The co-culture method is a simple type of cell culture method used to evaluate the effects of communication between various types of cells in an in vitro setting. In the co-culture method, two or more eukaryotic cell types, or eukaryotic and prokaryotic cells, are cultured together. The co-culture method reflects in vivo cell behaviors and thereby emerges as a pivotal technique with diverse applications in cancer research and cell biology. Two categories of co-culture methods (indirect methods and direct methods) are well known. Direct co-culture methods allow physical contact between the various cell types (juxtacrine signaling). In indirect methods, cells are physically separated into two different populations (for example, using a Transwell) that allow communication only via secretory factors (paracrine signaling). Herein, we focus on the principles of the indirect co-culture method. Nowadays, this method is used to explore the effects of mesenchymal stem cell (MSC) secretome on cancer cells. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell proliferation, invasion, apoptosis, and polarity.
{"title":"Principles of Indirect Co-culture Method Using Transwell.","authors":"Mohammad Rasouli, Fatemeh Safari","doi":"10.1007/7651_2024_537","DOIUrl":"https://doi.org/10.1007/7651_2024_537","url":null,"abstract":"<p><p>The co-culture method is a simple type of cell culture method used to evaluate the effects of communication between various types of cells in an in vitro setting. In the co-culture method, two or more eukaryotic cell types, or eukaryotic and prokaryotic cells, are cultured together. The co-culture method reflects in vivo cell behaviors and thereby emerges as a pivotal technique with diverse applications in cancer research and cell biology. Two categories of co-culture methods (indirect methods and direct methods) are well known. Direct co-culture methods allow physical contact between the various cell types (juxtacrine signaling). In indirect methods, cells are physically separated into two different populations (for example, using a Transwell) that allow communication only via secretory factors (paracrine signaling). Herein, we focus on the principles of the indirect co-culture method. Nowadays, this method is used to explore the effects of mesenchymal stem cell (MSC) secretome on cancer cells. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell proliferation, invasion, apoptosis, and polarity.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parvaneh Mehrbod, Paola Brun, Umberto Rosani, Andrea Leonardi, Saeid Ghavami
Vernal keratoconjunctivitis (VKC) is a serious eye allergy characterized by poorly understood pathogenic mechanisms and a lack of effective treatments. Autophagy, a process involved in both triggering and suppressing immune and inflammatory responses, plays a role in VKC's pathophysiology. Understanding autophagy's involvement in VKC could lead to new treatment possibilities, such as utilizing specific topical substances to induce or inhibit autophagy and prevent severe complications of this eye condition. In our current protocol, we present a robust methodology established in our laboratory for studying autophagy in primary conjunctival fibroblasts. We assess autophagy through techniques like immunocytochemistry, immunoblotting, and qPCR.
{"title":"Evaluation of Autophagy in Conjunctival Fibroblasts.","authors":"Parvaneh Mehrbod, Paola Brun, Umberto Rosani, Andrea Leonardi, Saeid Ghavami","doi":"10.1007/7651_2024_523","DOIUrl":"https://doi.org/10.1007/7651_2024_523","url":null,"abstract":"<p><p>Vernal keratoconjunctivitis (VKC) is a serious eye allergy characterized by poorly understood pathogenic mechanisms and a lack of effective treatments. Autophagy, a process involved in both triggering and suppressing immune and inflammatory responses, plays a role in VKC's pathophysiology. Understanding autophagy's involvement in VKC could lead to new treatment possibilities, such as utilizing specific topical substances to induce or inhibit autophagy and prevent severe complications of this eye condition. In our current protocol, we present a robust methodology established in our laboratory for studying autophagy in primary conjunctival fibroblasts. We assess autophagy through techniques like immunocytochemistry, immunoblotting, and qPCR.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140158441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy is an evolutionarily conserved process providing the energy that cells need to survive, especially in stress situations, through catabolic processes. Considering the dual role of autophagy in cancer cells depending on the cellular context, it is crucial to comprehend the effect of drug candidates put forward to prevent cancer through the autophagy pathway. The CYTO-ID® Autophagy Detection Kit allows a rapid, specific and quantitative measurement of autophagic activity at the cellular level using a 488 nm-excitable green fluorescent detection reagent via flow cytometer. In this chapter, we present the CYTO-ID® Autophagy Detection method with a stepwise protocol to monitor the autophagy flux after the application of any compound to suspension cancer cell lines with flow cytometric analysis.
{"title":"Measurement of Autophagic Activity in Cancer Cells with Flow Cytometric Analysis Using Cyto-ID Staining.","authors":"Merve Şansaçar, Emel Başak Gencer Akçok","doi":"10.1007/7651_2024_526","DOIUrl":"https://doi.org/10.1007/7651_2024_526","url":null,"abstract":"<p><p>Autophagy is an evolutionarily conserved process providing the energy that cells need to survive, especially in stress situations, through catabolic processes. Considering the dual role of autophagy in cancer cells depending on the cellular context, it is crucial to comprehend the effect of drug candidates put forward to prevent cancer through the autophagy pathway. The CYTO-ID<sup>®</sup> Autophagy Detection Kit allows a rapid, specific and quantitative measurement of autophagic activity at the cellular level using a 488 nm-excitable green fluorescent detection reagent via flow cytometer. In this chapter, we present the CYTO-ID<sup>®</sup> Autophagy Detection method with a stepwise protocol to monitor the autophagy flux after the application of any compound to suspension cancer cell lines with flow cytometric analysis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simone C da Silva Rosa, Javad Alizadeh, Rui Vitorino, Arun Surendran, Amir Ravandi, Biniam Kidane, Saeid Ghavami
Non-small cell lung cancer (NSCLC) is among the most malignant tumors with high propensity for metastasis and is the leading cause of cancer-related death globally. Most patients present with regional and distant metastasis, associated with poor prognosis. Lipids may play an essential role in either activating or inhibiting detachment-induced apoptosis (anoikis), where the latter is a crucial mechanism to prevent metastasis, and it may have a cross-talk with autophagy. Autophagy has been shown to be induced in various human cancer metastasis, modulating tumor cell motility and invasion, cancer cell differentiation, resistance to anoikis, and epithelial to mesenchymal transition. Hence, it may play a crucial role in the transition of benign to malignant phenotypes, the core of metastasis initiation. Here, we provide a method we have established in our laboratory for detecting lipids in attached and detached non-small lung cancer cells and show how to analyze lipidomics data to find its correlation with autophagy-related pathways.
{"title":"A Lipidomics Approach to Determine the Role of Lipids and Its Crosstalk with Autophagy in Lung Cancer Metastasis.","authors":"Simone C da Silva Rosa, Javad Alizadeh, Rui Vitorino, Arun Surendran, Amir Ravandi, Biniam Kidane, Saeid Ghavami","doi":"10.1007/7651_2024_524","DOIUrl":"https://doi.org/10.1007/7651_2024_524","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is among the most malignant tumors with high propensity for metastasis and is the leading cause of cancer-related death globally. Most patients present with regional and distant metastasis, associated with poor prognosis. Lipids may play an essential role in either activating or inhibiting detachment-induced apoptosis (anoikis), where the latter is a crucial mechanism to prevent metastasis, and it may have a cross-talk with autophagy. Autophagy has been shown to be induced in various human cancer metastasis, modulating tumor cell motility and invasion, cancer cell differentiation, resistance to anoikis, and epithelial to mesenchymal transition. Hence, it may play a crucial role in the transition of benign to malignant phenotypes, the core of metastasis initiation. Here, we provide a method we have established in our laboratory for detecting lipids in attached and detached non-small lung cancer cells and show how to analyze lipidomics data to find its correlation with autophagy-related pathways.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The exquisite balance between cellular prosurvival and death pathways is extremely necessary for homeostasis. Different forms of programmed cell death have been widely studied and reported such as apoptosis, necroptosis, pyroptosis, and autophagy. Autophagy is a catabolic process important for normal cellular functioning. The main aim of this machinery is to degrade the misfolded or damaged proteins, unuseful organelles, and pathogens, which invade the cells, thereby maintaining cellular homeostasis and assuring the regular renewal of cell components. This prosurvival function of autophagy highlights its importance in many human diseases, as the disturbance of this tightly organized process ultimately causes detrimental effects. Interestingly, neurons are particularly susceptible to damage upon the presence of any alteration in the basal level of the autophagic activity; this could be due to their high metabolic demand, post-mitotic nature, and the contribution of autophagy in the different fundamental functions of neurons. Herein, we have reported the role of autophagy in different CNS disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and epilepsy, besides the pharmacological agents targeting autophagy. Due to the significant contribution of autophagy in the pathogenesis of many diseases, it is crucial to develop effective methods to detect this dynamic process. In this chapter, we have summarized the most frequently employed techniques in studying and detecting autophagy including electron microscopy, fluorescence microscopy, Western blotting, intracellular protein degradation, and sequestration assay.
{"title":"Involvement of Autophagic Machinery in Neuropathogenesis: Targeting and Relevant Methods of Detection.","authors":"Nourhan Sayed, Alaa Emam Ali, Doaa Mokhtar Elsherbiny, Samar S Azab","doi":"10.1007/7651_2024_516","DOIUrl":"https://doi.org/10.1007/7651_2024_516","url":null,"abstract":"<p><p>The exquisite balance between cellular prosurvival and death pathways is extremely necessary for homeostasis. Different forms of programmed cell death have been widely studied and reported such as apoptosis, necroptosis, pyroptosis, and autophagy. Autophagy is a catabolic process important for normal cellular functioning. The main aim of this machinery is to degrade the misfolded or damaged proteins, unuseful organelles, and pathogens, which invade the cells, thereby maintaining cellular homeostasis and assuring the regular renewal of cell components. This prosurvival function of autophagy highlights its importance in many human diseases, as the disturbance of this tightly organized process ultimately causes detrimental effects. Interestingly, neurons are particularly susceptible to damage upon the presence of any alteration in the basal level of the autophagic activity; this could be due to their high metabolic demand, post-mitotic nature, and the contribution of autophagy in the different fundamental functions of neurons. Herein, we have reported the role of autophagy in different CNS disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and epilepsy, besides the pharmacological agents targeting autophagy. Due to the significant contribution of autophagy in the pathogenesis of many diseases, it is crucial to develop effective methods to detect this dynamic process. In this chapter, we have summarized the most frequently employed techniques in studying and detecting autophagy including electron microscopy, fluorescence microscopy, Western blotting, intracellular protein degradation, and sequestration assay.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael L Samulevich, Liam E Carman, Brian J Aneskievich
Myriad proteins are involved in the process of autophagy, which they participate in via their protein-protein interactions (PPI). Herein we outline a methodology for examining such interactions utilizing the case of intrinsically disordered protein (IDP) TNIP1 and its interaction with linear M1-linked polyubiquitin. This includes methods for recombinant production, purification, immuno-identification, and analysis of an IDP associated with autophagy, its ordered binding partner, and means of quantitatively analyzing their interaction.
{"title":"Investigating Protein-Protein Interactions of Autophagy-Involved TNIP1.","authors":"Michael L Samulevich, Liam E Carman, Brian J Aneskievich","doi":"10.1007/7651_2024_525","DOIUrl":"https://doi.org/10.1007/7651_2024_525","url":null,"abstract":"<p><p>Myriad proteins are involved in the process of autophagy, which they participate in via their protein-protein interactions (PPI). Herein we outline a methodology for examining such interactions utilizing the case of intrinsically disordered protein (IDP) TNIP1 and its interaction with linear M1-linked polyubiquitin. This includes methods for recombinant production, purification, immuno-identification, and analysis of an IDP associated with autophagy, its ordered binding partner, and means of quantitatively analyzing their interaction.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.
{"title":"Assessment of Autophagy in Leishmania Parasites.","authors":"Somtochukwu S Onwah, Jude E Uzonna, Saeid Ghavami","doi":"10.1007/7651_2024_517","DOIUrl":"https://doi.org/10.1007/7651_2024_517","url":null,"abstract":"<p><p>Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Rasouli, Fatemeh Safari, Mohammad Hossein Kanani, Hiva Ahvati
A type of three-dimensional (3D) cell culture models which is simple and easy is hanging drop method. The hanging drop method emerges as a pivotal technique with diverse applications in cancer research and cell biology. This method facilitates the formation of multicellular spheroids, providing a unique environment for studying cell behavior dynamics. The hanging drop method's theoretical underpinning relies on gravity-enforced self-assembly, allowing for cost-effective, reproducible 3D cell cultures with controlled spheroid sizes. The advantages of this approach include its efficiency in producing cellular heterogeneity, particularly in non-adherent 3D cultures, and its ability to create hypoxic spheroids, making it a suitable model for studying cancer. Moreover, the hanging drop method has proven valuable in investigating various aspects such as tissue structure, signaling pathways, immune activation of cancer cells, and notably, cell proliferation. Researchers have utilized the hanging drop method to explore the dynamics of cell proliferation, studying the effects of mesenchymal stem cells (MSC) secretome on cancer cells. The method's application involves co-culturing different cell lines, assessing spheroid formations, and quantifying their sizes over time. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell growth and viability within a three-dimensional co-culture paradigm.
{"title":"Principles of Hanging Drop Method (Spheroid Formation) in Cell Culture.","authors":"Mohammad Rasouli, Fatemeh Safari, Mohammad Hossein Kanani, Hiva Ahvati","doi":"10.1007/7651_2024_527","DOIUrl":"https://doi.org/10.1007/7651_2024_527","url":null,"abstract":"<p><p>A type of three-dimensional (3D) cell culture models which is simple and easy is hanging drop method. The hanging drop method emerges as a pivotal technique with diverse applications in cancer research and cell biology. This method facilitates the formation of multicellular spheroids, providing a unique environment for studying cell behavior dynamics. The hanging drop method's theoretical underpinning relies on gravity-enforced self-assembly, allowing for cost-effective, reproducible 3D cell cultures with controlled spheroid sizes. The advantages of this approach include its efficiency in producing cellular heterogeneity, particularly in non-adherent 3D cultures, and its ability to create hypoxic spheroids, making it a suitable model for studying cancer. Moreover, the hanging drop method has proven valuable in investigating various aspects such as tissue structure, signaling pathways, immune activation of cancer cells, and notably, cell proliferation. Researchers have utilized the hanging drop method to explore the dynamics of cell proliferation, studying the effects of mesenchymal stem cells (MSC) secretome on cancer cells. The method's application involves co-culturing different cell lines, assessing spheroid formations, and quantifying their sizes over time. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell growth and viability within a three-dimensional co-culture paradigm.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yashar Esmaeilian, Sevgi Yusufoglu, Ece Iltumur, Gamze Bildik, Ozgur Oktem
Immunofluorescence, a transformative tool in cellular biology, is employed to dissect the intricate mechanisms of cholesterol trafficking in human reproductive tissues. Autophagy, a key player in cellular homeostasis, particularly lipophagy, emerges as a free cholesterol source for steroidogenesis. In this chapter, we describe a comprehensive immunofluorescence staining protocol, with details provided for the precise visualization of subcellular dynamics of mitochondria, lysosomes, and lipid droplets in ex vivo testicular tissue and primary luteal granulosa cell culture models, pivotal components in sex steroid biosynthesis. Here, we detail the culture, treatment, and immunofluorescence protocols, providing a comprehensive guide for researchers. The provided immunofluorescence toolkit serves as a valuable resource for researchers, paving way for advancements in human reproductive health to investigate the intricate interplay between autophagy, lipophagy, and cholesterol trafficking.
{"title":"Visualizing Lipophagy as a New Mechanism of the Synthesis of Sex Steroids in Human Ovary and Testis Using Immunofluorescence Staining Method.","authors":"Yashar Esmaeilian, Sevgi Yusufoglu, Ece Iltumur, Gamze Bildik, Ozgur Oktem","doi":"10.1007/7651_2024_520","DOIUrl":"https://doi.org/10.1007/7651_2024_520","url":null,"abstract":"<p><p>Immunofluorescence, a transformative tool in cellular biology, is employed to dissect the intricate mechanisms of cholesterol trafficking in human reproductive tissues. Autophagy, a key player in cellular homeostasis, particularly lipophagy, emerges as a free cholesterol source for steroidogenesis. In this chapter, we describe a comprehensive immunofluorescence staining protocol, with details provided for the precise visualization of subcellular dynamics of mitochondria, lysosomes, and lipid droplets in ex vivo testicular tissue and primary luteal granulosa cell culture models, pivotal components in sex steroid biosynthesis. Here, we detail the culture, treatment, and immunofluorescence protocols, providing a comprehensive guide for researchers. The provided immunofluorescence toolkit serves as a valuable resource for researchers, paving way for advancements in human reproductive health to investigate the intricate interplay between autophagy, lipophagy, and cholesterol trafficking.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autophagy is an evolutionarily conserved process that aims to maintain the energy homeostasis of the cell by recycling long-lived proteins and organelles. We have very recently demonstrated that lipophagy, a special form of autophagy, mediates the association of the lipid droplets (LDs) with lysosomes to deliver the lipid cargo within the LDs to lysosomes for degradation in order to release free cholesterol required for steroid synthesis in human ovary and testis. In this chapter, we describe live cell confocal microscopy technique that allows us to monitor real-time cholesterol trafficking and the association of cholesterol-laden LDs with lysosome (lipophagy) in human granulosa cells.
{"title":"Real-Time Visualization of Cholesterol Trafficking in Human Granulosa Cells Using Confocal Live Cell Microscopy as a Tool to Study the Novel Role of Autophagy in Sex Steroid Synthesis.","authors":"Yashar Esmaeilian, Ozgur Oktem","doi":"10.1007/7651_2024_521","DOIUrl":"https://doi.org/10.1007/7651_2024_521","url":null,"abstract":"<p><p>Autophagy is an evolutionarily conserved process that aims to maintain the energy homeostasis of the cell by recycling long-lived proteins and organelles. We have very recently demonstrated that lipophagy, a special form of autophagy, mediates the association of the lipid droplets (LDs) with lysosomes to deliver the lipid cargo within the LDs to lysosomes for degradation in order to release free cholesterol required for steroid synthesis in human ovary and testis. In this chapter, we describe live cell confocal microscopy technique that allows us to monitor real-time cholesterol trafficking and the association of cholesterol-laden LDs with lysosome (lipophagy) in human granulosa cells.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}