首页 > 最新文献

Medical Microbiology and Immunology最新文献

英文 中文
Proportions of IgA antibodies targeting glycosylated epitopes of secreted Escherichia coli mucinase YghJ in initial plasmablast response differ from salivary and intestinally secreted IgA. 在初始的质母反应中,针对分泌的大肠杆菌黏液酶YghJ糖基化表位的IgA抗体比例与唾液分泌和肠分泌的IgA不同。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-14 DOI: 10.1007/s00430-024-00812-0
Saman Riaz, Hans Steinsland, Ann Z Andersen, Anders Boysen, Kurt Hanevik

Mucosal infections normally cause an immune response including activation of antigen-specific B cells in regional mucosa-associated lymphoid tissue. After recirculation of plasmablasts, and maturation at mucosal surfaces or bone marrow, plasma cells produce secretory or systemic IgA. It remains uncertain to what extent secretory and systemic IgA share the same target specificities. For vaccine candidate optimization, it is important to know whether IgA targeting of glycosylated epitopes of a protein antigen vary between mucosal and systemic sites. We evaluated glycosylated epitope specificity of systemic and mucosally secreted IgA against YghJ, a potential vaccine candidate antigen secreted by most pathogenic Escherichia coli. IgA from intestinal lavage, saliva, serum, and blood-derived antibody in lymphocyte supernatants (ALS) were collected from 21 volunteers following experimental infection with enterotoxigenic E. coli. Methods for preparing IgA from saliva and ALS were developed, and multiplex bead flow cytometric immunoassays were used to determine levels of IgA targeting natively glycosylated YghJ and estimating what proportion of these antibodies specifically targeted glycosylated epitopes. Following infection, anti-YghJ IgA levels increased substantially for most volunteers across all four specimen types. Target specificity of ALS IgA correlated well with serum IgA, but not with mucosally secreted IgA. Furthermore, glycosylation-specific proportion of salivary IgA was higher than, and did not correlate with, intestinally secreted IgA. These results indicate a new degree of complexity to our understanding of epitope-targeting and tissue specificity of mucosal antibody responses. Our findings also suggest that all features of an intestinal IgA response may not be well reflected in serum, saliva, or ALS, which are commonly used proxy specimens for evaluating intestinal immune responses.

粘膜感染通常会引起免疫反应,包括局部粘膜相关淋巴组织中抗原特异性B细胞的激活。浆质母细胞循环后,在粘膜表面或骨髓成熟后,浆细胞产生分泌性或系统性IgA。目前尚不清楚分泌型和系统性IgA在多大程度上具有相同的靶标特异性。为了优化候选疫苗,了解IgA对蛋白抗原糖基化表位的靶向在粘膜和全身部位是否不同是很重要的。我们评估了全身和粘膜分泌的IgA对YghJ的糖基化表位特异性,YghJ是大多数致病性大肠杆菌分泌的一种潜在的疫苗候选抗原。从21名实验感染肠毒素大肠杆菌的志愿者的肠灌洗液、唾液、血清和淋巴细胞上清(ALS)血源性抗体中采集IgA。开发了从唾液和ALS中制备IgA的方法,并使用多重头流式细胞术免疫测定来确定靶向天然糖基化YghJ的IgA水平,并估计这些抗体特异性靶向糖基化表位的比例。感染后,在所有四种标本类型中,大多数志愿者的抗yghj IgA水平显著增加。ALS IgA靶特异性与血清IgA相关性较好,与黏膜分泌IgA相关性不强。此外,唾液IgA的糖基化特异性比例高于肠分泌IgA,但与肠分泌IgA无关。这些结果表明,我们对粘膜抗体反应的表位靶向和组织特异性的理解具有新的复杂性。我们的研究结果还表明,肠道IgA反应的所有特征可能不能很好地反映在血清,唾液或ALS中,这些通常用于评估肠道免疫反应的替代标本。
{"title":"Proportions of IgA antibodies targeting glycosylated epitopes of secreted Escherichia coli mucinase YghJ in initial plasmablast response differ from salivary and intestinally secreted IgA.","authors":"Saman Riaz, Hans Steinsland, Ann Z Andersen, Anders Boysen, Kurt Hanevik","doi":"10.1007/s00430-024-00812-0","DOIUrl":"10.1007/s00430-024-00812-0","url":null,"abstract":"<p><p>Mucosal infections normally cause an immune response including activation of antigen-specific B cells in regional mucosa-associated lymphoid tissue. After recirculation of plasmablasts, and maturation at mucosal surfaces or bone marrow, plasma cells produce secretory or systemic IgA. It remains uncertain to what extent secretory and systemic IgA share the same target specificities. For vaccine candidate optimization, it is important to know whether IgA targeting of glycosylated epitopes of a protein antigen vary between mucosal and systemic sites. We evaluated glycosylated epitope specificity of systemic and mucosally secreted IgA against YghJ, a potential vaccine candidate antigen secreted by most pathogenic Escherichia coli. IgA from intestinal lavage, saliva, serum, and blood-derived antibody in lymphocyte supernatants (ALS) were collected from 21 volunteers following experimental infection with enterotoxigenic E. coli. Methods for preparing IgA from saliva and ALS were developed, and multiplex bead flow cytometric immunoassays were used to determine levels of IgA targeting natively glycosylated YghJ and estimating what proportion of these antibodies specifically targeted glycosylated epitopes. Following infection, anti-YghJ IgA levels increased substantially for most volunteers across all four specimen types. Target specificity of ALS IgA correlated well with serum IgA, but not with mucosally secreted IgA. Furthermore, glycosylation-specific proportion of salivary IgA was higher than, and did not correlate with, intestinally secreted IgA. These results indicate a new degree of complexity to our understanding of epitope-targeting and tissue specificity of mucosal antibody responses. Our findings also suggest that all features of an intestinal IgA response may not be well reflected in serum, saliva, or ALS, which are commonly used proxy specimens for evaluating intestinal immune responses.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"2"},"PeriodicalIF":5.5,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and evaluation of glycoprotein-based nucleic acid vaccines for Marburg virus. 构建和评估基于糖蛋白的马尔堡病毒核酸疫苗。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-28 DOI: 10.1007/s00430-024-00811-1
Xiyang Zhang, Yubo Sun, Jiaxing Zhang, Junqi Zhang, Jing Wang, Chenchen Hu, Yueyue Wang, Feiming Hu, Sirui Cai, Yuanli He, Yang Liu, Yuanjie Sun, Shuya Yang, Dongbo Jiang, Kun Yang

Marburg virus (MARV) is a zoonotic virus that can infect humans and non-human primates (NHPs) and lead to a fatal Marburg hemorrhagic fever (MHF), while there is no approved vaccine or antiviral treatment for MHF. The nucleic acid vaccine has unique advantages, including fast and simple preparation, easy to follow the virus mutation situation, and less adverse reactions. Therefore, we constructed the DNA and mRNA candidate vaccines based on codon-optimized MARV glycoprotein sequence, and evaluated the immune effect in mice through ELISA, ELISpot, and Flow cytometry. After the second booster immunization, both of the candidate vaccines induced strong humoral immune response, enhanced T cell response, and elicited neutralizing antibodies. Notably, DNA candidate vaccine induced stronger humoral immune response, while mRNA candidate vaccine elicited higher levels of IFN-γ and IL-4. In addition, transcriptome analysis revealed that the candidate vaccines activated immune response related pathways. Our study shed new light on the nucleic acid vaccines for MARV and further confirmed the potential of nucleic acid vaccine for future MHF prevention and control.

马尔堡病毒(MARV)是一种人畜共患病毒,可感染人类和非人灵长类动物(NHPs),并导致致命的马尔堡出血热(MHF),而目前尚无针对马尔堡出血热的获批疫苗或抗病毒治疗方法。核酸疫苗具有制备简单快捷、易于跟踪病毒变异情况、不良反应少等独特优势。因此,我们根据经过密码子优化的MARV糖蛋白序列构建了DNA和mRNA候选疫苗,并通过ELISA、ELISpot和流式细胞术评估了小鼠的免疫效果。在第二次加强免疫后,两种候选疫苗都诱导了强烈的体液免疫反应,增强了T细胞反应,并激发了中和抗体。值得注意的是,DNA 候选疫苗诱导了更强的体液免疫反应,而 mRNA 候选疫苗则诱导了更高水平的 IFN-γ 和 IL-4。此外,转录组分析表明,候选疫苗激活了与免疫应答相关的通路。我们的研究为MARV核酸疫苗提供了新的思路,并进一步证实了核酸疫苗在未来MHF防控中的潜力。
{"title":"Construction and evaluation of glycoprotein-based nucleic acid vaccines for Marburg virus.","authors":"Xiyang Zhang, Yubo Sun, Jiaxing Zhang, Junqi Zhang, Jing Wang, Chenchen Hu, Yueyue Wang, Feiming Hu, Sirui Cai, Yuanli He, Yang Liu, Yuanjie Sun, Shuya Yang, Dongbo Jiang, Kun Yang","doi":"10.1007/s00430-024-00811-1","DOIUrl":"https://doi.org/10.1007/s00430-024-00811-1","url":null,"abstract":"<p><p>Marburg virus (MARV) is a zoonotic virus that can infect humans and non-human primates (NHPs) and lead to a fatal Marburg hemorrhagic fever (MHF), while there is no approved vaccine or antiviral treatment for MHF. The nucleic acid vaccine has unique advantages, including fast and simple preparation, easy to follow the virus mutation situation, and less adverse reactions. Therefore, we constructed the DNA and mRNA candidate vaccines based on codon-optimized MARV glycoprotein sequence, and evaluated the immune effect in mice through ELISA, ELISpot, and Flow cytometry. After the second booster immunization, both of the candidate vaccines induced strong humoral immune response, enhanced T cell response, and elicited neutralizing antibodies. Notably, DNA candidate vaccine induced stronger humoral immune response, while mRNA candidate vaccine elicited higher levels of IFN-γ and IL-4. In addition, transcriptome analysis revealed that the candidate vaccines activated immune response related pathways. Our study shed new light on the nucleic acid vaccines for MARV and further confirmed the potential of nucleic acid vaccine for future MHF prevention and control.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"1"},"PeriodicalIF":5.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibiting lipid droplet biogenesis enhances host protection against hypervirulent Klebsiella pneumoniae infections. 抑制脂滴生物生成可增强宿主对高病毒性肺炎克雷伯氏菌感染的保护。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-14 DOI: 10.1007/s00430-024-00807-x
Hui-Jung Jung, Hyun Ah Kim, Miri Hyun, Ji Yeon Lee, Young Jae Kim, Seong-Il Suh, Eun-Kyeong Jo, Won-Ki Baek, Jin Kyung Kim

Hypervirulent Klebsiella pneumoniae (hvKp), an emerging Kp subtype, has become a serious global pathogen. However, the information regarding host interactions and innate immune responses during hvKp infection is limited. Here, we found that hvKp clinical strains increased triacylglycerol synthesis, resulting in lipid droplets (LDs) formation via the mammalian target of rapamycin signaling pathway in RAW264.7 cells. Treatment with rapamycin, an inhibitor of this pathway, affected LDs formation and antimicrobial responses against clinical hvKp infections. In accordance with the role of LDs in modulating inflammation, the pharmacological inhibition of lipogenesis reduced proinflammatory cytokine expression during hvKp infections. In addition, inhibition of LDs formation using pharmacological inhibitors and knockdown of lipogenesis regulators decreased the intracellular survival of hvKp in macrophages. Moreover, inhibiting LDs biogenesis reduced mortality, weight loss, and bacterial loads in hvKp-infected mice. Collectively, these data suggest that LDs biogenesis is crucial in linking host immune responses to clinical hvKp infections.

高病毒性肺炎克雷伯氏菌(hvKp)是一种新出现的 Kp 亚型,已成为一种严重的全球性病原体。然而,有关 hvKp 感染过程中宿主相互作用和先天性免疫反应的信息十分有限。在这里,我们发现 hvKp 临床菌株会增加三酰甘油的合成,从而通过哺乳动物雷帕霉素靶点信号通路在 RAW264.7 细胞中形成脂滴(LDs)。雷帕霉素是这一途径的抑制剂,用雷帕霉素处理会影响 LDs 的形成和对临床 hvKp 感染的抗菌反应。根据 LDs 在调节炎症中的作用,药物抑制脂肪生成可减少 hvKp 感染期间促炎细胞因子的表达。此外,利用药理抑制剂抑制 LDs 的形成和敲除脂肪生成调节因子可降低 hvKp 在巨噬细胞内的存活率。此外,抑制 LDs 的生物生成可降低 hvKp 感染小鼠的死亡率、体重减轻和细菌负荷。总之,这些数据表明,LDs 生物发生在宿主免疫反应与临床 hvKp 感染之间起着关键作用。
{"title":"Inhibiting lipid droplet biogenesis enhances host protection against hypervirulent Klebsiella pneumoniae infections.","authors":"Hui-Jung Jung, Hyun Ah Kim, Miri Hyun, Ji Yeon Lee, Young Jae Kim, Seong-Il Suh, Eun-Kyeong Jo, Won-Ki Baek, Jin Kyung Kim","doi":"10.1007/s00430-024-00807-x","DOIUrl":"10.1007/s00430-024-00807-x","url":null,"abstract":"<p><p>Hypervirulent Klebsiella pneumoniae (hvKp), an emerging Kp subtype, has become a serious global pathogen. However, the information regarding host interactions and innate immune responses during hvKp infection is limited. Here, we found that hvKp clinical strains increased triacylglycerol synthesis, resulting in lipid droplets (LDs) formation via the mammalian target of rapamycin signaling pathway in RAW264.7 cells. Treatment with rapamycin, an inhibitor of this pathway, affected LDs formation and antimicrobial responses against clinical hvKp infections. In accordance with the role of LDs in modulating inflammation, the pharmacological inhibition of lipogenesis reduced proinflammatory cytokine expression during hvKp infections. In addition, inhibition of LDs formation using pharmacological inhibitors and knockdown of lipogenesis regulators decreased the intracellular survival of hvKp in macrophages. Moreover, inhibiting LDs biogenesis reduced mortality, weight loss, and bacterial loads in hvKp-infected mice. Collectively, these data suggest that LDs biogenesis is crucial in linking host immune responses to clinical hvKp infections.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"213 1","pages":"26"},"PeriodicalIF":5.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MPXV infection impairs IFN response but is partially sensitive to IFN-γ antiviral effect. MPXV 感染会损害 IFN 反应,但对 IFN-γ 的抗病毒作用部分敏感。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-11 DOI: 10.1007/s00430-024-00808-w
Licia Bordi, Alessandra D'Auria, Federica Frasca, Valentina Mazzotta, Paola Mazzetti, Matteo Fracella, Gabriella d'Ettorre, Guido Antonelli, Mauro Pistello, Andrea Antinori, Raphael P Viscidi, Fabrizio Maggi, Eleonora Lalle, Carolina Scagnolari

The recent outbreak of monkeypox virus (MPXV) has caused global concern. How the virus evades the interferon (IFN) response is still poorly understood. We analyzed type I/II IFN (IFN-I/II) expression in clinical samples from MPXV-infected patients and measured IFN-I kinetics in MPXV-infected cells. We also evaluated the anti-MPXV activity of IFN-I/II in A549, HeLa and Vero-E6 cell lines. IFN-I/II mRNA expression was detected in skin lesions, anal swabs, nasopharyngeal samples and peripheral blood mononuclear cells (PBMC), with the highest levels in skin lesions (p < 0.05). High MPXV DNA levels in clinical samples were associated with increased IFN-I levels. In vitro, MPXV infection induced a peak of IFN-I between 48 and 72 h post-infection (p < 0.01). Pre-treatment of the A549, HeLa and Vero-E6 cells with high concentrations (≥ 100,000 International Unit, IU/ml) of IFN-α and IFN-ω did not inhibit or had little effect on MPXV replication, while IFN-β moderately reduced MPXV replication by 2.7-1.5 log10 at 100,000 IU/ml. In clinical samples there was a trend for elevated levels of IFN-γ in association with lower MPXV load and in vitro IFN-γ (3,600 IU/ml) strongly reduced viral titers by 3.4-1.6 log10. There were no significant differences in expression of select IFN-stimulated genes (ISGs) in MPXV infection in vitro. This study shows that MPXV delays IFN-I induction and inhibits expression of selected ISGs in vitro and is associated with an IFN-I resistance phenotype in vivo. However, MPXV is less resistant to IFN-γ in vivo and is sensitive to IFN-γ treatment in vitro, suggesting a potential therapeutic role for IFN-γ.

最近爆发的猴痘病毒(MPXV)引起了全球关注。人们对该病毒如何逃避干扰素(IFN)反应仍知之甚少。我们分析了感染 MPXV 的患者临床样本中 I/II 型 IFN(IFN-I/II)的表达,并测量了感染 MPXV 的细胞中 IFN-I 的动力学。我们还评估了 IFN-I/II 在 A549、HeLa 和 Vero-E6 细胞系中的抗 MPXV 活性。在皮损、肛拭子、鼻咽部样本和外周血单核细胞(PBMC)中都检测到了 IFN-I/II mRNA 的表达,其中皮损中的表达水平最高(p 10,100,000 IU/ml)。在临床样本中,IFN-γ 水平升高的趋势与 MPXV 负荷降低有关,体外 IFN-γ(3,600 IU/ml)可使病毒滴度降低 3.4-1.6 log10。体外 IFN-γ(3,600 IU/ml)可将病毒滴度降低 3.4-1.6 log10,体外 IFN-γ(3,600 IU/ml)可将病毒滴度降低 3.4-1.6 log10。这项研究表明,MPXV 在体外能延缓 IFN-I 的诱导并抑制特定 ISGs 的表达,在体内与 IFN-I 抗性表型相关。然而,MPXV 在体内对 IFN-γ 的抵抗力较弱,在体外对 IFN-γ 处理敏感,这表明 IFN-γ 具有潜在的治疗作用。
{"title":"MPXV infection impairs IFN response but is partially sensitive to IFN-γ antiviral effect.","authors":"Licia Bordi, Alessandra D'Auria, Federica Frasca, Valentina Mazzotta, Paola Mazzetti, Matteo Fracella, Gabriella d'Ettorre, Guido Antonelli, Mauro Pistello, Andrea Antinori, Raphael P Viscidi, Fabrizio Maggi, Eleonora Lalle, Carolina Scagnolari","doi":"10.1007/s00430-024-00808-w","DOIUrl":"10.1007/s00430-024-00808-w","url":null,"abstract":"<p><p>The recent outbreak of monkeypox virus (MPXV) has caused global concern. How the virus evades the interferon (IFN) response is still poorly understood. We analyzed type I/II IFN (IFN-I/II) expression in clinical samples from MPXV-infected patients and measured IFN-I kinetics in MPXV-infected cells. We also evaluated the anti-MPXV activity of IFN-I/II in A549, HeLa and Vero-E6 cell lines. IFN-I/II mRNA expression was detected in skin lesions, anal swabs, nasopharyngeal samples and peripheral blood mononuclear cells (PBMC), with the highest levels in skin lesions (p < 0.05). High MPXV DNA levels in clinical samples were associated with increased IFN-I levels. In vitro, MPXV infection induced a peak of IFN-I between 48 and 72 h post-infection (p < 0.01). Pre-treatment of the A549, HeLa and Vero-E6 cells with high concentrations (≥ 100,000 International Unit, IU/ml) of IFN-α and IFN-ω did not inhibit or had little effect on MPXV replication, while IFN-β moderately reduced MPXV replication by 2.7-1.5 log<sub>10</sub> at 100,000 IU/ml. In clinical samples there was a trend for elevated levels of IFN-γ in association with lower MPXV load and in vitro IFN-γ (3,600 IU/ml) strongly reduced viral titers by 3.4-1.6 log<sub>10</sub>. There were no significant differences in expression of select IFN-stimulated genes (ISGs) in MPXV infection in vitro. This study shows that MPXV delays IFN-I induction and inhibits expression of selected ISGs in vitro and is associated with an IFN-I resistance phenotype in vivo. However, MPXV is less resistant to IFN-γ in vivo and is sensitive to IFN-γ treatment in vitro, suggesting a potential therapeutic role for IFN-γ.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"213 1","pages":"25"},"PeriodicalIF":5.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered bispecific antibodies with enhanced breadth and potency against SARS-CoV-2 variants and SARS-related coronaviruses. 针对 SARS-CoV-2 变体和 SARS 相关冠状病毒设计的双特异性抗体具有更强的广谱性和效力。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-09 DOI: 10.1007/s00430-024-00809-9
Fangfang Chang, Qian Wu, Yabin Hu, Zhendong Pan, Yong-Chen Liu, Yue-Zhou Li, Mihnea Bostina, Wenpei Liu, Ping Zhao, Xiaowang Qu, Yi-Ping Li

The concern of COVID-19 persists due to the continuous emergence of variants and the potential spillover of animal coronaviruses. The broad-spectrum neutralizing antibodies play a pivotal role in the prevention and treatment of coronavirus (CoV) infections. Here, we constructed 18 bi-specific antibodies (bsAbs) using 9 antibodies isolated from COVID-19 convalescents and vaccinated individuals, designed as dual variable domain immunoglobulin (DVD-Ig). A bsAb 5-HI showed a high binding capability to the S1 subunit of spike and exhibited breadth and potency against pseudotyped SARS-CoV-2 variants of concerns (VOCs) and SARS-related-CoVs (SARSr-CoVs), with half maximal effective concentration (EC50) of 0.028-3.444 nM and 50% inhibitory concentration (IC50) of 0.008-0.800 nM. In addition, it retained neutralization potency against the peudotyped virus of recently prevalent JN.1 strain (IC50, 12.74 nM). We found that the parental antibodies showed weak or no binding to the receptor binding domain (RBD) of the SARS-CoV, EG.5.1, and JN.1. However, the 5-HI maintained the binding with RBD and prevented the binding between hACE2 and RBD (IC50 for the RBD of SARS-CoV, 1.067 nM; EG.5.1, 0.423 nM; JN.1, 0.223 nM). In neutralization assays with the authentic virus, we found that the 5-HI effectively neutralized Omicron variants XBB.1.5 (IC50, 0.308 nM), EG.5.1 (IC50, 0.129 nM), and JN.1 (IC50, 13.692 nM), while its parental antibodies showed weakened or no neutralization. Therefore, the 5-HI represents a promising candidate for further development in the treatment and prevention of ongoing evolved SARS-CoV-2 VOCs and other SARSr-CoVs that potentially emerge in the future.

由于变种的不断出现和动物冠状病毒的潜在外溢,COVID-19 的问题一直令人担忧。广谱中和抗体在冠状病毒(CoV)感染的预防和治疗中发挥着关键作用。在此,我们利用从 COVID-19 康复者和疫苗接种者中分离的 9 种抗体构建了 18 种双特异性抗体(bsAbs),并将其设计为双可变结构域免疫球蛋白(DVD-Ig)。一种 bsAb 5-HI 显示出与尖峰 S1 亚基的高度结合能力,并对伪型 SARS-CoV-2 变异体(VOCs)和 SARS 相关 CoVs(SARSr-CoVs)表现出广泛的抗性和效力,半数最大有效浓度(EC50)为 0.028-3.444 nM,50%抑制浓度(IC50)为 0.008-0.800 nM。此外,它还对最近流行的 JN.1 株的原型病毒具有中和效力(IC50,12.74 nM)。我们发现,亲代抗体与 SARS-CoV、EG.5.1 和 JN.1 的受体结合域(RBD)的结合力很弱或没有结合力。然而,5-HI 能保持与 RBD 的结合,并阻止 hACE2 与 RBD 的结合(SARS-CoV 的 RBD IC50 为 1.067 nM;EG.5.1 为 0.423 nM;JN.1 为 0.223 nM)。在与真实病毒的中和试验中,我们发现 5-HI 能有效中和 Omicron 变体 XBB.1.5(IC50,0.308 nM)、EG.5.1(IC50,0.129 nM)和 JN.1(IC50,13.692 nM),而其亲代抗体的中和作用减弱或没有。因此,5-HI 是治疗和预防正在进化的 SARS-CoV-2 VOCs 和未来可能出现的其他 SARSr-CoVs 的一种有希望的候选药物。
{"title":"Engineered bispecific antibodies with enhanced breadth and potency against SARS-CoV-2 variants and SARS-related coronaviruses.","authors":"Fangfang Chang, Qian Wu, Yabin Hu, Zhendong Pan, Yong-Chen Liu, Yue-Zhou Li, Mihnea Bostina, Wenpei Liu, Ping Zhao, Xiaowang Qu, Yi-Ping Li","doi":"10.1007/s00430-024-00809-9","DOIUrl":"10.1007/s00430-024-00809-9","url":null,"abstract":"<p><p>The concern of COVID-19 persists due to the continuous emergence of variants and the potential spillover of animal coronaviruses. The broad-spectrum neutralizing antibodies play a pivotal role in the prevention and treatment of coronavirus (CoV) infections. Here, we constructed 18 bi-specific antibodies (bsAbs) using 9 antibodies isolated from COVID-19 convalescents and vaccinated individuals, designed as dual variable domain immunoglobulin (DVD-Ig). A bsAb 5-HI showed a high binding capability to the S1 subunit of spike and exhibited breadth and potency against pseudotyped SARS-CoV-2 variants of concerns (VOCs) and SARS-related-CoVs (SARSr-CoVs), with half maximal effective concentration (EC<sub>50</sub>) of 0.028-3.444 nM and 50% inhibitory concentration (IC<sub>50</sub>) of 0.008-0.800 nM. In addition, it retained neutralization potency against the peudotyped virus of recently prevalent JN.1 strain (IC<sub>50</sub>, 12.74 nM). We found that the parental antibodies showed weak or no binding to the receptor binding domain (RBD) of the SARS-CoV, EG.5.1, and JN.1. However, the 5-HI maintained the binding with RBD and prevented the binding between hACE2 and RBD (IC<sub>50</sub> for the RBD of SARS-CoV, 1.067 nM; EG.5.1, 0.423 nM; JN.1, 0.223 nM). In neutralization assays with the authentic virus, we found that the 5-HI effectively neutralized Omicron variants XBB.1.5 (IC<sub>50</sub>, 0.308 nM), EG.5.1 (IC<sub>50</sub>, 0.129 nM), and JN.1 (IC<sub>50</sub>, 13.692 nM), while its parental antibodies showed weakened or no neutralization. Therefore, the 5-HI represents a promising candidate for further development in the treatment and prevention of ongoing evolved SARS-CoV-2 VOCs and other SARSr-CoVs that potentially emerge in the future.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"213 1","pages":"24"},"PeriodicalIF":5.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pathogenic responses elicited during exposure of human intestinal cell line with Giardia duodenalis excretory-secretory products and the potential attributed endocytosis mechanism. 人体肠道细胞系与十二指肠贾第虫排泄-分泌产物接触时引发的致病反应以及潜在的内吞机制。
IF 3 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-23 DOI: 10.1007/s00430-024-00806-y
Xiran Yu, Yongwu Yang, Weining Zhu, Min Liu, Jingxue Wu, Steven M Singer, Wei Li

Giardia duodenalis, an important zoonotic protozoan parasite, adheres to host intestinal epithelial cells (IECs) via the ventral disc and causes giardiasis characterized mainly by diarrhea. To date, it remains elusive how excretory-secretory products (ESPs) of Giardia enter IECs and how the cells respond to the entry. Herein, we initially demonstrated that ESPs evoked IEC endocytosis in vitro. We indicated that ESPs contributed vitally in triggering intrinsic apoptosis, pro-inflammatory responses, tight junction (TJ) protein expressional changes, and autophagy in IECs. Endocytosis was further proven to be implicated in those ESPs-triggered IEC responses. Ten predicted virulent excretory-secretory proteins of G. duodenalis were investigated for their capability to activate clathrin/caveolin-mediated endocytosis (CME/CavME) in IECs. Pyridoxamine 5'-phosphate oxidase (PNPO) was confirmed to be an important contributor. PNPO was subsequently verified as a vital promoter in the induction of giardiasis-related IEC apoptosis, inflammation, and TJ protein downregulation. Most importantly, this process seemed to be involved majorly in PNPO-evoked CME pathway, rather than CavME. Collectively, this study identified Giardia ESPs, notably PNPO, as potentially important pathogenic factors during noninvasive infection. It was also noteworthy that ESPs-evoked endocytosis might play a role in triggering giardiasis-inducing cellular regulation. These findings would deepen our understanding about the role of ESPs, notably PNPO, in the pathogenesis of giardiasis and the potential attributed endocytosis mechanism.

十二指肠贾第虫(Giardia duodenalis)是一种重要的人畜共患原生动物寄生虫,它通过腹盘粘附在宿主肠上皮细胞(IECs)上,引起以腹泻为主要特征的贾第虫病。迄今为止,贾第虫的排泄-分泌产物(ESP)如何进入肠上皮细胞以及细胞如何对这种进入做出反应仍是一个谜。在此,我们初步证明了 ESPs 在体外诱发了 IEC 的内吞作用。我们指出,ESPs 在引发 IECs 内源性凋亡、促炎反应、紧密连接(TJ)蛋白表达变化和自噬方面做出了重要贡献。内吞作用被进一步证明与这些由 ESPs 触发的 IEC 反应有关。研究人员对十种预测的十二指肠球虫毒性排泄分泌蛋白进行了调查,以确定它们在 IECs 中激活凝集素/卡维林介导的内吞(CME/CavME)的能力。经证实,吡多胺-5'-磷酸氧化酶(PNPO)是一个重要的贡献者。PNPO 随后被证实是诱导与包虫病相关的 IEC 细胞凋亡、炎症和 TJ 蛋白下调的重要促进因子。最重要的是,这一过程似乎主要参与了 PNPO 诱导的 CME 途径,而不是 CavME。总之,本研究发现贾第虫ESP,特别是PNPO,可能是非侵入性感染期间的重要致病因素。值得注意的是,ESPs诱发的内吞作用可能在引发贾第虫病的细胞调控中发挥作用。这些发现将加深我们对ESPs(尤其是PNPO)在贾第虫病发病机制中的作用以及潜在的内吞机制的理解。
{"title":"The pathogenic responses elicited during exposure of human intestinal cell line with Giardia duodenalis excretory-secretory products and the potential attributed endocytosis mechanism.","authors":"Xiran Yu, Yongwu Yang, Weining Zhu, Min Liu, Jingxue Wu, Steven M Singer, Wei Li","doi":"10.1007/s00430-024-00806-y","DOIUrl":"10.1007/s00430-024-00806-y","url":null,"abstract":"<p><p>Giardia duodenalis, an important zoonotic protozoan parasite, adheres to host intestinal epithelial cells (IECs) via the ventral disc and causes giardiasis characterized mainly by diarrhea. To date, it remains elusive how excretory-secretory products (ESPs) of Giardia enter IECs and how the cells respond to the entry. Herein, we initially demonstrated that ESPs evoked IEC endocytosis in vitro. We indicated that ESPs contributed vitally in triggering intrinsic apoptosis, pro-inflammatory responses, tight junction (TJ) protein expressional changes, and autophagy in IECs. Endocytosis was further proven to be implicated in those ESPs-triggered IEC responses. Ten predicted virulent excretory-secretory proteins of G. duodenalis were investigated for their capability to activate clathrin/caveolin-mediated endocytosis (CME/CavME) in IECs. Pyridoxamine 5'-phosphate oxidase (PNPO) was confirmed to be an important contributor. PNPO was subsequently verified as a vital promoter in the induction of giardiasis-related IEC apoptosis, inflammation, and TJ protein downregulation. Most importantly, this process seemed to be involved majorly in PNPO-evoked CME pathway, rather than CavME. Collectively, this study identified Giardia ESPs, notably PNPO, as potentially important pathogenic factors during noninvasive infection. It was also noteworthy that ESPs-evoked endocytosis might play a role in triggering giardiasis-inducing cellular regulation. These findings would deepen our understanding about the role of ESPs, notably PNPO, in the pathogenesis of giardiasis and the potential attributed endocytosis mechanism.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"213 1","pages":"23"},"PeriodicalIF":3.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12645385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A plant-based oligomeric CD2v extracellular domain antigen exhibits equivalent immunogenicity to the live attenuated vaccine ASFV-G-∆I177L. 基于植物的低聚物 CD2v 细胞外结构域抗原与减毒活疫苗 ASFV-G-∆I177L 具有相同的免疫原性。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-16 DOI: 10.1007/s00430-024-00804-0
Giang Thu Nguyen, Thanh Thi Le, Son Duy Thai Vu, Tra Thi Nguyen, My Thi Tra Le, Van Thi Pham, Hien Thi Thu Nguyen, Thuong Thi Ho, Hang Thi Thu Hoang, Hanh Xuan Tran, Ha Hoang Chu, Ngoc Bich Pham

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a deadly, highly contagious disease in both domestic pigs and wild boar. With mortality up to 100%, the disease has been making a serious impact on the swine industry worldwide. Because no effective antiviral treatment has been observed, proactive prevention such as vaccination remains the key to controlling the outbreak. In the pursuit of expediting vaccine development, our current work has made the first report for heterologous production of the viral outer envelope glycoprotein CD2v extracellular domain (CD2v ED), a proposed promising vaccine antigen candidate in the "green" synthetic host Nicotiana benthamiana. Protein oligomerization strategies were implemented to increase the immunogenicity of the target antigen. Herein, the protein was expressed in oligomeric forms based on the C-terminally fused GCN4pII trimerization motif and GCN4pII_TP oligomerization motif. Quantitative western blot analysis showed significantly higher expression of trimeric CD2v ED_GCN4pII with a yield of about 12 mg/100 g of fresh weight, in comparison to oligomeric CD2v ED_GCN4pII_TP, revealing the former is the better choice for further studies. The results of purification and size determination by size exclusion chromatography (SEC) illustrated that CD2v ED_GCN4pII was successfully produced in stable oligomeric forms throughout the extraction, purification, and analysis process. Most importantly, purified CD2v ED_GCN4pII was demonstrated to induce both humoral and cellular immunity responses in mice to extents equivalent to those of the live attenuated vaccine ASFV-G-∆I177L, suggesting it as the potential subunit vaccine candidate for preventing ASFV.

由非洲猪瘟病毒(ASFV)引起的非洲猪瘟(ASF)是一种致命的高传染性疾病,家猪和野猪均可感染。该病死亡率高达 100%,对全球养猪业造成了严重影响。由于尚未发现有效的抗病毒治疗方法,疫苗接种等积极预防仍是控制疫情的关键。为了加快疫苗的开发,我们目前的工作首次报道了病毒外包膜糖蛋白 CD2v 细胞外结构域(CD2v ED)的异源生产,CD2v ED 是一种很有前景的候选疫苗抗原。为了提高目标抗原的免疫原性,我们采用了蛋白质寡聚化策略。在此,根据 C 端融合的 GCN4pII 三聚体化基调和 GCN4pII_TP 寡聚体化基调,以寡聚体形式表达了该蛋白。定量 Western 印迹分析表明,与低聚物 CD2v ED_GCN4pII_TP 相比,三聚体 CD2v ED_GCN4pII 的表达量明显更高,产量约为 12 mg/100 g 鲜重。通过尺寸排阻色谱法(SEC)进行纯化和尺寸测定的结果表明,在整个提取、纯化和分析过程中,CD2v ED_GCN4pII都以稳定的低聚物形式成功生产出来。最重要的是,纯化的 CD2v ED_GCN4pII 可诱导小鼠产生体液免疫和细胞免疫反应,其程度与 ASFV-G-∆I177L 减毒活疫苗相当,这表明它是预防 ASFV 的潜在亚单位候选疫苗。
{"title":"A plant-based oligomeric CD2v extracellular domain antigen exhibits equivalent immunogenicity to the live attenuated vaccine ASFV-G-∆I177L.","authors":"Giang Thu Nguyen, Thanh Thi Le, Son Duy Thai Vu, Tra Thi Nguyen, My Thi Tra Le, Van Thi Pham, Hien Thi Thu Nguyen, Thuong Thi Ho, Hang Thi Thu Hoang, Hanh Xuan Tran, Ha Hoang Chu, Ngoc Bich Pham","doi":"10.1007/s00430-024-00804-0","DOIUrl":"10.1007/s00430-024-00804-0","url":null,"abstract":"<p><p>African swine fever (ASF), caused by the African swine fever virus (ASFV), is a deadly, highly contagious disease in both domestic pigs and wild boar. With mortality up to 100%, the disease has been making a serious impact on the swine industry worldwide. Because no effective antiviral treatment has been observed, proactive prevention such as vaccination remains the key to controlling the outbreak. In the pursuit of expediting vaccine development, our current work has made the first report for heterologous production of the viral outer envelope glycoprotein CD2v extracellular domain (CD2v ED), a proposed promising vaccine antigen candidate in the \"green\" synthetic host Nicotiana benthamiana. Protein oligomerization strategies were implemented to increase the immunogenicity of the target antigen. Herein, the protein was expressed in oligomeric forms based on the C-terminally fused GCN4pII trimerization motif and GCN4pII_TP oligomerization motif. Quantitative western blot analysis showed significantly higher expression of trimeric CD2v ED_GCN4pII with a yield of about 12 mg/100 g of fresh weight, in comparison to oligomeric CD2v ED_GCN4pII_TP, revealing the former is the better choice for further studies. The results of purification and size determination by size exclusion chromatography (SEC) illustrated that CD2v ED_GCN4pII was successfully produced in stable oligomeric forms throughout the extraction, purification, and analysis process. Most importantly, purified CD2v ED_GCN4pII was demonstrated to induce both humoral and cellular immunity responses in mice to extents equivalent to those of the live attenuated vaccine ASFV-G-∆I177L, suggesting it as the potential subunit vaccine candidate for preventing ASFV.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"213 1","pages":"22"},"PeriodicalIF":5.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trivalent outer membrane vesicles-based combination vaccine candidate induces protective immunity against Campylobacter and invasive non-typhoidal Salmonella in adult mice. 基于三价外膜囊泡的候选联合疫苗可诱导成年小鼠对弯曲杆菌和侵袭性非伤寒沙门氏菌产生保护性免疫。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-15 DOI: 10.1007/s00430-024-00805-z
Soumalya Banerjee, Prolay Halder, Sanjib Das, Suhrid Maiti, Jeffrey H Withey, Jiro Mitobe, Goutam Chowdhury, Kei Kitahara, Shin-Ichi Miyoshi, Asish Kumar Mukhopadhyay, Shanta Dutta, Hemanta Koley

Campylobacter and invasive non-typhoidal Salmonella (iNTS) are among the most common causative agents of gastroenteritis worldwide. As of now, no single combination licensed vaccine is available for public health use against both iNTS and Campylobacter species. Outer-membrane vesicles (OMVs) are nanoscale proteoliposomes released from the surface of gram-negative bacteria during log phase and harbor a variety of immunogenic proteins. Based on epidemiology of infections, we formulated a novel trivalent outer membrane vesicles (TOMVs)-based vaccine candidate against Campylobacter jejuni (CJ), Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE). Isolated OMVs from CJ, ST and SE were combined in equal ratios for formulation of TOMVs and 5 µg of the developed vaccine candidate was used for intraperitoneal immunization of adult BALB/c mice. Immunization with TOMVs significantly activated both the humoral and cellular arm of adaptive immune response. Robust bactericidal effect was elicited by TOMVs immunized adult mice sera. TOMVs immunization induced long-term protective efficacy against CJ, ST and SE infections in mice. The study illustrates the ability of TOMVs-based combination immunogen in eliciting broad-spectrum protective immunity against prevalent Campylobacter and iNTS pathogens. According to the findings, TOMVs can work as a potent combination-based acellular vaccine candidate for amelioration of Campylobacter and iNTS-mediated gastroenteritis.

弯曲菌和侵袭性非伤寒沙门氏菌 (iNTS) 是全球最常见的肠胃炎致病菌。到目前为止,还没有一种获得许可的联合疫苗可用于公共卫生领域,同时预防 iNTS 和弯曲杆菌。外膜囊泡 (OMV) 是革兰氏阴性细菌在对数期从表面释放的纳米级蛋白脂质体,内含多种免疫原蛋白。根据感染的流行病学,我们制定了一种基于三价外膜囊泡 (TOMVs) 的新型候选疫苗,用于预防空肠弯曲菌 (CJ)、鼠伤寒沙门氏菌 (ST) 和肠炎沙门氏菌 (SE)。将从空肠弯曲菌、伤寒沙门氏菌和肠炎沙门氏菌中分离出的 OMVs 以等比例混合配制成 TOMVs,并使用 5 µg 所开发的候选疫苗对成年 BALB/c 小鼠进行腹腔免疫。用 TOMVs 进行免疫可显著激活适应性免疫反应的体液免疫和细胞免疫。经 TOMVs 免疫的成年小鼠血清具有强大的杀菌作用。TOMVs免疫可诱导小鼠对CJ、ST和SE感染产生长期保护效力。该研究表明,基于 TOMVs 的组合免疫原能够针对流行的弯曲杆菌和 iNTS 病原体激发广谱保护性免疫。研究结果表明,TOMVs 可以作为一种有效的、基于组合的无细胞疫苗候选物,用于改善弯曲杆菌和 iNTS 介导的肠胃炎。
{"title":"Trivalent outer membrane vesicles-based combination vaccine candidate induces protective immunity against Campylobacter and invasive non-typhoidal Salmonella in adult mice.","authors":"Soumalya Banerjee, Prolay Halder, Sanjib Das, Suhrid Maiti, Jeffrey H Withey, Jiro Mitobe, Goutam Chowdhury, Kei Kitahara, Shin-Ichi Miyoshi, Asish Kumar Mukhopadhyay, Shanta Dutta, Hemanta Koley","doi":"10.1007/s00430-024-00805-z","DOIUrl":"10.1007/s00430-024-00805-z","url":null,"abstract":"<p><p>Campylobacter and invasive non-typhoidal Salmonella (iNTS) are among the most common causative agents of gastroenteritis worldwide. As of now, no single combination licensed vaccine is available for public health use against both iNTS and Campylobacter species. Outer-membrane vesicles (OMVs) are nanoscale proteoliposomes released from the surface of gram-negative bacteria during log phase and harbor a variety of immunogenic proteins. Based on epidemiology of infections, we formulated a novel trivalent outer membrane vesicles (TOMVs)-based vaccine candidate against Campylobacter jejuni (CJ), Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE). Isolated OMVs from CJ, ST and SE were combined in equal ratios for formulation of TOMVs and 5 µg of the developed vaccine candidate was used for intraperitoneal immunization of adult BALB/c mice. Immunization with TOMVs significantly activated both the humoral and cellular arm of adaptive immune response. Robust bactericidal effect was elicited by TOMVs immunized adult mice sera. TOMVs immunization induced long-term protective efficacy against CJ, ST and SE infections in mice. The study illustrates the ability of TOMVs-based combination immunogen in eliciting broad-spectrum protective immunity against prevalent Campylobacter and iNTS pathogens. According to the findings, TOMVs can work as a potent combination-based acellular vaccine candidate for amelioration of Campylobacter and iNTS-mediated gastroenteritis.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"213 1","pages":"21"},"PeriodicalIF":5.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular immunity to nucleoproteins (NP) of Crimean-Congo hemorrhagic fever virus (CCHFV) and Hazara Virus (HAZV). 对克里米亚-刚果出血热病毒(CCHFV)和哈扎拉病毒(HAZV)核蛋白(NP)的细胞免疫。
IF 5.5 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-09-25 DOI: 10.1007/s00430-024-00802-2
Merve Kalkan-Yazıcı, Elif Karaaslan, Nesibe Selma Güler-Çetin, Mehmet Z Doymaz

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a globally significant vector-borne pathogen with no internationally-licensed preventative and therapeutic interventions. Hazara virus (HAZV), on the other hand, a related Orthonairovirus, has not been reported as a human pathogen. HAZV has been proposed as a surrogate model for studying CCHFV, bisosafety level 4 (BSL-4) agent. Previously, we investigated the humoral immune responses between NPs of these viruses and in this study, we extended the scrutiny to cellular immune responses elicited by NPs of CCHFV and HAZV. Here, mice were immunized with recombinant CCHFV NP and HAZV NP to evaluate the correlates of cell-mediated immunity (CMI). Delayed-type hypersensitivity (DTH) responses were assessed by challenging immunized mice with CCHFV-rNP or HAZV-rNP on the footpad and lymphocyte proliferation assays (LPAs) were performed by stimulating splenocytes in vitro with CCHFV-rNP or HAZV-rNP to compare cellular immune responses. In all test groups, strong DTH and LPA responses were detected against homologous and heterologous challenging antigens. To assess the cytokine response, an RT-qPCR -specific for cytokine mRNAs was utilized. Interestingly, CCHFV NP stimulated groups exhibited a significantly elevated mRNA level of interleukin 17 A (IL-17) compared to HAZV NP, indicating a notable difference in immune responses. This study presents comparison between CMI elicited by NPs of CCHFV and HAZV and contributes to the understanding of a highly pathogenic virus, particularly in the context of the declaration of CCHFV by World Health Organization's (WHO) as a major viral threat to the world.

克里米亚-刚果出血热病毒(CCHFV)是一种全球重要的病媒传播病原体,目前尚无国际许可的预防和治疗干预措施。另一方面,哈扎拉病毒(HAZV)是一种相关的正交逆转录病毒,尚未被报道为人类病原体。HAZV 被建议作为研究 CCHFV(双安全等级 4(BSL-4)制剂)的替代模型。此前,我们研究了这些病毒的 NPs 之间的体液免疫反应,在本研究中,我们将研究扩展到了 CCHFV 和 HAZV 的 NPs 引起的细胞免疫反应。在此,我们用重组 CCHFV NP 和 HAZV NP 对小鼠进行免疫,以评估细胞介导免疫(CMI)的相关性。通过用 CCHFV-rNP 或 HAZV-rNP 在足垫上挑战免疫小鼠来评估迟发型超敏反应(DTH),并用 CCHFV-rNP 或 HAZV-rNP 在体外刺激脾细胞来进行淋巴细胞增殖试验(LPA),以比较细胞免疫反应。在所有试验组中,都检测到了针对同源和异源挑战性抗原的强烈DTH和LPA反应。为了评估细胞因子反应,使用了细胞因子 mRNA 特异性 RT-qPCR。有趣的是,与 HAZV NP 相比,CCHFV NP 刺激组白细胞介素 17 A(IL-17)的 mRNA 水平明显升高,表明免疫反应存在显著差异。本研究比较了 CCHFV NP 与 HAZV NP 激发的 CMI,有助于人们了解高致病性病毒,特别是在世界卫生组织(WHO)宣布 CCHFV 为全球主要病毒威胁的背景下。
{"title":"Cellular immunity to nucleoproteins (NP) of Crimean-Congo hemorrhagic fever virus (CCHFV) and Hazara Virus (HAZV).","authors":"Merve Kalkan-Yazıcı, Elif Karaaslan, Nesibe Selma Güler-Çetin, Mehmet Z Doymaz","doi":"10.1007/s00430-024-00802-2","DOIUrl":"10.1007/s00430-024-00802-2","url":null,"abstract":"<p><p>Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a globally significant vector-borne pathogen with no internationally-licensed preventative and therapeutic interventions. Hazara virus (HAZV), on the other hand, a related Orthonairovirus, has not been reported as a human pathogen. HAZV has been proposed as a surrogate model for studying CCHFV, bisosafety level 4 (BSL-4) agent. Previously, we investigated the humoral immune responses between NPs of these viruses and in this study, we extended the scrutiny to cellular immune responses elicited by NPs of CCHFV and HAZV. Here, mice were immunized with recombinant CCHFV NP and HAZV NP to evaluate the correlates of cell-mediated immunity (CMI). Delayed-type hypersensitivity (DTH) responses were assessed by challenging immunized mice with CCHFV-rNP or HAZV-rNP on the footpad and lymphocyte proliferation assays (LPAs) were performed by stimulating splenocytes in vitro with CCHFV-rNP or HAZV-rNP to compare cellular immune responses. In all test groups, strong DTH and LPA responses were detected against homologous and heterologous challenging antigens. To assess the cytokine response, an RT-qPCR -specific for cytokine mRNAs was utilized. Interestingly, CCHFV NP stimulated groups exhibited a significantly elevated mRNA level of interleukin 17 A (IL-17) compared to HAZV NP, indicating a notable difference in immune responses. This study presents comparison between CMI elicited by NPs of CCHFV and HAZV and contributes to the understanding of a highly pathogenic virus, particularly in the context of the declaration of CCHFV by World Health Organization's (WHO) as a major viral threat to the world.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"213 1","pages":"20"},"PeriodicalIF":5.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of compounds to inhibit the Panton-Valentine leukocidin of Staphylococcus aureus 抑制金黄色葡萄球菌潘顿-瓦伦丁白细胞介素的化合物探索
IF 5.4 3区 医学 Q1 IMMUNOLOGY Pub Date : 2024-09-19 DOI: 10.1007/s00430-024-00803-1
Tobias Grebe, Mithra Tatjana Sarkari, Angelika Cherkaoui, Frieder Schaumburg

The Panton-Valentine leukocidin (PVL) of Staphylococcus aureus is associated with necrotizing infections. After binding to complement 5a receptor (C5aR/CD88) and CD45 it causes cytolysis in polymorphonuclear neutrophils (PMNs) as well as inflammasome activation in monocytes. The objective of this study was to test if (ant)agonists of C5aR and CD45 can attenuate the effect of PVL on PMNs and monocytes. We tested the effect of various concentrations of six C5aR (ant)agonists (avacopan, BM213, DF2593A, JPE-1375, PMX205 and W-54011) and one CD45 antagonist (NQ301) to attenuate the cytotoxic effect of PVL on human PMNs and monocytes in vitro. Shifts in the half-maximal effective concentration (EC50) of PVL to achieve a cytotoxic effect on PMNs and modulation of inflammatory cytokine response from monocytes were determined by flow cytometry and IL-1β detection. Pre-treatment of PMNs with avacopan, PMX205 and W-54,011 resulted in 3.6- to 4.3-fold shifts in the EC50 for PVL and were able to suppress IL-1β secretion by human monocytes in the presence of PVL. BM213, DF2593A and NQ301 were unable to change the susceptibility of PMNs towards PVL or reduce inflammasome activation in monocytes. Avacopan, PMX205 and W-54,011 showed protection against PVL-induced cytotoxicity and suppressed IL-1β secretion by monocytes. Clinical studies are needed to prove whether these substances can be used therapeutically as repurposed drugs.

金黄色葡萄球菌的潘顿-瓦伦丁白细胞介素(PVL)与坏死性感染有关。它与补体 5a 受体(C5aR/CD88)和 CD45 结合后会导致多形核中性粒细胞(PMNs)的细胞溶解以及单核细胞炎症小体的激活。本研究的目的是测试 C5aR 和 CD45 的(抗)激动剂是否能减轻 PVL 对 PMN 和单核细胞的影响。我们测试了不同浓度的六种 C5aR(ant)激动剂(avacopan、BM213、DF2593A、JPE-1375、PMX205 和 W-54011)和一种 CD45 拮抗剂(NQ301)在体外减弱 PVL 对人类 PMN 和单核细胞的细胞毒性作用的效果。通过流式细胞术和 IL-1β 检测确定了 PVL 对 PMN 产生细胞毒性作用的半数最大有效浓度(EC50)的变化以及对单核细胞炎症细胞因子反应的调节。用avacopan、PMX205和W-54,011预处理PMN后,PVL的EC50值降低了3.6-4.3倍,并能抑制存在PVL的人类单核细胞分泌IL-1β。BM213、DF2593A 和 NQ301 无法改变 PMN 对 PVL 的敏感性,也无法降低单核细胞中炎性体的活化。Avacopan、PMX205 和 W-54,011 对 PVL 诱导的细胞毒性有保护作用,并能抑制单核细胞分泌 IL-1β。要证明这些物质是否能作为再利用药物用于治疗,还需要进行临床研究。
{"title":"Exploration of compounds to inhibit the Panton-Valentine leukocidin of Staphylococcus aureus","authors":"Tobias Grebe, Mithra Tatjana Sarkari, Angelika Cherkaoui, Frieder Schaumburg","doi":"10.1007/s00430-024-00803-1","DOIUrl":"https://doi.org/10.1007/s00430-024-00803-1","url":null,"abstract":"<p>The Panton-Valentine leukocidin (PVL) of <i>Staphylococcus aureus</i> is associated with necrotizing infections. After binding to complement 5a receptor (C5aR/CD88) and CD45 it causes cytolysis in polymorphonuclear neutrophils (PMNs) as well as inflammasome activation in monocytes. The objective of this study was to test if (ant)agonists of C5aR and CD45 can attenuate the effect of PVL on PMNs and monocytes. We tested the effect of various concentrations of six C5aR (ant)agonists (avacopan, BM213, DF2593A, JPE-1375, PMX205 and W-54011) and one CD45 antagonist (NQ301) to attenuate the cytotoxic effect of PVL on human PMNs and monocytes in vitro. Shifts in the half-maximal effective concentration (EC<sub>50</sub>) of PVL to achieve a cytotoxic effect on PMNs and modulation of inflammatory cytokine response from monocytes were determined by flow cytometry and IL-1β detection. Pre-treatment of PMNs with avacopan, PMX205 and W-54,011 resulted in 3.6- to 4.3-fold shifts in the EC<sub>50</sub> for PVL and were able to suppress IL-1β secretion by human monocytes in the presence of PVL. BM213, DF2593A and NQ301 were unable to change the susceptibility of PMNs towards PVL or reduce inflammasome activation in monocytes. Avacopan, PMX205 and W-54,011 showed protection against PVL-induced cytotoxicity and suppressed IL-1β secretion by monocytes. Clinical studies are needed to prove whether these substances can be used therapeutically as repurposed drugs.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"3 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Medical Microbiology and Immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1