Deformable image-to-patient registration is essential for surgical navigation and medical imaging, yet real-time computation of spatial transformations across modalities remains a major clinical challenge-often being time-consuming, error-prone, and potentially increasing trauma or radiation exposure. While state-of-the-art methods achieve impressive speed and accuracy on paired medical images, they face notable limitations in cross-modal thoracic applications, where physiological motions such as respiration complicate tumor localization. To address this, we propose a robust, contactless, non-rigid registration framework for dynamic thoracic tumor localization. A highly efficient Recursive Deformable Diffusion Model (RDDM) is trained to reconstruct comprehensive 4DCT sequences from only end-inhalation and end-exhalation scans, capturing respiratory dynamics reflective of the intraoperative state. For real-time patient alignment, we introduce a contactless non-rigid registration algorithm based on GICP, leveraging patient skin surface point clouds captured by stereo RGB-D imaging. By incorporating normal vector and expansion-contraction constraints, the method enhances robustness and avoids local minima. The proposed framework was validated on publicly available datasets and volunteer trials. Quantitative evaluations demonstrated the RDDM’s anatomical fidelity across respiratory phases, achieving an PSNR of 34.01 ± 2.78 dB. Moreover, we have preliminarily developed a 4DCT-based registration and surgical navigation module to support tumor localization and high-precision tracking. Experimental results indicate that the proposed framework preliminarily meets clinical requirements and demonstrates potential for integration into downstream surgical systems.
扫码关注我们
求助内容:
应助结果提醒方式:
