Pub Date : 2023-12-01Epub Date: 2023-10-05DOI: 10.1007/s00430-023-00782-9
Tao Jiang, Dai Yuan, Rong Wang, Chunhui Zhao, Yangming Xu, Yinghui Liu, Wu Song, Xin Su, Bingmei Wang
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC50 of 38.42 μM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the KA-binding constant of 3.09 × 105 L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH-SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.
{"title":"Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia.","authors":"Tao Jiang, Dai Yuan, Rong Wang, Chunhui Zhao, Yangming Xu, Yinghui Liu, Wu Song, Xin Su, Bingmei Wang","doi":"10.1007/s00430-023-00782-9","DOIUrl":"10.1007/s00430-023-00782-9","url":null,"abstract":"<p><p>Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC<sub>50</sub> of 38.42 μM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the K<sub>A</sub>-binding constant of 3.09 × 10<sup>5</sup> L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH-SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":" ","pages":"421-435"},"PeriodicalIF":5.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41149813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-04DOI: 10.1007/s00430-023-00783-8
Rasha Emad, Iman S Naga
Several tools have been developed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genotyping based on either whole genome or spike sequencing. We aimed to highlight the molecular epidemiological landscape of SARS-CoV-2 in Egypt since the start of the pandemic, to describe discrepancies between the 3 typing tools: Global Initiative on Sharing Avian Influenza Data (GISAID), Nextclade, and Phylogenetic Assignment of Named Global Outbreak Lineages (PANGOLIN) and to assess the fitness of spike and nucleocapsid regions for lineage assignment compared to the whole genome. A total of 3935 sequences isolated from Egypt (March 2020-2023) were retrieved from the GISAID database. A subset of data (n = 1212) with high coverage whole genome was used for tool discrimination and agreement analyses. Among 1212 sequences, the highest discriminatory power was 0.895 for PANGOLIN, followed by GISAID (0.872) and Nextclade (0.866). There was a statistically significant difference (p = 0.0418) between lineages assigned via spike (30%) and nucleocapsid (46%) compared to their whole genome-assigned lineages. The first 3 pandemic waves were dominated by B.1, followed by C.36 and then C.36.3, while the fourth to sixth waves were dominated by the B.1.617.2, BA, and BA.5.2 lineages, respectively. Current shift in lineage typing to recombinant forms. The 3 typing tools showed comparable discrimination among SARS-CoV-2 lineages. The nucleocapsid region could be used for lineage assignment.
{"title":"Comparative genotyping of SARS-CoV-2 among Egyptian patients: near-full length genomic sequences versus selected spike and nucleocapsid regions.","authors":"Rasha Emad, Iman S Naga","doi":"10.1007/s00430-023-00783-8","DOIUrl":"10.1007/s00430-023-00783-8","url":null,"abstract":"<p><p>Several tools have been developed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genotyping based on either whole genome or spike sequencing. We aimed to highlight the molecular epidemiological landscape of SARS-CoV-2 in Egypt since the start of the pandemic, to describe discrepancies between the 3 typing tools: Global Initiative on Sharing Avian Influenza Data (GISAID), Nextclade, and Phylogenetic Assignment of Named Global Outbreak Lineages (PANGOLIN) and to assess the fitness of spike and nucleocapsid regions for lineage assignment compared to the whole genome. A total of 3935 sequences isolated from Egypt (March 2020-2023) were retrieved from the GISAID database. A subset of data (n = 1212) with high coverage whole genome was used for tool discrimination and agreement analyses. Among 1212 sequences, the highest discriminatory power was 0.895 for PANGOLIN, followed by GISAID (0.872) and Nextclade (0.866). There was a statistically significant difference (p = 0.0418) between lineages assigned via spike (30%) and nucleocapsid (46%) compared to their whole genome-assigned lineages. The first 3 pandemic waves were dominated by B.1, followed by C.36 and then C.36.3, while the fourth to sixth waves were dominated by the B.1.617.2, BA, and BA.5.2 lineages, respectively. Current shift in lineage typing to recombinant forms. The 3 typing tools showed comparable discrimination among SARS-CoV-2 lineages. The nucleocapsid region could be used for lineage assignment.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":" ","pages":"437-446"},"PeriodicalIF":5.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41137582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-10DOI: 10.1007/s00430-023-00775-8
Franziska Krenn, Christopher Dächert, Irina Badell, Gaia Lupoli, Gamze Naz Öztan, Tianle Feng, Nikolas Schneider, Melanie Huber, Hanna Both, Patricia M Späth, Maximilian Muenchhoff, Alexander Graf, Stefan Krebs, Helmut Blum, Jürgen Durner, Ludwig Czibere, Lars Kaderali, Oliver T Keppler, Hanna-Mari Baldauf, Andreas Osterman
Since late 2021, the variant landscape of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been dominated by the variant of concern (VoC) Omicron and its sublineages. We and others have shown that the detection of Omicron-BA.1 and -BA.2-positive respiratory specimens by rapid antigen tests (RATs) is impaired compared to Delta VoC-containing samples. Here, in a single-center retrospective laboratory study, we evaluated the performance of ten most commonly used RATs for the detection of Omicron-BA.4 and -BA.5 infections. We used 171 respiratory swab specimens from SARS-CoV-2 RNA-positive patients, of which 71 were classified as BA.4 and 100 as BA.5. All swabs were collected between July and September 2022. 50 SARS-CoV-2 PCR-negative samples from healthy individuals, collected in October 2022, showed high specificity in 9 out of 10 RATs. When assessing analytical sensitivity using clinical specimens, the 50% limit of detection (LoD50) ranged from 7.6 × 104 to 3.3 × 106 RNA copies subjected to the RATs for BA.4 compared to 6.8 × 104 to 3.0 × 106 for BA.5. Overall, intra-assay differences for the detection of these two Omicron subvariants were not significant for both respiratory swabs and tissue culture-expanded virus isolates. In contrast, marked heterogeneity was observed among the ten RATs: to be positive in these point-of-care tests, up to 443-fold (BA.4) and up to 56-fold (BA.5) higher viral loads were required for the worst performing RAT compared to the best performing RAT. True-positive rates for Omicron-BA.4- or -BA.5-containing specimens in the highest viral load category (Ct values < 25) ranged from 94.3 to 34.3%, dropping to 25.6 to 0% for samples with intermediate Ct values (25-30). We conclude that the high heterogeneity in the performance of commonly used RATs remains a challenge for the general public to obtain reliable results in the evolving Omicron subvariant-driven pandemic.
{"title":"Ten rapid antigen tests for SARS-CoV-2 widely differ in their ability to detect Omicron-BA.4 and -BA.5.","authors":"Franziska Krenn, Christopher Dächert, Irina Badell, Gaia Lupoli, Gamze Naz Öztan, Tianle Feng, Nikolas Schneider, Melanie Huber, Hanna Both, Patricia M Späth, Maximilian Muenchhoff, Alexander Graf, Stefan Krebs, Helmut Blum, Jürgen Durner, Ludwig Czibere, Lars Kaderali, Oliver T Keppler, Hanna-Mari Baldauf, Andreas Osterman","doi":"10.1007/s00430-023-00775-8","DOIUrl":"10.1007/s00430-023-00775-8","url":null,"abstract":"<p><p>Since late 2021, the variant landscape of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been dominated by the variant of concern (VoC) Omicron and its sublineages. We and others have shown that the detection of Omicron-BA.1 and -BA.2-positive respiratory specimens by rapid antigen tests (RATs) is impaired compared to Delta VoC-containing samples. Here, in a single-center retrospective laboratory study, we evaluated the performance of ten most commonly used RATs for the detection of Omicron-BA.4 and -BA.5 infections. We used 171 respiratory swab specimens from SARS-CoV-2 RNA-positive patients, of which 71 were classified as BA.4 and 100 as BA.5. All swabs were collected between July and September 2022. 50 SARS-CoV-2 PCR-negative samples from healthy individuals, collected in October 2022, showed high specificity in 9 out of 10 RATs. When assessing analytical sensitivity using clinical specimens, the 50% limit of detection (LoD50) ranged from 7.6 × 10<sup>4</sup> to 3.3 × 10<sup>6</sup> RNA copies subjected to the RATs for BA.4 compared to 6.8 × 10<sup>4</sup> to 3.0 × 10<sup>6</sup> for BA.5. Overall, intra-assay differences for the detection of these two Omicron subvariants were not significant for both respiratory swabs and tissue culture-expanded virus isolates. In contrast, marked heterogeneity was observed among the ten RATs: to be positive in these point-of-care tests, up to 443-fold (BA.4) and up to 56-fold (BA.5) higher viral loads were required for the worst performing RAT compared to the best performing RAT. True-positive rates for Omicron-BA.4- or -BA.5-containing specimens in the highest viral load category (C<sub>t</sub> values < 25) ranged from 94.3 to 34.3%, dropping to 25.6 to 0% for samples with intermediate C<sub>t</sub> values (25-30). We conclude that the high heterogeneity in the performance of commonly used RATs remains a challenge for the general public to obtain reliable results in the evolving Omicron subvariant-driven pandemic.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"323-337"},"PeriodicalIF":5.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10633597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cryptococcus neoformans (C. neoformans) is an important opportunistic fungal pathogen for pulmonary cryptococcosis. Previously, we demonstrated that CD146 mediated the adhesion of C. neoformans to the airway epithelium. CD146 is more than an adhesion molecule. In the present study, we aimed to explore the roles of CD146 in the inflammatory response in pulmonary cryptococcosis. CD146 was decreased in lung tissues from patients with pulmonary cryptococcosis. Similarly, C. neoformans reduced pulmonary CD146 expression in mice following intratracheal inoculation. To explore the pathological roles of CD146 reduction in pulmonary cryptococcosis, CD146 knockout (KO) mice were inoculated with C. neoformans via intratracheal instillation. CD146 deficiency aggravated C. neoformans infection, as evidenced by a shortened survival time and increased fungal burdens in the lung. Inflammatory type 2 cytokines (IL-4, IL-5, and TNF-α) and alternatively activated macrophages were increased in the pulmonary tissues of CD146 KO-infected mice. CD146 is expressed in immune cells (macrophages, etc.) and nonimmune cells, i.e., epithelial cells and endothelial cells. Bone marrow chimeric mice were established and infected with C. neoformans. CD146 deficiency in immune cells but not in nonimmune cells increased fungal burdens in the lung. Mechanistically, upon C. neoformans challenge, CD146 KO macrophages produced more neutrophil chemokine KC and inflammatory cytokine TNF-α. Meanwhile, CD146 KO macrophages decreased the fungicidity and production of reactive oxygen species. Collectively, C. neoformans infection decreased CD146 in pulmonary tissues, leading to inflammatory type 2 responses, while CD146 deficiency worsened pulmonary cryptococcosis.
{"title":"CD146 deficiency promotes inflammatory type 2 responses in pulmonary cryptococcosis.","authors":"Zhengxia Wang, Wei Liu, Huidi Hu, Jingxian Jiang, Chen Yang, Xijie Zhang, Qi Yuan, Xiaofan Yang, Mao Huang, Yanming Bao, Ningfei Ji, Mingshun Zhang","doi":"10.1007/s00430-023-00780-x","DOIUrl":"10.1007/s00430-023-00780-x","url":null,"abstract":"<p><p>Cryptococcus neoformans (C. neoformans) is an important opportunistic fungal pathogen for pulmonary cryptococcosis. Previously, we demonstrated that CD146 mediated the adhesion of C. neoformans to the airway epithelium. CD146 is more than an adhesion molecule. In the present study, we aimed to explore the roles of CD146 in the inflammatory response in pulmonary cryptococcosis. CD146 was decreased in lung tissues from patients with pulmonary cryptococcosis. Similarly, C. neoformans reduced pulmonary CD146 expression in mice following intratracheal inoculation. To explore the pathological roles of CD146 reduction in pulmonary cryptococcosis, CD146 knockout (KO) mice were inoculated with C. neoformans via intratracheal instillation. CD146 deficiency aggravated C. neoformans infection, as evidenced by a shortened survival time and increased fungal burdens in the lung. Inflammatory type 2 cytokines (IL-4, IL-5, and TNF-α) and alternatively activated macrophages were increased in the pulmonary tissues of CD146 KO-infected mice. CD146 is expressed in immune cells (macrophages, etc.) and nonimmune cells, i.e., epithelial cells and endothelial cells. Bone marrow chimeric mice were established and infected with C. neoformans. CD146 deficiency in immune cells but not in nonimmune cells increased fungal burdens in the lung. Mechanistically, upon C. neoformans challenge, CD146 KO macrophages produced more neutrophil chemokine KC and inflammatory cytokine TNF-α. Meanwhile, CD146 KO macrophages decreased the fungicidity and production of reactive oxygen species. Collectively, C. neoformans infection decreased CD146 in pulmonary tissues, leading to inflammatory type 2 responses, while CD146 deficiency worsened pulmonary cryptococcosis.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"391-405"},"PeriodicalIF":5.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10631469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-08DOI: 10.1007/s00430-023-00779-4
Evgeni Dimitrov, Krasimira Halacheva, Georgi Minkov, Emil Enchev, Yovcho Yovtchev
There is still no study investigating the prognostic performance of CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocyte subpopulations in complicated intra-abdominal infections (cIAIs); therefore, we aimed to evaluate the association between monocyte subtypes and outcome in such patients. A single-center prospective study was conducted at a University Hospital Stara Zagora between November 2018 and August 2021. Preoperatively and on the 3rd postoperative day (POD), we measured the levels of CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes in peripheral blood using flow cytometry in 62 patients with cIAIs and 31 healthy controls. Nine of the 62 patients died during hospitalization. Survivors had higher pre-surgery percentages of CD14++CD16- classical monocytes and higher percentage of these cells predicted favorable outcome in ROC analysis (AUROC = 0.781, p = 0.008). The CD14++CD16+ intermediate monocyte percentages were higher in non-survivors both pre- and postoperatively but only the higher preoperative values predicted a lethal outcome (AUROC = 0.722, p = 0.035). For CD14+CD16++ non-classical monocytes, non-survivors had lower percentages on day 3 post-surgery and low percentage was predictive of lethal outcome (AUROC = 0.752, p = 0.046). Perioperative levels of monocyte subpopulations in peripheral blood show a great potential for prognostication of outcome in patients with cIAIs.
{"title":"Prediction of outcome using CD14<sup>++</sup>CD16<sup>-</sup>, CD14<sup>++</sup>CD16<sup>+</sup> and CD14<sup>+</sup>CD16<sup>++</sup> monocyte subpopulations in patients with complicated intra-abdominal infections.","authors":"Evgeni Dimitrov, Krasimira Halacheva, Georgi Minkov, Emil Enchev, Yovcho Yovtchev","doi":"10.1007/s00430-023-00779-4","DOIUrl":"10.1007/s00430-023-00779-4","url":null,"abstract":"<p><p>There is still no study investigating the prognostic performance of CD14<sup>++</sup>CD16<sup>-</sup>, CD14<sup>++</sup>CD16<sup>+</sup> and CD14<sup>+</sup>CD16<sup>++</sup> monocyte subpopulations in complicated intra-abdominal infections (cIAIs); therefore, we aimed to evaluate the association between monocyte subtypes and outcome in such patients. A single-center prospective study was conducted at a University Hospital Stara Zagora between November 2018 and August 2021. Preoperatively and on the 3rd postoperative day (POD), we measured the levels of CD14<sup>++</sup>CD16<sup>-</sup>, CD14<sup>++</sup>CD16<sup>+</sup> and CD14<sup>+</sup>CD16<sup>++</sup> monocytes in peripheral blood using flow cytometry in 62 patients with cIAIs and 31 healthy controls. Nine of the 62 patients died during hospitalization. Survivors had higher pre-surgery percentages of CD14<sup>++</sup>CD16<sup>-</sup> classical monocytes and higher percentage of these cells predicted favorable outcome in ROC analysis (AUROC = 0.781, p = 0.008). The CD14<sup>++</sup>CD16<sup>+</sup> intermediate monocyte percentages were higher in non-survivors both pre- and postoperatively but only the higher preoperative values predicted a lethal outcome (AUROC = 0.722, p = 0.035). For CD14<sup>+</sup>CD16<sup>++</sup> non-classical monocytes, non-survivors had lower percentages on day 3 post-surgery and low percentage was predictive of lethal outcome (AUROC = 0.752, p = 0.046). Perioperative levels of monocyte subpopulations in peripheral blood show a great potential for prognostication of outcome in patients with cIAIs.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":" ","pages":"381-390"},"PeriodicalIF":5.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10186186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-01DOI: 10.1007/s00430-023-00778-5
Yan Meng, Kai-Wen Kong, Yong-Qing Chang, Xiao-Ming Deng, Tao Yang
Sepsis is a severe syndrome caused by the imbalance of the host response to infection, accompanied by multiple organ damage, especially acute lung injury. SET Domain-Containing 2 (SETD2) is a methyltransferase catalyzing H3 lysine 36 trimethylation (H3K36me3) that regulates multiple biological processes. This study focused on explicating the action of SETD2 on macrophage function in sepsis and the precise mechanism involved. Enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting were used to determine expression. Luciferase reporter assay and chromatin immunoprecipitation assay were conducted to detect the binding of SETD2 or H3K36me3 with the hypoxia-inducible factor 1, alpha subunit (Hif1a) gene. A sepsis-induced acute lung injury model was constructed via cecal ligation and puncture (CLP). SETD2 was decreased in RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Besides, SETD2 suppressed M1 macrophage polarization and glycolysis caused by LPS. HIF-1α was enhanced in RAW 264.7 cells stimulated by LPS and inversely related to SETD2 expression. In addition, SETD2-catalyzed H3K36me3 bound to the Hif1a gene to modulate HIF-1α expression. Furthermore, Hif1a silencing suppressed Setd2 silencing-induced M1 macrophage polarization and glycolysis in RAW 264.7 cells. Moreover, overexpression of Setd2 inhibited CLP-induced lung injury and M1 macrophage polarization in mice. SETD2 suppressed M1 macrophage polarization and glycolysis via regulating HIF-1α through catalyzing H3K36me3 in sepsis.
{"title":"Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury.","authors":"Yan Meng, Kai-Wen Kong, Yong-Qing Chang, Xiao-Ming Deng, Tao Yang","doi":"10.1007/s00430-023-00778-5","DOIUrl":"10.1007/s00430-023-00778-5","url":null,"abstract":"<p><p>Sepsis is a severe syndrome caused by the imbalance of the host response to infection, accompanied by multiple organ damage, especially acute lung injury. SET Domain-Containing 2 (SETD2) is a methyltransferase catalyzing H3 lysine 36 trimethylation (H3K36me3) that regulates multiple biological processes. This study focused on explicating the action of SETD2 on macrophage function in sepsis and the precise mechanism involved. Enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting were used to determine expression. Luciferase reporter assay and chromatin immunoprecipitation assay were conducted to detect the binding of SETD2 or H3K36me3 with the hypoxia-inducible factor 1, alpha subunit (Hif1a) gene. A sepsis-induced acute lung injury model was constructed via cecal ligation and puncture (CLP). SETD2 was decreased in RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Besides, SETD2 suppressed M1 macrophage polarization and glycolysis caused by LPS. HIF-1α was enhanced in RAW 264.7 cells stimulated by LPS and inversely related to SETD2 expression. In addition, SETD2-catalyzed H3K36me3 bound to the Hif1a gene to modulate HIF-1α expression. Furthermore, Hif1a silencing suppressed Setd2 silencing-induced M1 macrophage polarization and glycolysis in RAW 264.7 cells. Moreover, overexpression of Setd2 inhibited CLP-induced lung injury and M1 macrophage polarization in mice. SETD2 suppressed M1 macrophage polarization and glycolysis via regulating HIF-1α through catalyzing H3K36me3 in sepsis.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"369-379"},"PeriodicalIF":5.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10240378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-07-25DOI: 10.1007/s00430-023-00776-7
Camilla Natália O Santos, Gustavo C Caldas, Fabricia A de Oliveira, Angela Maria da Silva, João S da Silva, Ricardo Luís L da Silva, Amélia R de Jesus, Lucas S Magalhães, Roque P de Almeida
COVID-19 is caused by SARS-CoV-2 infection and leads from asymptomatic to severe outcomes. The recurrence of the COVID-19 has been described, however, mechanisms involved remains unclear. Thus, the work aimed to investigate the role of multifunctional T cells in patients with recurrent COVID-19. We evaluated clinical characteristics, presence of anti-S1 and anti-Nucleocapsid IgG in patients' sera, and multifunctional T cells (for IFN-γ, IL-2, and TNF-α) in patients with multiple episodes of COVID-19 and controls. Data demonstrate that patients with recurrent COVID-19 have a T cell pattern predominantly related to IFN-γ production. Also, patients with COVID-19 history and absence of anti-S1 IgG had lower levels of CD4+ IFN + IL-2 + TNF + T cells independently of number of disease episodes. Complementary, vaccination changed the patterns of T cells phenotypes and induced IgG seroconversion, despite not induce higher levels of multifunctional T cells in all patients. In conclusion, the data suggest that recurrent disease is related to early-disease T cell profile and absence of anti-S1 IgG is related to lower multifunctional CD4 T cell response, what suggests possibility of new episodes of COVID-19 in these patients.
{"title":"COVID-19 recurrence is related to disease-early profile T cells while detection of anti-S1 IgG is related to multifunctional T cells.","authors":"Camilla Natália O Santos, Gustavo C Caldas, Fabricia A de Oliveira, Angela Maria da Silva, João S da Silva, Ricardo Luís L da Silva, Amélia R de Jesus, Lucas S Magalhães, Roque P de Almeida","doi":"10.1007/s00430-023-00776-7","DOIUrl":"10.1007/s00430-023-00776-7","url":null,"abstract":"<p><p>COVID-19 is caused by SARS-CoV-2 infection and leads from asymptomatic to severe outcomes. The recurrence of the COVID-19 has been described, however, mechanisms involved remains unclear. Thus, the work aimed to investigate the role of multifunctional T cells in patients with recurrent COVID-19. We evaluated clinical characteristics, presence of anti-S1 and anti-Nucleocapsid IgG in patients' sera, and multifunctional T cells (for IFN-γ, IL-2, and TNF-α) in patients with multiple episodes of COVID-19 and controls. Data demonstrate that patients with recurrent COVID-19 have a T cell pattern predominantly related to IFN-γ production. Also, patients with COVID-19 history and absence of anti-S1 IgG had lower levels of CD4+ IFN + IL-2 + TNF + T cells independently of number of disease episodes. Complementary, vaccination changed the patterns of T cells phenotypes and induced IgG seroconversion, despite not induce higher levels of multifunctional T cells in all patients. In conclusion, the data suggest that recurrent disease is related to early-disease T cell profile and absence of anti-S1 IgG is related to lower multifunctional CD4 T cell response, what suggests possibility of new episodes of COVID-19 in these patients.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"339-347"},"PeriodicalIF":5.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10228802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-10DOI: 10.1007/s00430-023-00774-9
Andreas Osterman, Franziska Krenn, Maximilian Iglhaut, Irina Badell, Andreas Lehner, Patricia M Späth, Marcel Stern, Hanna Both, Sabine Bender, Maximilian Muenchhoff, Alexander Graf, Stefan Krebs, Helmut Blum, Timo Grimmer, Jürgen Durner, Ludwig Czibere, Christopher Dächert, Natascha Grzimek-Koschewa, Ulrike Protzer, Lars Kaderali, Hanna-Mari Baldauf, Oliver T Keppler
<p><p>Diagnostic tests for direct pathogen detection have been instrumental to contain the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Automated, quantitative, laboratory-based nucleocapsid antigen (Ag) tests for SARS-CoV-2 have been launched alongside nucleic acid-based test systems and point-of-care (POC) lateral-flow Ag tests. Here, we evaluated four commercial Ag tests on automated platforms for the detection of different sublineages of the SARS-CoV-2 Omicron variant of concern (VoC) (B.1.1.529) in comparison with "non-Omicron" VoCs. A total of 203 Omicron PCR-positive respiratory swabs (53 BA.1, 48 BA.2, 23 BQ.1, 39 XBB.1.5 and 40 other subvariants) from the period February to March 2022 and from March 2023 were examined. In addition, tissue culture-expanded clinical isolates of Delta (B.1.617.2), Omicron-BA.1, -BF.7, -BN.1 and -BQ.1 were studied. These results were compared to previously reported data from 107 clinical "non-Omicron" samples from the end of the second pandemic wave (February to March 2021) as well as cell culture-derived samples of wildtype (wt) EU-1 (B.1.177), Alpha VoC (B.1.1.7) and Beta VoC (B.1.351)). All four commercial Ag tests were able to detect at least 90.9% of Omicron-containing samples with high viral loads (Ct < 25). The rates of true-positive test results for BA.1/BA.2-positive samples with intermediate viral loads (Ct 25-30) ranged between 6.7% and 100.0%, while they dropped to 0 to 15.4% for samples with low Ct values (> 30). This heterogeneity was reflected also by the tests' 50%-limit of detection (LoD50) values ranging from 44,444 to 1,866,900 Geq/ml. Respiratory samples containing Omicron-BQ.1/XBB.1.5 or other Omicron subvariants that emerged in 2023 were detected with enormous heterogeneity (0 to 100%) for the intermediate and low viral load ranges with LoD50 values between 23,019 and 1,152,048 Geq/ml. In contrast, detection of "non-Omicron" samples was more sensitive, scoring positive in 35 to 100% for the intermediate and 1.3 to 32.9% of cases for the low viral loads, respectively, corresponding to LoD50 values ranging from 6181 to 749,792 Geq/ml. All four assays detected cell culture-expanded VoCs Alpha, Beta, Delta and Omicron subvariants carrying up to six amino acid mutations in the nucleocapsid protein with sensitivities comparable to the non-VoC EU-1. Overall, automated quantitative SARS-CoV-2 Ag assays are not more sensitive than standard rapid antigen tests used in POC settings and show a high heterogeneity in performance for VoC recognition. The best of these automated Ag tests may have the potential to complement nucleic acid-based assays for SARS-CoV-2 diagnostics in settings not primarily focused on the protection of vulnerable groups. In light of the constant emergence of new Omicron subvariants and recombinants, most recently the XBB lineage, these tests' performance must be regularly re-evaluated, especially when new VoCs carry mutations in the nucleocapsi
{"title":"Automated antigen assays display a high heterogeneity for the detection of SARS-CoV-2 variants of concern, including several Omicron sublineages.","authors":"Andreas Osterman, Franziska Krenn, Maximilian Iglhaut, Irina Badell, Andreas Lehner, Patricia M Späth, Marcel Stern, Hanna Both, Sabine Bender, Maximilian Muenchhoff, Alexander Graf, Stefan Krebs, Helmut Blum, Timo Grimmer, Jürgen Durner, Ludwig Czibere, Christopher Dächert, Natascha Grzimek-Koschewa, Ulrike Protzer, Lars Kaderali, Hanna-Mari Baldauf, Oliver T Keppler","doi":"10.1007/s00430-023-00774-9","DOIUrl":"10.1007/s00430-023-00774-9","url":null,"abstract":"<p><p>Diagnostic tests for direct pathogen detection have been instrumental to contain the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Automated, quantitative, laboratory-based nucleocapsid antigen (Ag) tests for SARS-CoV-2 have been launched alongside nucleic acid-based test systems and point-of-care (POC) lateral-flow Ag tests. Here, we evaluated four commercial Ag tests on automated platforms for the detection of different sublineages of the SARS-CoV-2 Omicron variant of concern (VoC) (B.1.1.529) in comparison with \"non-Omicron\" VoCs. A total of 203 Omicron PCR-positive respiratory swabs (53 BA.1, 48 BA.2, 23 BQ.1, 39 XBB.1.5 and 40 other subvariants) from the period February to March 2022 and from March 2023 were examined. In addition, tissue culture-expanded clinical isolates of Delta (B.1.617.2), Omicron-BA.1, -BF.7, -BN.1 and -BQ.1 were studied. These results were compared to previously reported data from 107 clinical \"non-Omicron\" samples from the end of the second pandemic wave (February to March 2021) as well as cell culture-derived samples of wildtype (wt) EU-1 (B.1.177), Alpha VoC (B.1.1.7) and Beta VoC (B.1.351)). All four commercial Ag tests were able to detect at least 90.9% of Omicron-containing samples with high viral loads (Ct < 25). The rates of true-positive test results for BA.1/BA.2-positive samples with intermediate viral loads (Ct 25-30) ranged between 6.7% and 100.0%, while they dropped to 0 to 15.4% for samples with low Ct values (> 30). This heterogeneity was reflected also by the tests' 50%-limit of detection (LoD50) values ranging from 44,444 to 1,866,900 Geq/ml. Respiratory samples containing Omicron-BQ.1/XBB.1.5 or other Omicron subvariants that emerged in 2023 were detected with enormous heterogeneity (0 to 100%) for the intermediate and low viral load ranges with LoD50 values between 23,019 and 1,152,048 Geq/ml. In contrast, detection of \"non-Omicron\" samples was more sensitive, scoring positive in 35 to 100% for the intermediate and 1.3 to 32.9% of cases for the low viral loads, respectively, corresponding to LoD50 values ranging from 6181 to 749,792 Geq/ml. All four assays detected cell culture-expanded VoCs Alpha, Beta, Delta and Omicron subvariants carrying up to six amino acid mutations in the nucleocapsid protein with sensitivities comparable to the non-VoC EU-1. Overall, automated quantitative SARS-CoV-2 Ag assays are not more sensitive than standard rapid antigen tests used in POC settings and show a high heterogeneity in performance for VoC recognition. The best of these automated Ag tests may have the potential to complement nucleic acid-based assays for SARS-CoV-2 diagnostics in settings not primarily focused on the protection of vulnerable groups. In light of the constant emergence of new Omicron subvariants and recombinants, most recently the XBB lineage, these tests' performance must be regularly re-evaluated, especially when new VoCs carry mutations in the nucleocapsi","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"307-322"},"PeriodicalIF":5.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10633598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-06DOI: 10.1007/s00430-023-00777-6
N Z Mokoena, H Steyn, A Hugo, T Dix-Peek, C Dickens, O M N Gcilitshana, O Sebolai, J Albertyn, C H Pohl
The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.
{"title":"Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response.","authors":"N Z Mokoena, H Steyn, A Hugo, T Dix-Peek, C Dickens, O M N Gcilitshana, O Sebolai, J Albertyn, C H Pohl","doi":"10.1007/s00430-023-00777-6","DOIUrl":"10.1007/s00430-023-00777-6","url":null,"abstract":"<p><p>The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"349-368"},"PeriodicalIF":5.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10271900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s00430-023-00773-w
Ebene R Haycroft, Samantha K Davis, Pradhipa Ramanathan, Ester Lopez, Ruth A Purcell, Li Lynn Tan, Phillip Pymm, Bruce D Wines, P Mark Hogarth, Adam K Wheatley, Jennifer A Juno, Samuel J Redmond, Nicholas A Gherardin, Dale I Godfrey, Wai-Hong Tham, Kevin John Selva, Stephen J Kent, Amy W Chung
Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.
{"title":"Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants.","authors":"Ebene R Haycroft, Samantha K Davis, Pradhipa Ramanathan, Ester Lopez, Ruth A Purcell, Li Lynn Tan, Phillip Pymm, Bruce D Wines, P Mark Hogarth, Adam K Wheatley, Jennifer A Juno, Samuel J Redmond, Nicholas A Gherardin, Dale I Godfrey, Wai-Hong Tham, Kevin John Selva, Stephen J Kent, Amy W Chung","doi":"10.1007/s00430-023-00773-w","DOIUrl":"https://doi.org/10.1007/s00430-023-00773-w","url":null,"abstract":"<p><p>Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 4","pages":"291-305"},"PeriodicalIF":5.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9934272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}