Lucas A. Martins, Guilherme A. M. Sborz, Felipe Viel, C. Zeferino
Hyperspectral images (HSIs) have been used in civil and military scenarios for ground recognition, urban development management, rare minerals identification, and diverse other purposes. However, HSIs have a significant volume of information and require high computational power, especially for real-time processing in embedded applications, as in onboard computers in satellites. These issues have driven the development of hardware-based solutions able to provide the processing power necessary to meet such requirements. In this paper, we present a hardware accelerator to enhance the performance of one of the most computational expensive stages of HSI processing: the classification. We have employed the Entropy Multiple Correlation Ratio procedure to select the spectral bands to be used in the training process. For the classification step, we have applied a Support Vector Machine classifier with a Hamming Distance decision approach. The proposed custom processor was implemented in FPGA and compared with high-level implementations. The results obtained demonstrate that the processor has a silicon cost lower than similar solutions and can perform a realtime pixel classification in 0.1 ms and achieves a state-of-the-art accuracy of 99.7%.
{"title":"An SVM-based Hardware Accelerator for Onboard Classification of Hyperspectral Images","authors":"Lucas A. Martins, Guilherme A. M. Sborz, Felipe Viel, C. Zeferino","doi":"10.1145/3338852.3339869","DOIUrl":"https://doi.org/10.1145/3338852.3339869","url":null,"abstract":"Hyperspectral images (HSIs) have been used in civil and military scenarios for ground recognition, urban development management, rare minerals identification, and diverse other purposes. However, HSIs have a significant volume of information and require high computational power, especially for real-time processing in embedded applications, as in onboard computers in satellites. These issues have driven the development of hardware-based solutions able to provide the processing power necessary to meet such requirements. In this paper, we present a hardware accelerator to enhance the performance of one of the most computational expensive stages of HSI processing: the classification. We have employed the Entropy Multiple Correlation Ratio procedure to select the spectral bands to be used in the training process. For the classification step, we have applied a Support Vector Machine classifier with a Hamming Distance decision approach. The proposed custom processor was implemented in FPGA and compared with high-level implementations. The results obtained demonstrate that the processor has a silicon cost lower than similar solutions and can perform a realtime pixel classification in 0.1 ms and achieves a state-of-the-art accuracy of 99.7%.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124325273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio José Sobrinho de Sousa, F. Andrade, Hildeloi dos Santos, Gabriele Costa Goncalves, M. D. Pereira, E. Santana, A. Cunha
This work presents a CMOS four quadrant analog multiplier architecture for application as the synapse element in analog cellular neural networks. The circuit has voltage-mode inputs and a current-mode output and includes a signal application method that avoids voltage or current reference generators. Simulations have been accomplished for a CMOS 130 nm technology, featuring $pm 50 mathrm{mV}$ input voltage range, $60 mumathrm{W}$ static power and −25 dB maximum THD. The active area is $346 mumathrm{m}^{2}$.
本文提出了一种CMOS四象限模拟乘法器架构,用于模拟细胞神经网络中的突触元件。该电路具有电压模式输入和电流模式输出,并包括避免电压或电流基准发生器的信号应用方法。对CMOS 130纳米技术进行了仿真,该技术具有$pm 50 math {mV}$输入电压范围,$60 mumath {W}$静态功率和- 25 dB最大THD。活动面积为$346 mu mathm {m}^{2}$。
{"title":"CMOS Analog Four-Quadrant Multiplier Free of Voltage Reference Generators","authors":"Antonio José Sobrinho de Sousa, F. Andrade, Hildeloi dos Santos, Gabriele Costa Goncalves, M. D. Pereira, E. Santana, A. Cunha","doi":"10.1145/3338852.3339870","DOIUrl":"https://doi.org/10.1145/3338852.3339870","url":null,"abstract":"This work presents a CMOS four quadrant analog multiplier architecture for application as the synapse element in analog cellular neural networks. The circuit has voltage-mode inputs and a current-mode output and includes a signal application method that avoids voltage or current reference generators. Simulations have been accomplished for a CMOS 130 nm technology, featuring $pm 50 mathrm{mV}$ input voltage range, $60 mumathrm{W}$ static power and −25 dB maximum THD. The active area is $346 mumathrm{m}^{2}$.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131383277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renan A. Marks, Daniel K. S. Vieira, Marcos V. Guterres, Poliana A. C. Oliveira, O. V. Neto
This paper describes the DNAr-Logic: an implementation of a software package in R language that provides ease of use and scalability of the design process of digital logic circuits in molecular computing, more specifically, DNA computing. These devices may be used in-vitro, in-vivo, or even replace the CMOS technology in some applications. Using a technique known as DNA strand displacement reaction (DSD) in conjunction with chemical reaction networks (CRN's), DNA strands can be used as “wet” hardware to construct molecular logic circuits analogous to electronic digital projects. The circuits designed using the DNAr-Logic can be created in a constructive manner and simulated without requiring knowledge of chemistry or DSD mechanism. The package implements all the main logic gates. We describe the design of a majority gate (also available in the package) and a full-adder circuit that only uses this port. We describe the results and simulation of our design.
{"title":"DNAr-Logic: A constructive DNA logic circuit design library in R language for Molecular Computing","authors":"Renan A. Marks, Daniel K. S. Vieira, Marcos V. Guterres, Poliana A. C. Oliveira, O. V. Neto","doi":"10.1145/3338852.3339854","DOIUrl":"https://doi.org/10.1145/3338852.3339854","url":null,"abstract":"This paper describes the DNAr-Logic: an implementation of a software package in R language that provides ease of use and scalability of the design process of digital logic circuits in molecular computing, more specifically, DNA computing. These devices may be used in-vitro, in-vivo, or even replace the CMOS technology in some applications. Using a technique known as DNA strand displacement reaction (DSD) in conjunction with chemical reaction networks (CRN's), DNA strands can be used as “wet” hardware to construct molecular logic circuits analogous to electronic digital projects. The circuits designed using the DNAr-Logic can be created in a constructive manner and simulated without requiring knowledge of chemistry or DSD mechanism. The package implements all the main logic gates. We describe the design of a majority gate (also available in the package) and a full-adder circuit that only uses this port. We describe the results and simulation of our design.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121121170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a modified version of the well-known Particle Swarm Optimization (PSO) algorithm as an alternative for the single-objective Genetic Algorithm (GA) that is currently the state-of-the-art method to map real-time applications tasks onto Multiple Processors System-on-a-Chip (MPSoC) using preemptive capable wormhole-based Network-on-a-Chip (NoC) as their communication architecture. A statistical study based on an experimental setup has been performed to compare the GA-based task mapper and the proposed method by using a real-time application as a benchmark, as well as a group of randomly generated ones. Preliminary results have shown that our method is capable of achieving quicker convergence than the GA-based method, and it even produces better results when the application utilization is smaller than the available processing capacity, i.e., a fully schedulable mapping solution exists.
{"title":"An Adaptive Discrete Particle Swarm Optimization for Mapping Real-Time Applications onto Network-on-a-Chip based MPSoCs","authors":"J. B. D. Barros, R. C. Sampaio, C. Llanos","doi":"10.1145/3338852.3339835","DOIUrl":"https://doi.org/10.1145/3338852.3339835","url":null,"abstract":"This paper presents a modified version of the well-known Particle Swarm Optimization (PSO) algorithm as an alternative for the single-objective Genetic Algorithm (GA) that is currently the state-of-the-art method to map real-time applications tasks onto Multiple Processors System-on-a-Chip (MPSoC) using preemptive capable wormhole-based Network-on-a-Chip (NoC) as their communication architecture. A statistical study based on an experimental setup has been performed to compare the GA-based task mapper and the proposed method by using a real-time application as a benchmark, as well as a group of randomly generated ones. Preliminary results have shown that our method is capable of achieving quicker convergence than the GA-based method, and it even produces better results when the application utilization is smaller than the available processing capacity, i.e., a fully schedulable mapping solution exists.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"295 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134541366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a wideband 0.4-2 GHz cascode common-gate LNA that can be used as a building block for a noise canceling topology (which entails its noise to be canceled at the output node). The design strategy is to set the operating point by analyzing the third order coefficient $(alpha_{3})$ of the output current and the output voltage, which is designed using a load composed by a diode-connected PMOS transistor and a resistor in parallel. This operating point allows a reasonable $V_{GS}$ spread, maintaining a high IIP3 which implies a low IIP3 sensitivity to process variability. The design strategy also achieves a current consumption under 1 mA and, depending on the technology node $V_{DD}$ (CMOS 130 nm in this case), it can consume under 1 mW of power. This makes the wideband LNA suitable for IoT applications. Monte Carlo simulations have been carried out to demonstrate the operating region sensitivity to variability and achieves a result of worst case $IIP3_{mu}=+0.2 mathrm{dBm}$ with $sigma=0.8 mathrm{dBm}$ (@2GHz) up to a nominal 2.75 dBm @900 MHz, $S_{11} < -23 mathrm{dB}, mathrm{NF} < 5.5 mathrm{dB}$ (canceled by virtue of its topology), a voltage gain of 11.6-14.6 dB ($S_{21}=6.4-9.4 mathrm{dB}$ with a buffer to $50 Omega$), and consuming just 1.19 mW from a 1.2 V supply.
{"title":"A sub-1mA Highly Linear Inductorless Wideband LNA with Low IP3 sensitivity to Variability for IoT Applications","authors":"A. L. T. Costa, H. Klimach, S. Bampi","doi":"10.1145/3338852.3339858","DOIUrl":"https://doi.org/10.1145/3338852.3339858","url":null,"abstract":"This paper proposes a wideband 0.4-2 GHz cascode common-gate LNA that can be used as a building block for a noise canceling topology (which entails its noise to be canceled at the output node). The design strategy is to set the operating point by analyzing the third order coefficient $(alpha_{3})$ of the output current and the output voltage, which is designed using a load composed by a diode-connected PMOS transistor and a resistor in parallel. This operating point allows a reasonable $V_{GS}$ spread, maintaining a high IIP3 which implies a low IIP3 sensitivity to process variability. The design strategy also achieves a current consumption under 1 mA and, depending on the technology node $V_{DD}$ (CMOS 130 nm in this case), it can consume under 1 mW of power. This makes the wideband LNA suitable for IoT applications. Monte Carlo simulations have been carried out to demonstrate the operating region sensitivity to variability and achieves a result of worst case $IIP3_{mu}=+0.2 mathrm{dBm}$ with $sigma=0.8 mathrm{dBm}$ (@2GHz) up to a nominal 2.75 dBm @900 MHz, $S_{11} < -23 mathrm{dB}, mathrm{NF} < 5.5 mathrm{dB}$ (canceled by virtue of its topology), a voltage gain of 11.6-14.6 dB ($S_{21}=6.4-9.4 mathrm{dB}$ with a buffer to $50 Omega$), and consuming just 1.19 mW from a 1.2 V supply.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134349825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto Paulo Dias Alcantara Filho, O. A. D. L. Junior, C. Júnior
Extreme low-power embedded systems are essential in Smart Cities and the Internet of Things, once these systems are responsible for acquiring, processing, and transmitting valuable environmental data. Some of these systems should run for a very long time without any human intervention, even for batteries replacement. Energy harvesting technologies allow embedded systems to be powered up from the environment by converting surrounding energy sources into electrical energy. However, energy-harvesting embedded systems (EHES) heavily depends on the nature of the energy sources, which are mostly uncontrollable and unpredictable. To improve the evaluation of energy management techniques in EHES, we propose the emulation of I-V curves of low-power energy harvesting transducers. An FPGA-based platform controls the energy source emulation combined with an integrated logic analyzer, which allows real-time data gathering from the EHES in multiple evaluation scenarios. The experiments show that the platform replicates solar energy scenarios with only 0.56% mean error.
{"title":"An FPGA-Based Evaluation Platform for Energy Harvesting Embedded Systems","authors":"Roberto Paulo Dias Alcantara Filho, O. A. D. L. Junior, C. Júnior","doi":"10.1145/3338852.3339863","DOIUrl":"https://doi.org/10.1145/3338852.3339863","url":null,"abstract":"Extreme low-power embedded systems are essential in Smart Cities and the Internet of Things, once these systems are responsible for acquiring, processing, and transmitting valuable environmental data. Some of these systems should run for a very long time without any human intervention, even for batteries replacement. Energy harvesting technologies allow embedded systems to be powered up from the environment by converting surrounding energy sources into electrical energy. However, energy-harvesting embedded systems (EHES) heavily depends on the nature of the energy sources, which are mostly uncontrollable and unpredictable. To improve the evaluation of energy management techniques in EHES, we propose the emulation of I-V curves of low-power energy harvesting transducers. An FPGA-based platform controls the energy source emulation combined with an integrated logic analyzer, which allows real-time data gathering from the EHES in multiple evaluation scenarios. The experiments show that the platform replicates solar energy scenarios with only 0.56% mean error.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115932486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motion Estimation (ME) is one of the most complex HEVC steps, consuming more than 60% of the average encoding time, most of which is spent on its fractional part (Fractional Motion Estimation - FME), in which sub-pixel samples are interpolated and searched over to find motion vectors with higher precision. This paper presents hardware designs for the sub-pixel interpolation unit of the FME step. The designs employ approximate computing techniques by reducing the number of taps in each filter to reduce memory access and hardware cost. The approximate filters were implemented in the HEVC reference software to assess their impact on coding performance. A complete interpolation architecture was implemented in VHDL and synthesized with different filter precision and input sizes in order to assess the effect of these parameters on hardware area and performance. The approximate designs reduce the number of adders/subtractors by up to 67.65% and memory bandwidth by up to 75% with a tolerable loss in coding performance (less than 1% using the Bjontegaard Delta bitrate metric). When synthesized to an FPGA device, 52.9% less logic elements are required with a modest increase in frequency.
{"title":"Approximate Interpolation Filters for the Fractional Motion Estimation in HEVC Encoders and their VLSI Design","authors":"Rafael da Silva, Ícaro Siqueira, M. Grellert","doi":"10.1145/3338852.3339859","DOIUrl":"https://doi.org/10.1145/3338852.3339859","url":null,"abstract":"Motion Estimation (ME) is one of the most complex HEVC steps, consuming more than 60% of the average encoding time, most of which is spent on its fractional part (Fractional Motion Estimation - FME), in which sub-pixel samples are interpolated and searched over to find motion vectors with higher precision. This paper presents hardware designs for the sub-pixel interpolation unit of the FME step. The designs employ approximate computing techniques by reducing the number of taps in each filter to reduce memory access and hardware cost. The approximate filters were implemented in the HEVC reference software to assess their impact on coding performance. A complete interpolation architecture was implemented in VHDL and synthesized with different filter precision and input sizes in order to assess the effect of these parameters on hardware area and performance. The approximate designs reduce the number of adders/subtractors by up to 67.65% and memory bandwidth by up to 75% with a tolerable loss in coding performance (less than 1% using the Bjontegaard Delta bitrate metric). When synthesized to an FPGA device, 52.9% less logic elements are required with a modest increase in frequency.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121031160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wagner Penny, D. Palomino, M. Porto, B. Zatt, L. Indrusiak
Today, several applications running into embedded systems have to fulfill soft or hard timing constraints. Video applications, like the modern High Efficiency Video Coding (HEVC), e.g., most often have soft real-time constraints. However, in specific scenarios, such as in robotic surgeries, the coupling of satellites and so on, harder timing constraints arise, becoming a huge challenge. Although the implementation of such applications in Networks-on-Chip (NoCs) being an alternative to reduce their algorithmic complexity and meet real-time constraints, a performance evaluation of the mapped NoC and the schedulability analysis for a given application are mandatory. In this work we make a performance evaluation of HEVC Residual Coding Loop (RCL) mapped onto a NoC-based embedded platform, considering the encoding of a single $1920mathrm{x}1080$ pixels frame. A set of analysis exploring the combination of different NoC sizes and task mapping strategies were performed, showing for the typical and upper-bound workload cases scenarios when the application is schedulable and meets the real-time constraints.
{"title":"Performance Evaluation of HEVC RCL Applications Mapped onto NoC-Based Embedded Platforms","authors":"Wagner Penny, D. Palomino, M. Porto, B. Zatt, L. Indrusiak","doi":"10.1145/3338852.3339868","DOIUrl":"https://doi.org/10.1145/3338852.3339868","url":null,"abstract":"Today, several applications running into embedded systems have to fulfill soft or hard timing constraints. Video applications, like the modern High Efficiency Video Coding (HEVC), e.g., most often have soft real-time constraints. However, in specific scenarios, such as in robotic surgeries, the coupling of satellites and so on, harder timing constraints arise, becoming a huge challenge. Although the implementation of such applications in Networks-on-Chip (NoCs) being an alternative to reduce their algorithmic complexity and meet real-time constraints, a performance evaluation of the mapped NoC and the schedulability analysis for a given application are mandatory. In this work we make a performance evaluation of HEVC Residual Coding Loop (RCL) mapped onto a NoC-based embedded platform, considering the encoding of a single $1920mathrm{x}1080$ pixels frame. A set of analysis exploring the combination of different NoC sizes and task mapping strategies were performed, showing for the typical and upper-bound workload cases scenarios when the application is schedulable and meets the real-time constraints.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123273406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work focuses on optimizing circuits representing neural networks (NNs) in the form of and-inverter graphs (AIGs). The optimization is done by analyzing the training set of the neural network to find constant bit values at the primary inputs. The constant values are then propagated through the AIG, which results in removing unnecessary nodes. Furthermore, a trade-off between neural network accuracy and its reduction due to constant propagation is investigated by replacing with constants those inputs that are likely to be zero or one. The experimental results show a significant reduction in circuit size with negligible loss in accuracy.
{"title":"Reduction of Neural Network Circuits by Constant and Nearly Constant Signal Propagation","authors":"A. Berndt, A. Mishchenko, P. Butzen, A. Reis","doi":"10.1145/3338852.3339874","DOIUrl":"https://doi.org/10.1145/3338852.3339874","url":null,"abstract":"This work focuses on optimizing circuits representing neural networks (NNs) in the form of and-inverter graphs (AIGs). The optimization is done by analyzing the training set of the neural network to find constant bit values at the primary inputs. The constant values are then propagated through the AIG, which results in removing unnecessary nodes. Furthermore, a trade-off between neural network accuracy and its reduction due to constant propagation is investigated by replacing with constants those inputs that are likely to be zero or one. The experimental results show a significant reduction in circuit size with negligible loss in accuracy.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123187094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, many technologies have been studied to replace or complement CMOS. Some of these emerging technologies are known as Field Coupled Nanocomputing. However, these new technologies introduce the need for developing tools to perform circuit mapping, placement, and routing. Nanomagnetic Logic Circuit (NML) is one of these emergent technologies. It relies on the magnetization of nanomagnets to perform operations through majority logic. In this work, we propose an approach to map a gate-level circuit to an NML layout automatically. We use the Breadth First Search to perform the placement and the A* algorithm to transverse the circuit and build the routes for each node. To evaluate the effectiveness of our approach, we use a series of ISCAS'85 benchmarks. Our results show an area reduction varying from 20% to 60%.
{"title":"Toward Nanometric Scale Integration: An Automatic Routing Approach for NML Circuits","authors":"P. A. Silva, O. P. V. Neto, J. Nacif","doi":"10.1145/3338852.3339862","DOIUrl":"https://doi.org/10.1145/3338852.3339862","url":null,"abstract":"In recent years, many technologies have been studied to replace or complement CMOS. Some of these emerging technologies are known as Field Coupled Nanocomputing. However, these new technologies introduce the need for developing tools to perform circuit mapping, placement, and routing. Nanomagnetic Logic Circuit (NML) is one of these emergent technologies. It relies on the magnetization of nanomagnets to perform operations through majority logic. In this work, we propose an approach to map a gate-level circuit to an NML layout automatically. We use the Breadth First Search to perform the placement and the A* algorithm to transverse the circuit and build the routes for each node. To evaluate the effectiveness of our approach, we use a series of ISCAS'85 benchmarks. Our results show an area reduction varying from 20% to 60%.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123829559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}