J. Bylemans, D. Gleeson, M. Lintermans, C. Hardy, M. Beitzel, D. Gilligan, E. Furlan
Monitoring aquatic biodiversity through DNA extracted from environmental samples (eDNA) combined with high-throughput sequencing, commonly referred to as eDNA metabarcoding, is increasing in popularity within the scientific community. However, sampling strategies, laboratory protocols and analytical pipelines can influence the results of eDNA metabarcoding surveys. While the impact of laboratory protocols and analytical pipelines have been extensively studied, the importance of sampling strategies on eDNA metabarcoding surveys has not received the same attention. To avoid underestimating local biodiversity, adequate sampling strategies (i.e. sampling intensity and spatial sampling replication) need to be implemented. This study evaluated the impact of sampling strategies along an altitudinal and biodiversity gradient in the upper section of the Murrumbidgee River (Murray-Darling Basin, Australia). An eDNA metabarcoding survey was used to determine the local fish biodiversity and evaluate the influence of sampling intensity and spatial sampling replication on the biodiversity estimates. The results show that optimal eDNA sampling strategies varied between sites and indicate that river morphology, species richness and species abundance affect the optimal sampling intensity and spatial sampling replication needed to accurately assess the fish biodiversity. While the generality of the patterns will need to be confirmed through future studies, these findings provide a basis to guide future eDNA metabarcoding surveys in river systems.
{"title":"Monitoring riverine fish communities through eDNA metabarcoding: determining optimal sampling strategies along an altitudinal and biodiversity gradient","authors":"J. Bylemans, D. Gleeson, M. Lintermans, C. Hardy, M. Beitzel, D. Gilligan, E. Furlan","doi":"10.3897/MBMG.2.30457","DOIUrl":"https://doi.org/10.3897/MBMG.2.30457","url":null,"abstract":"Monitoring aquatic biodiversity through DNA extracted from environmental samples (eDNA) combined with high-throughput sequencing, commonly referred to as eDNA metabarcoding, is increasing in popularity within the scientific community. However, sampling strategies, laboratory protocols and analytical pipelines can influence the results of eDNA metabarcoding surveys. While the impact of laboratory protocols and analytical pipelines have been extensively studied, the importance of sampling strategies on eDNA metabarcoding surveys has not received the same attention. To avoid underestimating local biodiversity, adequate sampling strategies (i.e. sampling intensity and spatial sampling replication) need to be implemented. This study evaluated the impact of sampling strategies along an altitudinal and biodiversity gradient in the upper section of the Murrumbidgee River (Murray-Darling Basin, Australia). An eDNA metabarcoding survey was used to determine the local fish biodiversity and evaluate the influence of sampling intensity and spatial sampling replication on the biodiversity estimates. The results show that optimal eDNA sampling strategies varied between sites and indicate that river morphology, species richness and species abundance affect the optimal sampling intensity and spatial sampling replication needed to accurately assess the fish biodiversity. While the generality of the patterns will need to be confirmed through future studies, these findings provide a basis to guide future eDNA metabarcoding surveys in river systems.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42793107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristy Deiner, Jacqueline Lopez, S. Bourne, Luke E. Holman, M. Seymour, Erin K. Grey, Anais Lacoursiere, Yiyuan Li, M. Renshaw, M. Pfrender, M. Rius, L. Bernatchez, D. Lodge
The analysis of environmental DNA (eDNA) using metabarcoding has increased in use as a method for tracking biodiversity of ecosystems. Little is known about eDNA in marine human-modified environments, such as commercial ports, which are key sites to monitor for anthropogenic impacts on coastal ecosystems. To optimise an eDNA metabarcoding protocol in these environments, seawater samples were collected in a commercial port and methodologies for concentrating and purifying eDNA were tested for their effect on eukaryotic DNA yield and subsequent richness of Operational Taxonomic Units (OTUs). Different filter materials [Cellulose Nitrate (CN) and Glass Fibre (GF)], with different pore sizes (0.5 µm, 0.7 µm and 1.2 µm) and three previously published liquid phase extraction methods were tested. The number of eukaryotic OTUs detected differed by a factor of three amongst the method combinations. The combination of CN filters with phenol-chloroform-isoamyl alcohol extractions recovered a higher amount of eukaryotic DNA and OTUs compared to GF filters and the chloroform-isoamyl alcohol extraction method. Pore size was not independent of filter material but did affect the yield of eukaryotic DNA. For the OTUs assigned to a highly successful non-indigenous species, Styelaclava, the two extraction methods with phenol significantly outperformed the extraction method without phenol; other experimental treatments did not contribute significantly to detection. These results highlight that careful consideration of methods is warranted because choice of filter material and extraction method create false negative detections of marine eukaryotic OTUs and underestimate taxonomic richness from environmental samples.
{"title":"Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, pore size and extraction method","authors":"Kristy Deiner, Jacqueline Lopez, S. Bourne, Luke E. Holman, M. Seymour, Erin K. Grey, Anais Lacoursiere, Yiyuan Li, M. Renshaw, M. Pfrender, M. Rius, L. Bernatchez, D. Lodge","doi":"10.3897/MBMG.2.28963","DOIUrl":"https://doi.org/10.3897/MBMG.2.28963","url":null,"abstract":"The analysis of environmental DNA (eDNA) using metabarcoding has increased in use as a method for tracking biodiversity of ecosystems. Little is known about eDNA in marine human-modified environments, such as commercial ports, which are key sites to monitor for anthropogenic impacts on coastal ecosystems. To optimise an eDNA metabarcoding protocol in these environments, seawater samples were collected in a commercial port and methodologies for concentrating and purifying eDNA were tested for their effect on eukaryotic DNA yield and subsequent richness of Operational Taxonomic Units (OTUs). Different filter materials [Cellulose Nitrate (CN) and Glass Fibre (GF)], with different pore sizes (0.5 µm, 0.7 µm and 1.2 µm) and three previously published liquid phase extraction methods were tested. The number of eukaryotic OTUs detected differed by a factor of three amongst the method combinations. The combination of CN filters with phenol-chloroform-isoamyl alcohol extractions recovered a higher amount of eukaryotic DNA and OTUs compared to GF filters and the chloroform-isoamyl alcohol extraction method. Pore size was not independent of filter material but did affect the yield of eukaryotic DNA. For the OTUs assigned to a highly successful non-indigenous species, Styelaclava, the two extraction methods with phenol significantly outperformed the extraction method without phenol; other experimental treatments did not contribute significantly to detection. These results highlight that careful consideration of methods is warranted because choice of filter material and extraction method create false negative detections of marine eukaryotic OTUs and underestimate taxonomic richness from environmental samples.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46050671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Beentjes, A. Speksnijder, M. Schilthuizen, B. Schaub, B. V. D. Hoorn
The use of molecular tools for the detection and identification of invertebrate species enables the development of more easily standardisable inventories of biological elements for water quality assessments, as it circumvents human-based bias and errors in species identifications. Current Ecological Quality Ratio (EQR) assessments methods, however, often rely on abundance data. Translating metabarcoding sequence data into biomass or specimen abundances has proven difficult, as PCR amplification bias due to primer mismatching often provides skewed proportions of read abundances. While some potential solutions have been proposed in previous research, we instead looked at the necessity of abundance data in EQR assessments. In this study, we used historical monitoring data from natural (lakes, rivers and streams) and artificial (ditches and canals) water bodies to assess the impact of species abundances on the EQR scores for macroinvertebrates in the Water Framework Directive (WFD) monitoring programme of The Netherlands. By removing all the abundance data from the taxon observations, we simulated presence/absence-based monitoring, for which EQRs were calculated according to traditional methods. Our results showed a strong correlation between abundance-based and presence/absence-based EQRs. EQR scores were generally higher without abundances (75.8% of all samples), which resulted in 9.1% of samples being assigned to a higher quality class. The majority of the samples (89.7%) were assigned to the same quality class in both cases. These results are valuable for the incorporation of presence/absence metabarcoding data into water quality assessment methodology, potentially eliminating the need to translate metabarcoding data into biomass or absolute specimen counts for EQR assessments.
{"title":"The influence of macroinvertebrate abundance on the assessment of freshwater quality in The Netherlands","authors":"K. Beentjes, A. Speksnijder, M. Schilthuizen, B. Schaub, B. V. D. Hoorn","doi":"10.3897/MBMG.2.26744","DOIUrl":"https://doi.org/10.3897/MBMG.2.26744","url":null,"abstract":"The use of molecular tools for the detection and identification of invertebrate species enables the development of more easily standardisable inventories of biological elements for water quality assessments, as it circumvents human-based bias and errors in species identifications. Current Ecological Quality Ratio (EQR) assessments methods, however, often rely on abundance data. Translating metabarcoding sequence data into biomass or specimen abundances has proven difficult, as PCR amplification bias due to primer mismatching often provides skewed proportions of read abundances. While some potential solutions have been proposed in previous research, we instead looked at the necessity of abundance data in EQR assessments. In this study, we used historical monitoring data from natural (lakes, rivers and streams) and artificial (ditches and canals) water bodies to assess the impact of species abundances on the EQR scores for macroinvertebrates in the Water Framework Directive (WFD) monitoring programme of The Netherlands. By removing all the abundance data from the taxon observations, we simulated presence/absence-based monitoring, for which EQRs were calculated according to traditional methods. Our results showed a strong correlation between abundance-based and presence/absence-based EQRs. EQR scores were generally higher without abundances (75.8% of all samples), which resulted in 9.1% of samples being assigned to a higher quality class. The majority of the samples (89.7%) were assigned to the same quality class in both cases. These results are valuable for the incorporation of presence/absence metabarcoding data into water quality assessment methodology, potentially eliminating the need to translate metabarcoding data into biomass or absolute specimen counts for EQR assessments.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45254275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. B. Cahoon, Ashley G. Huffman, Megan M. Krager, Roseanna M. Crowell
The purpose of our study was to survey the freshwater planktonic protists within an inland natural preserve in the Ridge and Valley physiographic province of the Appalachian Region using metabarcoding. Microbial eukaryotes are essential primary producers and predators in small freshwater ecosystems, yet they are often overlooked due to the difficulty of identification. This has been remedied, in part, by the cost reduction of high throughput DNA sequencing and the growth of barcode databases, making the identification and analysis of microorganisms by way of metabarcoding surveys in complex ecosystems increasingly feasible. Water samples were collected from five sites at the Natural Tunnel State Park in Scott County, VA (USA), representing three common bodies of water found in this region. Samples were initially collected during a Bioblitz event in April 2016 and then seven and fourteen weeks afterwards. Metabarcode analysis of the 23S and 18S genes identified 3663 OTUs representing 213 family level and 332 genus level taxa. This study provides an initial barcode census within a region that has a reputation as a temperate biodiversity “hotspot”. The overall protist diversity was comparably high to other temperate systems, but not unusually high; the microalgal diversity, however, was higher than that reported for other temperate regions. The three types of water bodies had their own distinctive protist biomes despite close proximity.
{"title":"A meta-barcoding census of freshwater planktonic protists in Appalachia – Natural Tunnel State Park, Virginia, USA","authors":"A. B. Cahoon, Ashley G. Huffman, Megan M. Krager, Roseanna M. Crowell","doi":"10.3897/MBMG.2.26939","DOIUrl":"https://doi.org/10.3897/MBMG.2.26939","url":null,"abstract":"The purpose of our study was to survey the freshwater planktonic protists within an inland natural preserve in the Ridge and Valley physiographic province of the Appalachian Region using metabarcoding. Microbial eukaryotes are essential primary producers and predators in small freshwater ecosystems, yet they are often overlooked due to the difficulty of identification. This has been remedied, in part, by the cost reduction of high throughput DNA sequencing and the growth of barcode databases, making the identification and analysis of microorganisms by way of metabarcoding surveys in complex ecosystems increasingly feasible. Water samples were collected from five sites at the Natural Tunnel State Park in Scott County, VA (USA), representing three common bodies of water found in this region. Samples were initially collected during a Bioblitz event in April 2016 and then seven and fourteen weeks afterwards. Metabarcode analysis of the 23S and 18S genes identified 3663 OTUs representing 213 family level and 332 genus level taxa. This study provides an initial barcode census within a region that has a reputation as a temperate biodiversity “hotspot”. The overall protist diversity was comparably high to other temperate systems, but not unusually high; the microalgal diversity, however, was higher than that reported for other temperate regions. The three types of water bodies had their own distinctive protist biomes despite close proximity.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43583559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The hyporheic zone, i.e. the ecotone between surface water and the groundwater, is a rarely studied freshwater ecosystem. Hyporheic taxa are often meiofaunal (<1 mm) in size and difficult to identify based on morphology. Metabarcoding approaches are promising for the study of these environments and taxa, but it is yet unclear if commonly applied metabarcoding primers and replication strategies can be used. In this study, we took sediment cores from two near natural upstream (NNU) and two ecologically improved downstream (EID) sites in the Boye catchment (Emscher River, Germany), metabarcoding their meiofaunal communities. We evaluated the usability of a commonly used, highly degenerate COI primer pair (BF2/BR2) and tested how sequencing three PCR replicates per sample and removing MOTUs present in only one out of three replicates impacts the inferred community composition. A total of 22,514 MOTUs were detected, of which only 263 were identified as Metazoa. Our results highlight the gaps in reference databases for meiofaunal taxa and the potential problems of using highly degenerate primers for studying samples containing a high number of non-metazoan taxa. Alpha diversity was higher in EID sites and showed higher community similarity when compared to NNU sites. Beta diversity analyses showed that removing MOTUs detected in only one out of three replicates per site greatly increased community similarity in samples. Sequencing three sample replicates and removing rare MOTUs is seen as a good compromise between retaining too many false-positives and introducing too many false-negatives. We conclude that metabarcoding hyporheic communities using highly degenerate COI primers can provide valuable first insights into the diversity of these ecosystems and highlight some potential application scenarios.
{"title":"A DNA metabarcoding protocol for hyporheic freshwater meiofauna: Evaluating highly degenerate COI primers and replication strategy","authors":"Alexander M. Weigand, Jan-Niklas Macher","doi":"10.3897/MBMG.2.26869","DOIUrl":"https://doi.org/10.3897/MBMG.2.26869","url":null,"abstract":"The hyporheic zone, i.e. the ecotone between surface water and the groundwater, is a rarely studied freshwater ecosystem. Hyporheic taxa are often meiofaunal (<1 mm) in size and difficult to identify based on morphology. Metabarcoding approaches are promising for the study of these environments and taxa, but it is yet unclear if commonly applied metabarcoding primers and replication strategies can be used. In this study, we took sediment cores from two near natural upstream (NNU) and two ecologically improved downstream (EID) sites in the Boye catchment (Emscher River, Germany), metabarcoding their meiofaunal communities. We evaluated the usability of a commonly used, highly degenerate COI primer pair (BF2/BR2) and tested how sequencing three PCR replicates per sample and removing MOTUs present in only one out of three replicates impacts the inferred community composition. A total of 22,514 MOTUs were detected, of which only 263 were identified as Metazoa. Our results highlight the gaps in reference databases for meiofaunal taxa and the potential problems of using highly degenerate primers for studying samples containing a high number of non-metazoan taxa. Alpha diversity was higher in EID sites and showed higher community similarity when compared to NNU sites. Beta diversity analyses showed that removing MOTUs detected in only one out of three replicates per site greatly increased community similarity in samples. Sequencing three sample replicates and removing rare MOTUs is seen as a good compromise between retaining too many false-positives and introducing too many false-negatives. We conclude that metabarcoding hyporheic communities using highly degenerate COI primers can provide valuable first insights into the diversity of these ecosystems and highlight some potential application scenarios.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70412351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Majaneva, O. Diserud, Mehrdad Hajibabaei, Shannon H. C. Eagle, T. Ekrem
Characterisation of freshwater benthic biodiversity using DNA metabarcoding may allow more cost-effective environmental assessments than the current morphological-based assessment methods. DNA metabarcoding methods where sorting or pre-sorting of samples are avoided altogether are especially interesting, since the time between sampling and taxonomic identification is reduced. Due to the presence of non-target material like plants and sediments in crude samples, DNA extraction protocols become important for maximising DNA recovery and sample replicability. We sampled freshwater invertebrates from six river and lake sites and extracted DNA from homogenised bulk samples in quadruplicate subsamples, using a published method and two commercially available kits: HotSHOT approach, Qiagen DNeasy Blood & Tissue Kit and Qiagen DNeasy PowerPlant Pro Kit. The performance of the selected extraction methods was evaluated by measuring DNA yield and applying DNA metabarcoding to see if the choice of DNA extraction method affects DNA yield and metazoan diversity results. The PowerPlant Kit extractions resulted in the highest DNA yield and a strong significant correlation between sample weight and DNA yield, while the DNA yields of the Blood & Tissue Kit and HotSHOT method did not correlate with the sample weights. Metazoan diversity measures were more repeatable in samples extracted with the PowerPlant Kit compared to those extracted with the HotSHOT method or the Blood & Tissue Kit. Subsampling using Blood & Tissue Kit and HotSHOT extraction failed to describe the same community in the lake samples. Our study exemplifies that the choice of DNA extraction protocol influences the DNA yield as well as the subsequent community analysis. Based on our results, low specimen abundance samples will likely provide more stable results if specimens are sorted prior to DNA extraction and DNA metabarcoding, but the repeatability of the DNA extraction and DNA metabarcoding results was close to ideal in high specimen abundance samples.
{"title":"Choice of DNA extraction method affects DNA metabarcoding of unsorted invertebrate bulk samples","authors":"M. Majaneva, O. Diserud, Mehrdad Hajibabaei, Shannon H. C. Eagle, T. Ekrem","doi":"10.3897/MBMG.2.26664","DOIUrl":"https://doi.org/10.3897/MBMG.2.26664","url":null,"abstract":"Characterisation of freshwater benthic biodiversity using DNA metabarcoding may allow more cost-effective environmental assessments than the current morphological-based assessment methods. DNA metabarcoding methods where sorting or pre-sorting of samples are avoided altogether are especially interesting, since the time between sampling and taxonomic identification is reduced. Due to the presence of non-target material like plants and sediments in crude samples, DNA extraction protocols become important for maximising DNA recovery and sample replicability. We sampled freshwater invertebrates from six river and lake sites and extracted DNA from homogenised bulk samples in quadruplicate subsamples, using a published method and two commercially available kits: HotSHOT approach, Qiagen DNeasy Blood & Tissue Kit and Qiagen DNeasy PowerPlant Pro Kit. The performance of the selected extraction methods was evaluated by measuring DNA yield and applying DNA metabarcoding to see if the choice of DNA extraction method affects DNA yield and metazoan diversity results. The PowerPlant Kit extractions resulted in the highest DNA yield and a strong significant correlation between sample weight and DNA yield, while the DNA yields of the Blood & Tissue Kit and HotSHOT method did not correlate with the sample weights. Metazoan diversity measures were more repeatable in samples extracted with the PowerPlant Kit compared to those extracted with the HotSHOT method or the Blood & Tissue Kit. Subsampling using Blood & Tissue Kit and HotSHOT extraction failed to describe the same community in the lake samples. Our study exemplifies that the choice of DNA extraction protocol influences the DNA yield as well as the subsequent community analysis. Based on our results, low specimen abundance samples will likely provide more stable results if specimens are sorted prior to DNA extraction and DNA metabarcoding, but the repeatability of the DNA extraction and DNA metabarcoding results was close to ideal in high specimen abundance samples.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42934112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The monitoring of impacts of anthropic activities in marine environments, such as aquaculture, oil-drilling platforms or deep-sea mining, relies on Benthic Biotic Indices (BBI). Several indices have been formalised to reduce the multivariate composition data into a single continuous value that is ascribed to a discrete ecological quality status. Such composition data is traditionally obtained from macrofaunal inventories, which is time-consuming and expertise-demanding. Important efforts are ongoing towards using High-Throughput Sequencing of environmental DNA (eDNA metabarcoding) to replace or complement morpho-taxonomic surveys for routine biomonitoring. The computation of BBI from such composition data is usually being undertaken by practitioners with excel spreadsheets or through custom script. Hence, the updating of reference morpho-taxonomic tables and cross studies comparison could be hampered. Here we introduce the R package BBI for the computation of BBI from composition data, either obtained from traditional morpho-taxonomic inventories or from metabarcoding data. Its aim is to provide an open-source, transparent and centralised method to compute BBI for routine biomonitoring.
{"title":"BBI: an R package for the computation of Benthic Biotic Indices from composition data","authors":"T. Cordier, J. Pawłowski","doi":"10.3897/MBMG.2.25649","DOIUrl":"https://doi.org/10.3897/MBMG.2.25649","url":null,"abstract":"The monitoring of impacts of anthropic activities in marine environments, such as aquaculture, oil-drilling platforms or deep-sea mining, relies on Benthic Biotic Indices (BBI). Several indices have been formalised to reduce the multivariate composition data into a single continuous value that is ascribed to a discrete ecological quality status. Such composition data is traditionally obtained from macrofaunal inventories, which is time-consuming and expertise-demanding. Important efforts are ongoing towards using High-Throughput Sequencing of environmental DNA (eDNA metabarcoding) to replace or complement morpho-taxonomic surveys for routine biomonitoring. The computation of BBI from such composition data is usually being undertaken by practitioners with excel spreadsheets or through custom script. Hence, the updating of reference morpho-taxonomic tables and cross studies comparison could be hampered. Here we introduce the R package BBI for the computation of BBI from composition data, either obtained from traditional morpho-taxonomic inventories or from metabarcoding data. Its aim is to provide an open-source, transparent and centralised method to compute BBI for routine biomonitoring.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48108779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Sellers, Cristina Di Muri, A. Gómez, B. Hänfling
Efficient DNA extraction is fundamental to molecular studies. However, commercial kits are expensive when a large number of samples need to be processed. Here we present a simple, modular and adaptable DNA extraction ‘toolkit’ for the isolation of high purity DNA from multiple sample types (modular universal DNA extraction method or Mu-DNA). We compare the performance of our method to that of widely used commercial kits across a range of soil, stool, tissue and water samples. Mu-DNA produced DNA extractions of similar or higher yield and purity to that of the commercial kits. As a proof of principle, we carried out replicate fish metabarcoding of aquatic eDNA extractions, which confirmed that the species detection efficiency of our method is similar to that of the most frequently used commercial kit. Our results demonstrate the reliability of Mu-DNA along with its modular adaptability to challenging sample types and sample collection methods. Mu-DNA can substantially reduce the costs and increase the scope of experiments in molecular studies.
{"title":"Mu-DNA: a modular universal DNA extraction method adaptable for a wide range of sample types","authors":"G. Sellers, Cristina Di Muri, A. Gómez, B. Hänfling","doi":"10.3897/MBMG.2.24556","DOIUrl":"https://doi.org/10.3897/MBMG.2.24556","url":null,"abstract":"Efficient DNA extraction is fundamental to molecular studies. However, commercial kits are expensive when a large number of samples need to be processed. Here we present a simple, modular and adaptable DNA extraction ‘toolkit’ for the isolation of high purity DNA from multiple sample types (modular universal DNA extraction method or Mu-DNA). We compare the performance of our method to that of widely used commercial kits across a range of soil, stool, tissue and water samples. Mu-DNA produced DNA extractions of similar or higher yield and purity to that of the commercial kits. As a proof of principle, we carried out replicate fish metabarcoding of aquatic eDNA extractions, which confirmed that the species detection efficiency of our method is similar to that of the most frequently used commercial kit. Our results demonstrate the reliability of Mu-DNA along with its modular adaptability to challenging sample types and sample collection methods. Mu-DNA can substantially reduce the costs and increase the scope of experiments in molecular studies.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44138219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}