast, Bordetella bronchiseptica infects the respiratory tract of various mammalian species, causing a range of symptoms from asymptomatic chronic carriage to acute illness. Both pathogens utilize type III secretion system (T3SS) to deliver the effector protein BteA into host cells. Once injected, BteA triggers a cascade of events leading to caspase 1-independent necrosis through a mechanism that remains incompletely understood. We demonstrate that BteA-induced cell death is characterized by the fragmentation of the cellular endoplasmic reticulum and mitochondria, the formation of necrotic balloon-like protrusions, and plasma membrane permeabilization. Importantly, genome-wide CRISPR-Cas9 screen targeting 19,050 genes failed to identify any host factors required for BteA cytotoxicity, suggesting that BteA does not require a single nonessential host factor for its cytotoxicity. We further reveal that BteA triggers a rapid and sustained influx of calcium ions, which is associated with organelle fragmentation and plasma membrane permeabilization. The sustained elevation of cytosolic Ca2+ levels results in mitochondrial calcium overload, mitochondrial swelling, cristolysis, and loss of mitochondrial membrane potential. Inhibition of calcium channels with 2-APB delays both the Ca2+ influx and BteA-induced cell death. Our findings indicate that BteA exploits essential host processes and/or redundant pathways to disrupt calcium homeostasis and mitochondrial function, ultimately leading to host cell death.IMPORTANCEThe respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica exhibit cytotoxicity toward a variety of mammalian cells, which depends on the type III secretion effector BteA. Moreover, the increased virulence of B. bronchiseptica is associated with enhanced expression of T3SS and BteA. However, the molecular mechanism underlying BteA cytotoxicity is elusive. In this study, we performed a CRISPR-Cas9 screen, revealing that BteA-induced cell death depends on essential or redundant host processes. Additionally, we demonstrate that BteA disrupts calcium homeostasis, which leads to mitochondrial dysfunction and cell death. These findings contribute to closing the gap in our understanding of the signaling cascades targeted by BteA.
{"title":"The <i>Bordetella</i> effector protein BteA induces host cell death by disruption of calcium homeostasis.","authors":"Martin Zmuda, Eliska Sedlackova, Barbora Pravdova, Monika Cizkova, Marketa Dalecka, Ondrej Cerny, Tania Romero Allsop, Tomas Grousl, Ivana Malcova, Jana Kamanova","doi":"10.1128/mbio.01925-24","DOIUrl":"https://doi.org/10.1128/mbio.01925-24","url":null,"abstract":"<p><p><i>Bordetella pertussis</i> is the causative agent of whooping cough in humans, a disease that has recently experienced a resurgence. In contrast, <i>Bordetella bronchiseptica</i> infects the respiratory tract of various mammalian species, causing a range of symptoms from asymptomatic chronic carriage to acute illness. Both pathogens utilize type III secretion system (T3SS) to deliver the effector protein BteA into host cells. Once injected, BteA triggers a cascade of events leading to caspase 1-independent necrosis through a mechanism that remains incompletely understood. We demonstrate that BteA-induced cell death is characterized by the fragmentation of the cellular endoplasmic reticulum and mitochondria, the formation of necrotic balloon-like protrusions, and plasma membrane permeabilization. Importantly, genome-wide CRISPR-Cas9 screen targeting 19,050 genes failed to identify any host factors required for BteA cytotoxicity, suggesting that BteA does not require a single nonessential host factor for its cytotoxicity. We further reveal that BteA triggers a rapid and sustained influx of calcium ions, which is associated with organelle fragmentation and plasma membrane permeabilization. The sustained elevation of cytosolic Ca<sup>2+</sup> levels results in mitochondrial calcium overload, mitochondrial swelling, cristolysis, and loss of mitochondrial membrane potential. Inhibition of calcium channels with 2-APB delays both the Ca<sup>2+</sup> influx and BteA-induced cell death. Our findings indicate that BteA exploits essential host processes and/or redundant pathways to disrupt calcium homeostasis and mitochondrial function, ultimately leading to host cell death.IMPORTANCEThe respiratory pathogens <i>Bordetella pertussis</i> and <i>Bordetella bronchiseptica</i> exhibit cytotoxicity toward a variety of mammalian cells, which depends on the type III secretion effector BteA. Moreover, the increased virulence of <i>B. bronchiseptica</i> is associated with enhanced expression of T3SS and BteA. However, the molecular mechanism underlying BteA cytotoxicity is elusive. In this study, we performed a CRISPR-Cas9 screen, revealing that BteA-induced cell death depends on essential or redundant host processes. Additionally, we demonstrate that BteA disrupts calcium homeostasis, which leads to mitochondrial dysfunction and cell death. These findings contribute to closing the gap in our understanding of the signaling cascades targeted by BteA.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0192524"},"PeriodicalIF":5.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrian Campey, Urszula Łapińska, Remy Chait, Krasimira Tsaneva-Atanasova, Stefano Pagliara
Many antibiotics that are used in healthcare, farming, and aquaculture end up in environments with different spatial structures that might promote heterogeneity in the emergence of antibiotic resistance. However, the experimental evolution of microbes at sub-inhibitory concentrations of antibiotics has been mainly carried out at the population level which does not allow capturing single-cell responses to antibiotics. Here, we investigate and compare the emergence of resistance to ciprofloxacin in Escherichia coli in well-mixed and structured environments using experimental evolution, genomics, and microfluidics-based time-lapse microscopy. We discover that resistance to ciprofloxacin and cross-resistance to other antibiotics is stronger in the well-mixed environment due to the emergence of target mutations, whereas efflux regulator mutations emerge in the structured environment. The latter mutants also harbor sub-populations of persisters that survive high concentrations of ciprofloxacin that inhibit bacterial growth at the population level. In contrast, genetically resistant bacteria that display target mutations also survive high concentrations of ciprofloxacin that inhibit their growth via population-level antibiotic tolerance. These resistant and tolerant bacteria keep doubling while shrinking in size in the presence of ciprofloxacin and regain their original size after antibiotic removal, which constitutes a newly discovered phenotypic response. This new knowledge sheds light on the diversity of strategies employed by bacteria to survive antibiotics and poses a stepping stone for understanding the link between mutations at the population level and phenotypic single-cell responses.
Importance: The evolution of antimicrobial resistance poses a pressing challenge to global health with an estimated 5 million deaths associated with antimicrobial resistance every year globally. Here, we investigate the diversity of strategies employed by bacteria to survive antibiotics. We discovered that bacteria evolve genetic resistance to antibiotics while simultaneously displaying tolerance to very high doses of antibiotics by doubling while shrinking in size.
{"title":"Antibiotic resistant bacteria survive treatment by doubling while shrinking.","authors":"Adrian Campey, Urszula Łapińska, Remy Chait, Krasimira Tsaneva-Atanasova, Stefano Pagliara","doi":"10.1128/mbio.02375-24","DOIUrl":"https://doi.org/10.1128/mbio.02375-24","url":null,"abstract":"<p><p>Many antibiotics that are used in healthcare, farming, and aquaculture end up in environments with different spatial structures that might promote heterogeneity in the emergence of antibiotic resistance. However, the experimental evolution of microbes at sub-inhibitory concentrations of antibiotics has been mainly carried out at the population level which does not allow capturing single-cell responses to antibiotics. Here, we investigate and compare the emergence of resistance to ciprofloxacin in <i>Escherichia coli</i> in well-mixed and structured environments using experimental evolution, genomics, and microfluidics-based time-lapse microscopy. We discover that resistance to ciprofloxacin and cross-resistance to other antibiotics is stronger in the well-mixed environment due to the emergence of target mutations, whereas efflux regulator mutations emerge in the structured environment. The latter mutants also harbor sub-populations of persisters that survive high concentrations of ciprofloxacin that inhibit bacterial growth at the population level. In contrast, genetically resistant bacteria that display target mutations also survive high concentrations of ciprofloxacin that inhibit their growth via population-level antibiotic tolerance. These resistant and tolerant bacteria keep doubling while shrinking in size in the presence of ciprofloxacin and regain their original size after antibiotic removal, which constitutes a newly discovered phenotypic response. This new knowledge sheds light on the diversity of strategies employed by bacteria to survive antibiotics and poses a stepping stone for understanding the link between mutations at the population level and phenotypic single-cell responses.</p><p><strong>Importance: </strong>The evolution of antimicrobial resistance poses a pressing challenge to global health with an estimated 5 million deaths associated with antimicrobial resistance every year globally. Here, we investigate the diversity of strategies employed by bacteria to survive antibiotics. We discovered that bacteria evolve genetic resistance to antibiotics while simultaneously displaying tolerance to very high doses of antibiotics by doubling while shrinking in size.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0237524"},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haley A Brown, Adeline L Morris, Nicholas A Pudlo, Ashley E Hopkins, Eric C Martens, Jonathan L Golob, Nicole M Koropatkin
Acarbose is a type 2 diabetes medicine that prevents dietary starch breakdown into glucose by inhibiting host amylase and glucosidase enzymes. Numerous gut species in the Bacteroides genus enzymatically break down starch and change in relative abundance within the gut microbiome in acarbose-treated individuals. To mechanistically explain this observation, we used two model starch-degrading Bacteroides, Bacteroides ovatus (Bo), and Bacteroides thetaiotaomicron (Bt). Bt growth on starch polysaccharides is severely impaired by acarbose, whereas Bo growth is much less affected by the drug. The Bacteroides use a starch utilization system (Sus) to grow on starch. We hypothesized that Bo and Bt Sus enzymes are differentially inhibited by acarbose. Instead, we discovered that although acarbose primarily targets the Sus periplasmic GH97 enzymes in both organisms, the drug affects starch processing at multiple other points. Acarbose competes for transport through the TonB-dependent SusC proteins and binds to the Sus transcriptional regulators. Furthermore, Bo expresses a non-Sus GH97 (BoGH97D) when grown in starch with acarbose. The Bt homolog, BtGH97H, is not expressed in the same conditions, nor can overexpression of BoGH97D complement the Bt growth inhibition in the presence of acarbose. This work informs us about unexpected complexities of Sus function and regulation in Bacteroides, including variation between related species. Furthermore, this indicates that the gut microbiome may be a source of variable response to acarbose treatment for diabetes.
Importance: Acarbose is a type 2 diabetes medication that works primarily by stopping starch breakdown into glucose in the small intestine. This is accomplished by the inhibition of host enzymes, leading to better blood sugar control via reduced ability to derive glucose from dietary starches. The drug and undigested starch travel to the large intestine where acarbose interferes with the ability of some bacteria to grow on starch. However, little is known about how gut bacteria interact with acarbose, including microbes that can use starch as a carbon source. Here, we show that two gut species, Bacteroides ovatus (Bo) and Bacteroides thetaiotaomicron (Bt), respond differently to acarbose: Bt growth is inhibited by acarbose, while Bo growth is less affected. We reveal a complex set of mechanisms involving differences in starch import and sensing behind the different Bo and Bt responses. This indicates the gut microbiome may be a source of variable response to acarbose treatment for diabetes via complex mechanisms in common gut microbes.
阿卡波糖是一种 2 型糖尿病药物,它通过抑制宿主淀粉酶和葡萄糖苷酶来阻止饮食中的淀粉分解成葡萄糖。乳杆菌属中的许多肠道物种都能酶解淀粉,在阿卡波糖治疗的个体中,这些物种在肠道微生物组中的相对丰度发生了变化。为了从机理上解释这一观察结果,我们使用了两种典型的淀粉降解乳杆菌,即卵形乳杆菌(Bo)和Bt乳杆菌(Bt)。阿卡波糖会严重影响 Bt 在淀粉多糖上的生长,而 Bo 的生长受药物的影响要小得多。杆菌利用淀粉利用系统(Sus)在淀粉上生长。我们假设,阿卡波糖对 Bo 和 Bt 的 Sus 酶有不同的抑制作用。但我们发现,虽然阿卡波糖主要针对这两种生物的 Sus 质外 GH97 酶,但这种药物会影响其他多个点的淀粉加工。阿卡波糖通过依赖于 TonB 的 SusC 蛋白竞争转运,并与 Sus 转录调节因子结合。此外,在含有阿卡波糖的淀粉中生长时,Bo 会表达一种非 Sus GH97(BoGH97D)。Bt 同源物 BtGH97H 在相同条件下不表达,BoGH97D 的过表达也不能补充 Bt 在阿卡波糖存在下的生长抑制。这项工作让我们了解到乳杆菌中 Sus 功能和调控的意外复杂性,包括相关物种之间的差异。此外,这表明肠道微生物组可能是对阿卡波糖治疗糖尿病的不同反应的来源:阿卡波糖是一种 2 型糖尿病药物,主要通过阻止淀粉在小肠中分解为葡萄糖而发挥作用。阿卡波糖是一种 2 型糖尿病药物,其主要作用是阻止淀粉在小肠中分解为葡萄糖,通过抑制宿主酶来实现这一目的,从而降低从膳食淀粉中获取葡萄糖的能力,更好地控制血糖。药物和未消化的淀粉进入大肠后,阿卡波糖会干扰某些细菌在淀粉上生长的能力。然而,人们对肠道细菌如何与阿卡波糖相互作用知之甚少,其中包括可以利用淀粉作为碳源的微生物。在这里,我们展示了两种肠道细菌,即卵形乳杆菌(Bo)和太田乳杆菌(Bt)对阿卡波糖的不同反应:Bt 的生长受到阿卡波糖的抑制,而 Bo 的生长受到的影响较小。我们揭示了一套复杂的机制,其中涉及淀粉输入和感知的差异,而这正是 Bo 和 Bt 不同反应的背后原因。这表明肠道微生物组可能是通过普通肠道微生物的复杂机制对阿卡波糖治疗糖尿病产生不同反应的一个来源。
{"title":"Acarbose impairs gut <i>Bacteroides</i> growth by targeting intracellular glucosidases.","authors":"Haley A Brown, Adeline L Morris, Nicholas A Pudlo, Ashley E Hopkins, Eric C Martens, Jonathan L Golob, Nicole M Koropatkin","doi":"10.1128/mbio.01506-24","DOIUrl":"10.1128/mbio.01506-24","url":null,"abstract":"<p><p>Acarbose is a type 2 diabetes medicine that prevents dietary starch breakdown into glucose by inhibiting host amylase and glucosidase enzymes. Numerous gut species in the <i>Bacteroides</i> genus enzymatically break down starch and change in relative abundance within the gut microbiome in acarbose-treated individuals. To mechanistically explain this observation, we used two model starch-degrading <i>Bacteroides</i>, <i>Bacteroides ovatus</i> (Bo), and <i>Bacteroides thetaiotaomicron</i> (Bt). Bt growth on starch polysaccharides is severely impaired by acarbose, whereas Bo growth is much less affected by the drug. The <i>Bacteroides</i> use a starch utilization system (Sus) to grow on starch. We hypothesized that Bo and Bt Sus enzymes are differentially inhibited by acarbose. Instead, we discovered that although acarbose primarily targets the Sus periplasmic GH97 enzymes in both organisms, the drug affects starch processing at multiple other points. Acarbose competes for transport through the TonB-dependent SusC proteins and binds to the Sus transcriptional regulators. Furthermore, Bo expresses a non-Sus GH97 (BoGH97D) when grown in starch with acarbose. The Bt homolog, BtGH97H, is not expressed in the same conditions, nor can overexpression of BoGH97D complement the Bt growth inhibition in the presence of acarbose. This work informs us about unexpected complexities of Sus function and regulation in <i>Bacteroides</i>, including variation between related species. Furthermore, this indicates that the gut microbiome may be a source of variable response to acarbose treatment for diabetes.</p><p><strong>Importance: </strong>Acarbose is a type 2 diabetes medication that works primarily by stopping starch breakdown into glucose in the small intestine. This is accomplished by the inhibition of host enzymes, leading to better blood sugar control via reduced ability to derive glucose from dietary starches. The drug and undigested starch travel to the large intestine where acarbose interferes with the ability of some bacteria to grow on starch. However, little is known about how gut bacteria interact with acarbose, including microbes that can use starch as a carbon source. Here, we show that two gut species, <i>Bacteroides ovatus</i> (Bo) and <i>Bacteroides thetaiotaomicron</i> (Bt), respond differently to acarbose: Bt growth is inhibited by acarbose, while Bo growth is less affected. We reveal a complex set of mechanisms involving differences in starch import and sensing behind the different Bo and Bt responses. This indicates the gut microbiome may be a source of variable response to acarbose treatment for diabetes via complex mechanisms in common gut microbes.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0150624"},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy A Gomez, Clara Kjerfve, Minseo Choi, Wen Liu, Kelly Churion, Sheila Thomas, Holger Rohde, Sam Shelburne, Jon T Skare, Magnus Hook, Srishtee Arora
Staphylococcus epidermidis, a common commensal bacterium, is a leading cause of nosocomial catheter-associated bloodstream infections. S. epidermidis sequence type 2 (ST2) is specifically recognized globally for causing invasive disease. In this study, we identified a novel putative integrated conjugative element, pICE-Sepi-ST2, unique to the genomes of S. epidermidis ST2. Our investigation identified pICE-Sepi-ST2 in all ST2 isolates from bloodstream infections. Meanwhile, ST2 isolates from other infection sources, such as catheters, prosthetic joints, and fracture fixations, showed variable pICE-Sepi-ST2 prevalence. pICE-Sepi-ST2 encodes two putative cell wall anchored proteins that we have designated SesX and SesY. Biochemical characterization of SesY revealed that it binds both plasminogen (Plg) and plasmin (Pln) and inhibits Pln's ability to cleave a chromogenic substrate and degrade fibrin clots. Furthermore, all ST2 isolates containing a pICE-Sepi-ST2 also have a mutated sdrG gene. Thus, all ST2 isolates have two genetic modifications that target distinct steps in the hemostatic pathway. SdrG, which inhibits coagulation, is inactivated, and SesY, which inhibits fibrin, is introduced. These findings suggest that the hemostasis pathway is a strategic target for ST2 S. epidermidis bloodstream pathogenesis.
Importance: This study uncovers a new virulence mechanism in Staphylococcus epidermidis ST2 bloodstream isolates. We identify a mobile genetic element (MGE) characteristic of an integrated conjugated element (ICE). pICE-Sepi-ST2 carries the genetic information needed to produce a cell wall-anchored (CWA) protein called SesY. The results indicate that SesY binds to plasminogen (Plg) and plasmin (Pln) and inhibits Pln's degradation of fibrin clots. Genetic analysis showed that all ST2 bloodstream isolates can express the plasmin inhibitor SesY and carry a mutation in the SdrG gene, resulting in the expression of inactive SdrG. Thus, we describe a molecular pathway targeting the coagulation pathway that may be required for S. epidermidis ST2 to cause bloodstream infections.
{"title":"<i>Staphylococcus epidermidis</i> ST2 strains associated with bloodstream infections contain a unique mobile genetic element encoding a plasmin inhibitor.","authors":"Amy A Gomez, Clara Kjerfve, Minseo Choi, Wen Liu, Kelly Churion, Sheila Thomas, Holger Rohde, Sam Shelburne, Jon T Skare, Magnus Hook, Srishtee Arora","doi":"10.1128/mbio.01907-24","DOIUrl":"10.1128/mbio.01907-24","url":null,"abstract":"<p><p><i>Staphylococcus epidermidis</i>, a common commensal bacterium, is a leading cause of nosocomial catheter-associated bloodstream infections. <i>S. epidermidis</i> sequence type 2 (ST2) is specifically recognized globally for causing invasive disease. In this study, we identified a novel putative integrated conjugative element, pICE-Sepi-ST2, unique to the genomes of <i>S. epidermidis</i> ST2. Our investigation identified pICE-Sepi-ST2 in all ST2 isolates from bloodstream infections. Meanwhile, ST2 isolates from other infection sources, such as catheters, prosthetic joints, and fracture fixations, showed variable pICE-Sepi-ST2 prevalence. pICE-Sepi-ST2 encodes two putative cell wall anchored proteins that we have designated SesX and SesY. Biochemical characterization of SesY revealed that it binds both plasminogen (Plg) and plasmin (Pln) and inhibits Pln's ability to cleave a chromogenic substrate and degrade fibrin clots. Furthermore, all ST2 isolates containing a pICE-Sepi-ST2 also have a mutated <i>sdrG</i> gene. Thus, all ST2 isolates have two genetic modifications that target distinct steps in the hemostatic pathway. SdrG, which inhibits coagulation, is inactivated, and SesY, which inhibits fibrin, is introduced. These findings suggest that the hemostasis pathway is a strategic target for ST2 <i>S. epidermidis</i> bloodstream pathogenesis.</p><p><strong>Importance: </strong>This study uncovers a new virulence mechanism in <i>Staphylococcus epidermidis</i> ST2 bloodstream isolates. We identify a mobile genetic element (MGE) characteristic of an integrated conjugated element (ICE). pICE-Sepi-ST2 carries the genetic information needed to produce a cell wall-anchored (CWA) protein called SesY. The results indicate that SesY binds to plasminogen (Plg) and plasmin (Pln) and inhibits Pln's degradation of fibrin clots. Genetic analysis showed that all ST2 bloodstream isolates can express the plasmin inhibitor SesY and carry a mutation in the SdrG gene, resulting in the expression of inactive SdrG. Thus, we describe a molecular pathway targeting the coagulation pathway that may be required for <i>S. epidermidis</i> ST2 to cause bloodstream infections.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0190724"},"PeriodicalIF":5.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The acquisition of new capabilities by horizontal gene transfer (HGT) shapes the distribution of traits during microbial diversification. In the Chlorophyll (Chl) d-producing cyanobacterium Acaryochloris marina, the genes involved in the production and disassembly of the light-harvesting phycobiliprotein phycocyanin (PC) were lost in the A. marina common ancestor but then subsequently regained via HGT in A. marina strain MBIC11017. However, it remains unknown how the HGT-acquired PC genes in MBIC11017 have been reintegrated into its existing regulatory network after tens of millions of years since their loss. Here, we investigated potential mechanisms of regulatory assimilation of PC genes by comparing the transcriptomes of A. marina strain MBIC11017 and a PC-lacking close relative under both low irradiance far-red light and high irradiance white light. We found that PC assembly and degradation processes have been re-assimilated into a conserved ancestral response to high light. Further, we identified putative regulatory elements that were likely co-transferred with PC genes and could be recognized by A. marina's pre-existing light response machinery. This study offers insights into how HGT-acquired genes can be reintegrated into an existing transcriptional regulatory network that has evolved in their absence.IMPORTANCEHorizontal gene transfer, the asymmetric movement of genetic information between donor and recipient organisms, is an important mechanism for acquiring new traits. In order for newly acquired gene content to be retained, it must be integrated into the genetic repertoire and regulatory networks of the recipient cell. In a strain of the Chlorophyll d-producing cyanobacterium Acaryochloris marina, the recent reacquisition of the genes required to produce the light-harvesting pigment phycocyanin offers a rare opportunity to understand the mechanisms underlying the regulatory assimilation of an acquired complex trait in bacteria. The significance in our research is in characterizing how an ancestrally lost, complex trait can be reintegrated into a conserved regulatory network, even after millions of years.
通过水平基因转移(HGT)获得新的能力决定了微生物多样化过程中性状的分布。在叶绿素(Chl)d 生产蓝藻 Acaryochloris marina 中,参与生产和分解采光藻蓝蛋白 phycocyanin(PC)的基因在 A. marina 的共同祖先中丢失,但随后通过 HGT 在 A. marina 菌株 MBIC11017 中重新获得。然而,MBIC11017 中 HGT 获得的 PC 基因在丢失数千万年后是如何重新整合到其现有调控网络中的,目前仍不得而知。在此,我们通过比较栗藻菌株 MBIC11017 和缺乏 PC 的近亲在低辐照度远红光和高辐照度白光下的转录组,研究了 PC 基因调控同化的潜在机制。我们发现,PC 的组装和降解过程已被重新整合为祖先对强光的保守反应。此外,我们还发现了可能与 PC 基因共同转移的推定调控元件,这些元件可被滨海甲藻原有的光反应机制识别。这项研究深入探讨了 HGT 获得的基因如何重新整合到现有的转录调控网络中,而该网络是在没有 HGT 基因的情况下进化而来的。 重要意义水平基因转移,即遗传信息在供体和受体生物之间的非对称移动,是获得新性状的重要机制。为了保留新获得的基因内容,必须将其整合到受体细胞的基因库和调控网络中。在一株叶绿素 d 生产蓝藻 Acaryochloris marina 中,最近重新获得了生产采光色素 phycocyanin 所需的基因,这为我们了解细菌获得的复杂性状的调控同化机制提供了一个难得的机会。我们研究的意义在于,即使经过数百万年的时间,我们也能确定一个从祖先那里丢失的复杂性状是如何被重新整合到一个保守的调控网络中的。
{"title":"Integration of horizontally acquired light-harvesting genes into an ancestral regulatory network in the cyanobacterium <i>Acaryochloris marina</i> MBIC11017.","authors":"Nikea J Ulrich, Scott R Miller","doi":"10.1128/mbio.02423-24","DOIUrl":"https://doi.org/10.1128/mbio.02423-24","url":null,"abstract":"<p><p>The acquisition of new capabilities by horizontal gene transfer (HGT) shapes the distribution of traits during microbial diversification. In the Chlorophyll (Chl) <i>d</i>-producing cyanobacterium <i>Acaryochloris marina</i>, the genes involved in the production and disassembly of the light-harvesting phycobiliprotein phycocyanin (PC) were lost in the <i>A. marina</i> common ancestor but then subsequently regained via HGT in <i>A. marina</i> strain MBIC11017. However, it remains unknown how the HGT-acquired PC genes in MBIC11017 have been reintegrated into its existing regulatory network after tens of millions of years since their loss. Here, we investigated potential mechanisms of regulatory assimilation of PC genes by comparing the transcriptomes of <i>A. marina</i> strain MBIC11017 and a PC-lacking close relative under both low irradiance far-red light and high irradiance white light. We found that PC assembly and degradation processes have been re-assimilated into a conserved ancestral response to high light. Further, we identified putative regulatory elements that were likely co-transferred with PC genes and could be recognized by <i>A. marina</i>'s pre-existing light response machinery. This study offers insights into how HGT-acquired genes can be reintegrated into an existing transcriptional regulatory network that has evolved in their absence.IMPORTANCEHorizontal gene transfer, the asymmetric movement of genetic information between donor and recipient organisms, is an important mechanism for acquiring new traits. In order for newly acquired gene content to be retained, it must be integrated into the genetic repertoire and regulatory networks of the recipient cell. In a strain of the Chlorophyll <i>d</i>-producing cyanobacterium <i>Acaryochloris marina</i>, the recent reacquisition of the genes required to produce the light-harvesting pigment phycocyanin offers a rare opportunity to understand the mechanisms underlying the regulatory assimilation of an acquired complex trait in bacteria. The significance in our research is in characterizing how an ancestrally lost, complex trait can be reintegrated into a conserved regulatory network, even after millions of years.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0242324"},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pathogenic fungi pose a significant threat to human health, especially given the rising incidence of invasive fungal infections and the emergence of drug-resistant strains. This requires the development of vaccines and the advancement of antifungal strategies. Recent studies have focused on the roles of fungal extracellular vesicles (EVs) in intercellular communication and host-pathogen interactions. EVs are nanosized, lipid membrane-bound particles that facilitate the transfer of proteins, lipids, and nucleic acids. Here, we review the multifaceted functions of EVs produced by different human fungal pathogens, highlighting their importance in the response of fungal cells to different environmental cues and their interactions with host immune cells. We summarize the current state of research on EVs and how leveraging this knowledge can lead to innovative approaches in vaccine development and antifungal treatment.
{"title":"Hidden allies: how extracellular vesicles drive biofilm formation, stress adaptation, and host-immune interactions in human fungal pathogens.","authors":"Philipp Brandt, Rima Singha, Iuliana V Ene","doi":"10.1128/mbio.03045-23","DOIUrl":"https://doi.org/10.1128/mbio.03045-23","url":null,"abstract":"<p><p>Pathogenic fungi pose a significant threat to human health, especially given the rising incidence of invasive fungal infections and the emergence of drug-resistant strains. This requires the development of vaccines and the advancement of antifungal strategies. Recent studies have focused on the roles of fungal extracellular vesicles (EVs) in intercellular communication and host-pathogen interactions. EVs are nanosized, lipid membrane-bound particles that facilitate the transfer of proteins, lipids, and nucleic acids. Here, we review the multifaceted functions of EVs produced by different human fungal pathogens, highlighting their importance in the response of fungal cells to different environmental cues and their interactions with host immune cells. We summarize the current state of research on EVs and how leveraging this knowledge can lead to innovative approaches in vaccine development and antifungal treatment.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0304523"},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The polysaccharide hyaluronan (HA) is an important component of lung extracellular matrix that increases following infection with influenza or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hellman et al. (U. Hellman, E. Rosendal, J. Lehrstrand, J. Henriksson, et al., mBio 15:e01303-24, https://doi.org/10.1128/mbio.01303-24) show that fragmented HA accumulates in the lungs of coronavirus disease 2019 (COVID-19) patients, with systemic levels of HA being associated with reduced lung function 3-6 months after infection. This study provides novel insights into HA's role in COVID-19 pathology and its potential utility as a biomarker for disease severity. However, much remains to be understood about the lung HA matrix in COVID-19 and how it compares to other lung conditions. In particular, the role of HA-binding proteins in organizing HA into a crosslinked network is yet to be fully determined at a molecular level. This knowledge is crucial in understanding the inter-relationships between the structure of the HA matrix and the regulation of the immune response, and thus our ability to target HA therapeutically for improved outcomes in COVID-19.
多糖透明质酸(HA)是肺细胞外基质的重要组成部分,在感染流感或严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)后会增加。赫尔曼等人(U. Hellman, E. Rosendal, J. Lehrstrand, J. Henriksson, et al., mBio 15:e01303-24, https://doi.org/10.1128/mbio.01303-24)的研究表明,碎裂的HA会在2019年冠状病毒病(COVID-19)患者的肺部积聚,全身HA水平与感染后3-6个月肺功能下降有关。这项研究为了解HA在COVID-19病理学中的作用及其作为疾病严重程度生物标志物的潜在用途提供了新的视角。然而,关于 COVID-19 中的肺 HA 基质及其与其他肺部疾病的比较,仍有许多问题有待了解。特别是,HA 结合蛋白在将 HA 组织成交联网络中的作用尚未在分子水平上完全确定。这些知识对于了解 HA 基质结构与免疫反应调控之间的相互关系至关重要,从而帮助我们以 HA 为治疗靶点,改善 COVID-19 的治疗效果。
{"title":"Hyaluronan in COVID-19: a matrix for understanding lung disease.","authors":"Rebecca J Dodd, Judith E Allen, Anthony J Day","doi":"10.1128/mbio.02609-24","DOIUrl":"10.1128/mbio.02609-24","url":null,"abstract":"<p><p>The polysaccharide hyaluronan (HA) is an important component of lung extracellular matrix that increases following infection with influenza or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hellman et al. (U. Hellman, E. Rosendal, J. Lehrstrand, J. Henriksson, et al., mBio 15:e01303-24, https://doi.org/10.1128/mbio.01303-24) show that fragmented HA accumulates in the lungs of coronavirus disease 2019 (COVID-19) patients, with systemic levels of HA being associated with reduced lung function 3-6 months after infection. This study provides novel insights into HA's role in COVID-19 pathology and its potential utility as a biomarker for disease severity. However, much remains to be understood about the lung HA matrix in COVID-19 and how it compares to other lung conditions. In particular, the role of HA-binding proteins in organizing HA into a crosslinked network is yet to be fully determined at a molecular level. This knowledge is crucial in understanding the inter-relationships between the structure of the HA matrix and the regulation of the immune response, and thus our ability to target HA therapeutically for improved outcomes in COVID-19.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0260924"},"PeriodicalIF":5.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}