Pub Date : 2024-12-12DOI: 10.1016/j.media.2024.103423
Ray Zirui Zhang, Ivan Ezhov, Michal Balcerak, Andy Zhu, Benedikt Wiestler, Bjoern Menze, John S Lowengrub
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells. However, this requires estimating patient-specific parameters of the model from clinical data, which is a challenging inverse problem due to limited temporal data and the limited time between imaging and diagnosis. This work proposes a method that uses Physics-Informed Neural Networks (PINNs) to estimate patient-specific parameters of a reaction-diffusion partial differential equation (PDE) model of GBM growth from a single 3D structural MRI snapshot. PINNs embed both the data and the PDE into a loss function, thus integrating theory and data. Key innovations include the identification and estimation of characteristic non-dimensional parameters, a pre-training step that utilizes the non-dimensional parameters and a fine-tuning step to determine the patient specific parameters. Additionally, the diffuse-domain method is employed to handle the complex brain geometry within the PINN framework. The method is validated on both synthetic and patient datasets, showing promise for personalized GBM treatment through parametric inference within clinically relevant timeframes.
{"title":"Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans.","authors":"Ray Zirui Zhang, Ivan Ezhov, Michal Balcerak, Andy Zhu, Benedikt Wiestler, Bjoern Menze, John S Lowengrub","doi":"10.1016/j.media.2024.103423","DOIUrl":"10.1016/j.media.2024.103423","url":null,"abstract":"<p><p>Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells. However, this requires estimating patient-specific parameters of the model from clinical data, which is a challenging inverse problem due to limited temporal data and the limited time between imaging and diagnosis. This work proposes a method that uses Physics-Informed Neural Networks (PINNs) to estimate patient-specific parameters of a reaction-diffusion partial differential equation (PDE) model of GBM growth from a single 3D structural MRI snapshot. PINNs embed both the data and the PDE into a loss function, thus integrating theory and data. Key innovations include the identification and estimation of characteristic non-dimensional parameters, a pre-training step that utilizes the non-dimensional parameters and a fine-tuning step to determine the patient specific parameters. Additionally, the diffuse-domain method is employed to handle the complex brain geometry within the PINN framework. The method is validated on both synthetic and patient datasets, showing promise for personalized GBM treatment through parametric inference within clinically relevant timeframes.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103423"},"PeriodicalIF":10.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1016/j.media.2024.103431
Li Yang, Guannan Cao, Songyao Zhang, Weihan Zhang, Yusong Sun, Jingchao Zhou, Tianyang Zhong, Yixuan Yuan, Tao Liu, Tianming Liu, Lei Guo, Yongchun Yu, Xi Jiang, Gang Li, Junwei Han, Tuo Zhang
A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently entangled with each other and with other irrelevant factors. Here we develop a novel contrastive machine learning method, called shared-unique variation autoencoder (SU-VAE), to allow disentanglement of the species-shared and species-specific functional connectome variation between macaque and human brains on large-scale resting-state fMRI datasets. The method was validated by confirming that human-specific features are differentially related to cognitive scores, while features shared with macaque better capture sensorimotor ones. The projection of disentangled connectomes to the cortex revealed a gradient that reflected species divergence. In contrast to macaque, the introduction of human-specific connectomes to the shared ones enhanced network efficiency. We identified genes enriched on 'axon guidance' that could be related to the human-specific connectomes. The code contains the model and analysis can be found in https://github.com/BBBBrain/SU-VAE.
{"title":"Contrastive machine learning reveals species -shared and -specific brain functional architecture.","authors":"Li Yang, Guannan Cao, Songyao Zhang, Weihan Zhang, Yusong Sun, Jingchao Zhou, Tianyang Zhong, Yixuan Yuan, Tao Liu, Tianming Liu, Lei Guo, Yongchun Yu, Xi Jiang, Gang Li, Junwei Han, Tuo Zhang","doi":"10.1016/j.media.2024.103431","DOIUrl":"https://doi.org/10.1016/j.media.2024.103431","url":null,"abstract":"<p><p>A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently entangled with each other and with other irrelevant factors. Here we develop a novel contrastive machine learning method, called shared-unique variation autoencoder (SU-VAE), to allow disentanglement of the species-shared and species-specific functional connectome variation between macaque and human brains on large-scale resting-state fMRI datasets. The method was validated by confirming that human-specific features are differentially related to cognitive scores, while features shared with macaque better capture sensorimotor ones. The projection of disentangled connectomes to the cortex revealed a gradient that reflected species divergence. In contrast to macaque, the introduction of human-specific connectomes to the shared ones enhanced network efficiency. We identified genes enriched on 'axon guidance' that could be related to the human-specific connectomes. The code contains the model and analysis can be found in https://github.com/BBBBrain/SU-VAE.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103431"},"PeriodicalIF":10.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10DOI: 10.1016/j.media.2024.103422
Jiayi Zhu, Bart Bolsterlee, Yang Song, Erik Meijering
Continual test-time adaptation (CTTA) aims to continuously adapt a source-trained model to a target domain with minimal performance loss while assuming no access to the source data. Typically, source models are trained with empirical risk minimization (ERM) and assumed to perform reasonably on the target domain to allow for further adaptation. However, ERM-trained models often fail to perform adequately on a severely drifted target domain, resulting in unsatisfactory adaptation results. To tackle this issue, we propose a generalizable CTTA framework. First, we incorporate domain-invariant shape modeling into the model and train it using domain-generalization (DG) techniques, promoting target-domain adaptability regardless of the severity of the domain shift. Then, an uncertainty and shape-aware mean teacher network performs adaptation with uncertainty-weighted pseudo-labels and shape information. As part of this process, a novel uncertainty-ranked cross-task regularization scheme is proposed to impose consistency between segmentation maps and their corresponding shape representations, both produced by the student model, at the patch and global levels to enhance performance further. Lastly, small portions of the model's weights are stochastically reset to the initial domain-generalized state at each adaptation step, preventing the model from 'diving too deep' into any specific test samples. The proposed method demonstrates strong continual adaptability and outperforms its peers on five cross-domain segmentation tasks, showcasing its effectiveness and generalizability.
{"title":"Improving cross-domain generalizability of medical image segmentation using uncertainty and shape-aware continual test-time domain adaptation.","authors":"Jiayi Zhu, Bart Bolsterlee, Yang Song, Erik Meijering","doi":"10.1016/j.media.2024.103422","DOIUrl":"https://doi.org/10.1016/j.media.2024.103422","url":null,"abstract":"<p><p>Continual test-time adaptation (CTTA) aims to continuously adapt a source-trained model to a target domain with minimal performance loss while assuming no access to the source data. Typically, source models are trained with empirical risk minimization (ERM) and assumed to perform reasonably on the target domain to allow for further adaptation. However, ERM-trained models often fail to perform adequately on a severely drifted target domain, resulting in unsatisfactory adaptation results. To tackle this issue, we propose a generalizable CTTA framework. First, we incorporate domain-invariant shape modeling into the model and train it using domain-generalization (DG) techniques, promoting target-domain adaptability regardless of the severity of the domain shift. Then, an uncertainty and shape-aware mean teacher network performs adaptation with uncertainty-weighted pseudo-labels and shape information. As part of this process, a novel uncertainty-ranked cross-task regularization scheme is proposed to impose consistency between segmentation maps and their corresponding shape representations, both produced by the student model, at the patch and global levels to enhance performance further. Lastly, small portions of the model's weights are stochastically reset to the initial domain-generalized state at each adaptation step, preventing the model from 'diving too deep' into any specific test samples. The proposed method demonstrates strong continual adaptability and outperforms its peers on five cross-domain segmentation tasks, showcasing its effectiveness and generalizability.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103422"},"PeriodicalIF":10.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1016/j.media.2024.103421
Trinh Thi Le Vuong, Jin Tae Kwak
There is no doubt that advanced artificial intelligence models and high quality data are the keys to success in developing computational pathology tools. Although the overall volume of pathology data keeps increasing, a lack of quality data is a common issue when it comes to a specific task due to several reasons including privacy and ethical issues with patient data. In this work, we propose to exploit knowledge distillation, i.e., utilize the existing model to learn a new, target model, to overcome such issues in computational pathology. Specifically, we employ a student-teacher framework to learn a target model from a pre-trained, teacher model without direct access to source data and distill relevant knowledge via momentum contrastive learning with multi-head attention mechanism, which provides consistent and context-aware feature representations. This enables the target model to assimilate informative representations of the teacher model while seamlessly adapting to the unique nuances of the target data. The proposed method is rigorously evaluated across different scenarios where the teacher model was trained on the same, relevant, and irrelevant classification tasks with the target model. Experimental results demonstrate the accuracy and robustness of our approach in transferring knowledge to different domains and tasks, outperforming other related methods. Moreover, the results provide a guideline on the learning strategy for different types of tasks and scenarios in computational pathology.
{"title":"MoMA: Momentum contrastive learning with multi-head attention-based knowledge distillation for histopathology image analysis.","authors":"Trinh Thi Le Vuong, Jin Tae Kwak","doi":"10.1016/j.media.2024.103421","DOIUrl":"https://doi.org/10.1016/j.media.2024.103421","url":null,"abstract":"<p><p>There is no doubt that advanced artificial intelligence models and high quality data are the keys to success in developing computational pathology tools. Although the overall volume of pathology data keeps increasing, a lack of quality data is a common issue when it comes to a specific task due to several reasons including privacy and ethical issues with patient data. In this work, we propose to exploit knowledge distillation, i.e., utilize the existing model to learn a new, target model, to overcome such issues in computational pathology. Specifically, we employ a student-teacher framework to learn a target model from a pre-trained, teacher model without direct access to source data and distill relevant knowledge via momentum contrastive learning with multi-head attention mechanism, which provides consistent and context-aware feature representations. This enables the target model to assimilate informative representations of the teacher model while seamlessly adapting to the unique nuances of the target data. The proposed method is rigorously evaluated across different scenarios where the teacher model was trained on the same, relevant, and irrelevant classification tasks with the target model. Experimental results demonstrate the accuracy and robustness of our approach in transferring knowledge to different domains and tasks, outperforming other related methods. Moreover, the results provide a guideline on the learning strategy for different types of tasks and scenarios in computational pathology.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103421"},"PeriodicalIF":10.7,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.media.2024.103413
Quan Tang, Liming Xu, Yongheng Wang, Bochuan Zheng, Jiancheng Lv, Xianhua Zeng, Weisheng Li
Medical report generation, a cross-modal task of generating medical text information, aiming to provide professional descriptions of medical images in clinical language. Despite some methods have made progress, there are still some limitations, including insufficient focus on lesion areas, omission of internal edge features, and difficulty in aligning cross-modal data. To address these issues, we propose Dual-Modality Visual Feature Flow (DMVF) for medical report generation. Firstly, we introduce region-level features based on grid-level features to enhance the method's ability to identify lesions and key areas. Then, we enhance two types of feature flows based on their attributes to prevent the loss of key information, respectively. Finally, we align visual mappings from different visual feature with report textual embeddings through a feature fusion module to perform cross-modal learning. Extensive experiments conducted on four benchmark datasets demonstrate that our approach outperforms the state-of-the-art methods in both natural language generation and clinical efficacy metrics.
{"title":"Dual-modality visual feature flow for medical report generation.","authors":"Quan Tang, Liming Xu, Yongheng Wang, Bochuan Zheng, Jiancheng Lv, Xianhua Zeng, Weisheng Li","doi":"10.1016/j.media.2024.103413","DOIUrl":"https://doi.org/10.1016/j.media.2024.103413","url":null,"abstract":"<p><p>Medical report generation, a cross-modal task of generating medical text information, aiming to provide professional descriptions of medical images in clinical language. Despite some methods have made progress, there are still some limitations, including insufficient focus on lesion areas, omission of internal edge features, and difficulty in aligning cross-modal data. To address these issues, we propose Dual-Modality Visual Feature Flow (DMVF) for medical report generation. Firstly, we introduce region-level features based on grid-level features to enhance the method's ability to identify lesions and key areas. Then, we enhance two types of feature flows based on their attributes to prevent the loss of key information, respectively. Finally, we align visual mappings from different visual feature with report textual embeddings through a feature fusion module to perform cross-modal learning. Extensive experiments conducted on four benchmark datasets demonstrate that our approach outperforms the state-of-the-art methods in both natural language generation and clinical efficacy metrics.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103413"},"PeriodicalIF":10.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1016/j.media.2024.103392
Maximilian Zenk, David Zimmerer, Fabian Isensee, Jeremias Traub, Tobias Norajitra, Paul F Jäger, Klaus Maier-Hein
Semantic segmentation is an essential component of medical image analysis research, with recent deep learning algorithms offering out-of-the-box applicability across diverse datasets. Despite these advancements, segmentation failures remain a significant concern for real-world clinical applications, necessitating reliable detection mechanisms. This paper introduces a comprehensive benchmarking framework aimed at evaluating failure detection methodologies within medical image segmentation. Through our analysis, we identify the strengths and limitations of current failure detection metrics, advocating for the risk-coverage analysis as a holistic evaluation approach. Utilizing a collective dataset comprising five public 3D medical image collections, we assess the efficacy of various failure detection strategies under realistic test-time distribution shifts. Our findings highlight the importance of pixel confidence aggregation and we observe superior performance of the pairwise Dice score (Roy et al., 2019) between ensemble predictions, positioning it as a simple and robust baseline for failure detection in medical image segmentation. To promote ongoing research, we make the benchmarking framework available to the community.
{"title":"Comparative benchmarking of failure detection methods in medical image segmentation: Unveiling the role of confidence aggregation.","authors":"Maximilian Zenk, David Zimmerer, Fabian Isensee, Jeremias Traub, Tobias Norajitra, Paul F Jäger, Klaus Maier-Hein","doi":"10.1016/j.media.2024.103392","DOIUrl":"https://doi.org/10.1016/j.media.2024.103392","url":null,"abstract":"<p><p>Semantic segmentation is an essential component of medical image analysis research, with recent deep learning algorithms offering out-of-the-box applicability across diverse datasets. Despite these advancements, segmentation failures remain a significant concern for real-world clinical applications, necessitating reliable detection mechanisms. This paper introduces a comprehensive benchmarking framework aimed at evaluating failure detection methodologies within medical image segmentation. Through our analysis, we identify the strengths and limitations of current failure detection metrics, advocating for the risk-coverage analysis as a holistic evaluation approach. Utilizing a collective dataset comprising five public 3D medical image collections, we assess the efficacy of various failure detection strategies under realistic test-time distribution shifts. Our findings highlight the importance of pixel confidence aggregation and we observe superior performance of the pairwise Dice score (Roy et al., 2019) between ensemble predictions, positioning it as a simple and robust baseline for failure detection in medical image segmentation. To promote ongoing research, we make the benchmarking framework available to the community.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103392"},"PeriodicalIF":10.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1016/j.media.2024.103415
Jun-Ho Kim, Young Noh, Haejoon Lee, Seul Lee, Woo-Ram Kim, Koung Mi Kang, Eung Yeop Kim, Mohammed A. Al-masni, Dong-Hyun Kim
Cerebral Microbleeds (CMBs) are chronic deposits of small blood products in the brain tissues, which have explicit relation to various cerebrovascular diseases depending on their anatomical location, including cognitive decline, intracerebral hemorrhage, and cerebral infarction. However, manual detection of CMBs is a time consuming and error-prone process because of their sparse and tiny structural properties. The detection of CMBs is commonly affected by the presence of many CMB mimics that cause a high false-positive rate (FPR), such as calcifications and pial vessels. This paper proposes a novel 3D deep learning framework that not only detects CMBs but also identifies their anatomical location in the brain (i.e., lobar, deep, and infratentorial regions). For the CMBs detection task, we propose a single end-to-end model by leveraging the 3D U-Net as a backbone with Region Proposal Network (RPN). To significantly reduce the false positives within the same single model, we develop a new scheme, containing Feature Fusion Module (FFM) that detects small candidates utilizing contextual information and Hard Sample Prototype Learning (HSPL) that mines CMB mimics and generates additional loss term called concentration loss using Convolutional Prototype Learning (CPL). For the anatomical localization task, we exploit the 3D U-Net segmentation network to segment anatomical structures of the brain. This task not only identifies to which region the CMBs belong but also eliminates some false positives from the detection task by leveraging anatomical information. We utilize Susceptibility-Weighted Imaging (SWI) and phase images as 3D input to efficiently capture 3D information. The results show that the proposed RPN that utilizes the FFM and HSPL outperforms the baseline RPN and achieves a sensitivity of 94.66 % vs. 93.33 % and an average number of false positives per subject (FPavg) of 0.86 vs. 14.73. Furthermore, the anatomical localization task enhances the detection performance by reducing the FPavg to 0.56 while maintaining the sensitivity of 94.66 %.
{"title":"Toward automated detection of microbleeds with anatomical scale localization using deep learning","authors":"Jun-Ho Kim, Young Noh, Haejoon Lee, Seul Lee, Woo-Ram Kim, Koung Mi Kang, Eung Yeop Kim, Mohammed A. Al-masni, Dong-Hyun Kim","doi":"10.1016/j.media.2024.103415","DOIUrl":"https://doi.org/10.1016/j.media.2024.103415","url":null,"abstract":"Cerebral Microbleeds (CMBs) are chronic deposits of small blood products in the brain tissues, which have explicit relation to various cerebrovascular diseases depending on their anatomical location, including cognitive decline, intracerebral hemorrhage, and cerebral infarction. However, manual detection of CMBs is a time consuming and error-prone process because of their sparse and tiny structural properties. The detection of CMBs is commonly affected by the presence of many CMB mimics that cause a high false-positive rate (FPR), such as calcifications and pial vessels. This paper proposes a novel 3D deep learning framework that not only detects CMBs but also identifies their anatomical location in the brain (i.e., lobar, deep, and infratentorial regions). For the CMBs detection task, we propose a single end-to-end model by leveraging the 3D U-Net as a backbone with Region Proposal Network (RPN). To significantly reduce the false positives within the same single model, we develop a new scheme, containing Feature Fusion Module (FFM) that detects small candidates utilizing contextual information and Hard Sample Prototype Learning (HSPL) that mines CMB mimics and generates additional loss term called concentration loss using Convolutional Prototype Learning (CPL). For the anatomical localization task, we exploit the 3D U-Net segmentation network to segment anatomical structures of the brain. This task not only identifies to which region the CMBs belong but also eliminates some false positives from the detection task by leveraging anatomical information. We utilize Susceptibility-Weighted Imaging (SWI) and phase images as 3D input to efficiently capture 3D information. The results show that the proposed RPN that utilizes the FFM and HSPL outperforms the baseline RPN and achieves a sensitivity of 94.66 % vs. 93.33 % and an average number of false positives per subject (FP<ce:inf loc=\"post\">avg</ce:inf>) of 0.86 vs. 14.73. Furthermore, the anatomical localization task enhances the detection performance by reducing the FP<ce:inf loc=\"post\">avg</ce:inf> to 0.56 while maintaining the sensitivity of 94.66 %.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"11 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1016/j.media.2024.103386
Sam Coveney, Maryam Afzali, Lars Mueller, Irvin Teh, Arka Das, Erica Dall'Armellina, Filip Szczepankiewicz, Derek K Jones, Jurgen E Schneider
Cardiac diffusion tensor imaging (cDTI) is highly prone to image corruption, yet robust-fitting methods are rarely used. Single voxel outlier detection (SVOD) can overlook corruptions that are visually obvious, perhaps causing reluctance to replace whole-image shot-rejection (SR) despite its own deficiencies. SVOD's deficiencies may be relatively unimportant: corrupted signals that are not statistical outliers may not be detrimental. Multiple voxel outlier detection (MVOD), using a local myocardial neighbourhood, may overcome the shared deficiencies of SR and SVOD for cDTI while keeping the benefits of both. Here, robust fitting methods using M-estimators are derived for both non-linear least squares and weighted least squares fitting, and outlier detection is applied using (i) SVOD; and (ii) SVOD and MVOD. These methods, along with non-robust fitting with/without SR, are applied to cDTI datasets from healthy volunteers and hypertrophic cardiomyopathy patients. Robust fitting methods produce larger group differences with more statistical significance for MD, FA, and E2A, versus non-robust methods, with MVOD giving the largest group differences for MD and FA. Visual analysis demonstrates the superiority of robust-fitting methods over SR, especially when it is difficult to partition the images into good and bad sets. Synthetic experiments confirm that MVOD gives lower root-mean-square-error than SVOD.
心脏弥散张量成像(cDTI)极易出现图像损坏,但却很少使用稳健拟合方法。单体素离群点检测(SVOD)可能会忽略视觉上明显的损坏,这也许是不愿意取代全图像镜头剔除(SR)的原因,尽管它本身存在缺陷。SVOD 的缺陷可能相对来说并不重要:不是统计异常值的损坏信号可能不会造成损害。使用局部心肌邻域的多体素离群点检测(MVOD)可以克服 cDTI SR 和 SVOD 的共同缺陷,同时保留两者的优点。本文针对非线性最小二乘法和加权最小二乘法拟合,推导出了使用 M 估计器的稳健拟合方法,并使用(i)SVOD 和(ii)SVOD 和 MVOD 进行离群点检测。这些方法以及有/无 SR 的非稳健拟合方法被应用于健康志愿者和肥厚型心肌病患者的 cDTI 数据集。与非稳健拟合方法相比,稳健拟合方法在 MD、FA 和 E2A 方面产生的组间差异更大,更具有统计学意义,其中 MVOD 在 MD 和 FA 方面产生的组间差异最大。直观分析表明,鲁棒拟合方法优于 SR 方法,尤其是在难以将图像分为好图像集和坏图像集的情况下。合成实验证实,MVOD 的均方根误差低于 SVOD。
{"title":"Outlier detection in cardiac diffusion tensor imaging: Shot rejection or robust fitting?","authors":"Sam Coveney, Maryam Afzali, Lars Mueller, Irvin Teh, Arka Das, Erica Dall'Armellina, Filip Szczepankiewicz, Derek K Jones, Jurgen E Schneider","doi":"10.1016/j.media.2024.103386","DOIUrl":"https://doi.org/10.1016/j.media.2024.103386","url":null,"abstract":"<p><p>Cardiac diffusion tensor imaging (cDTI) is highly prone to image corruption, yet robust-fitting methods are rarely used. Single voxel outlier detection (SVOD) can overlook corruptions that are visually obvious, perhaps causing reluctance to replace whole-image shot-rejection (SR) despite its own deficiencies. SVOD's deficiencies may be relatively unimportant: corrupted signals that are not statistical outliers may not be detrimental. Multiple voxel outlier detection (MVOD), using a local myocardial neighbourhood, may overcome the shared deficiencies of SR and SVOD for cDTI while keeping the benefits of both. Here, robust fitting methods using M-estimators are derived for both non-linear least squares and weighted least squares fitting, and outlier detection is applied using (i) SVOD; and (ii) SVOD and MVOD. These methods, along with non-robust fitting with/without SR, are applied to cDTI datasets from healthy volunteers and hypertrophic cardiomyopathy patients. Robust fitting methods produce larger group differences with more statistical significance for MD, FA, and E2A, versus non-robust methods, with MVOD giving the largest group differences for MD and FA. Visual analysis demonstrates the superiority of robust-fitting methods over SR, especially when it is difficult to partition the images into good and bad sets. Synthetic experiments confirm that MVOD gives lower root-mean-square-error than SVOD.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103386"},"PeriodicalIF":10.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts.
{"title":"Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection.","authors":"Xiaochuan Wang, Yuqi Fang, Qianqian Wang, Pew-Thian Yap, Hongtu Zhu, Mingxia Liu","doi":"10.1016/j.media.2024.103403","DOIUrl":"10.1016/j.media.2024.103403","url":null,"abstract":"<p><p>Resting-state functional magnetic resonance imaging (rs-fMRI) provides a non-invasive imaging technique to study patterns of brain activity, and is increasingly used to facilitate automated brain disorder analysis. Existing fMRI-based learning methods often rely on labeled data to construct learning models, while the data annotation process typically requires significant time and resource investment. Graph contrastive learning offers a promising solution to address the small labeled data issue, by augmenting fMRI time series for self-supervised learning. However, data augmentation strategies employed in these approaches may damage the original blood-oxygen-level-dependent (BOLD) signals, thus hindering subsequent fMRI feature extraction. In this paper, we propose a self-supervised graph contrastive learning framework with diffusion augmentation (GCDA) for functional MRI analysis. The GCDA consists of a pretext model and a task-specific model. In the pretext model, we first augment each brain functional connectivity network derived from fMRI through a graph diffusion augmentation (GDA) module, and then use two graph isomorphism networks with shared parameters to extract features in a self-supervised contrastive learning manner. The pretext model can be optimized without the need for labeled training data, while the GDA focuses on perturbing graph edges and nodes, thus preserving the integrity of original BOLD signals. The task-specific model involves fine-tuning the trained pretext model to adapt to downstream tasks. Experimental results on two rs-fMRI cohorts with a total of 1230 subjects demonstrate the effectiveness of our method compared with several state-of-the-arts.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103403"},"PeriodicalIF":10.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR.
{"title":"COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation","authors":"Lixuan Chen, Xuanyu Tian, Jiangjie Wu, Guoyan Lao, Yuyao Zhang, Hongjiang Wei","doi":"10.1016/j.media.2024.103396","DOIUrl":"https://doi.org/10.1016/j.media.2024.103396","url":null,"abstract":"Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: <ce:inter-ref xlink:href=\"https://github.com/maopaom/COLLATOR\" xlink:type=\"simple\">https://github.com/maopaom/COLLATOR</ce:inter-ref>.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"1 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}