Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer. The current standard for treating primary OSCC is surgical resection combined with radiotherapy and chemotherapy. Despite improved therapeutic strategies, OSCC has high rates of metastasis and mortality, with one in two patients dying of the disease. Patient-derived organoids have become promising cell culture systems for disease modeling and precision medicine. Here we describe the high-efficiency generation of organoids from OSCC patients, which can be maintained in the culture for the long term. We further provide protocols for characterizing OSCC organoids using histology and immunofluorescence staining.
{"title":"Establishment and Characterization of Patient-Derived Oral Cancer Organoids.","authors":"Nadja Harnischfeger, Lili Szabo, Kai Kretzschmar","doi":"10.1007/7651_2024_594","DOIUrl":"https://doi.org/10.1007/7651_2024_594","url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer. The current standard for treating primary OSCC is surgical resection combined with radiotherapy and chemotherapy. Despite improved therapeutic strategies, OSCC has high rates of metastasis and mortality, with one in two patients dying of the disease. Patient-derived organoids have become promising cell culture systems for disease modeling and precision medicine. Here we describe the high-efficiency generation of organoids from OSCC patients, which can be maintained in the culture for the long term. We further provide protocols for characterizing OSCC organoids using histology and immunofluorescence staining.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142950834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA. The aptamer was designed based on AURKA's structure and nucleic acid sequence, obtained from PDB RCSB. Using RNAfold and RNA composer, we predicted the aptamer's secondary and tertiary structures. Protein-aptamer binding was analyzed via HDOCK and HADDOCK, with 2D interactions visualized in LIGPLOT+ v1.4. Autodock 4 and NAMD 2.3 tools were used to conduct docking and MD simulation studies.
{"title":"In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein.","authors":"Haregewoin Bezu Woldekidan, Adugna Abdi Woldesemayat","doi":"10.1007/7651_2024_596","DOIUrl":"https://doi.org/10.1007/7651_2024_596","url":null,"abstract":"<p><p>While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA. The aptamer was designed based on AURKA's structure and nucleic acid sequence, obtained from PDB RCSB. Using RNAfold and RNA composer, we predicted the aptamer's secondary and tertiary structures. Protein-aptamer binding was analyzed via HDOCK and HADDOCK, with 2D interactions visualized in LIGPLOT+ v1.4. Autodock 4 and NAMD 2.3 tools were used to conduct docking and MD simulation studies.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142950961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Özüm Begüm Böke, Ezgi Bulut-Okumuş, Hazar Eren Soydan, Selinay Şenkal-Turhan, Ayşegül Doğan
The discovery of leucine-rich-containing G-protein-coupled receptor 5 (Lgr5) as an intestinal adult stem cell marker had blazed a trail in stem cell biology and laid the foundations of modern organoid technology. Up to date, several well-established intestinal organoid protocols have been reported in the literature from different sources, including adult and induced pluripotent stem cells. Here, we demonstrate a BALB/c mouse-derived intestinal organoid culture protocol, passaging, and cryopreservation procedures.
{"title":"Mouse Intestinal Organoid Culture Protocol.","authors":"Özüm Begüm Böke, Ezgi Bulut-Okumuş, Hazar Eren Soydan, Selinay Şenkal-Turhan, Ayşegül Doğan","doi":"10.1007/7651_2024_591","DOIUrl":"https://doi.org/10.1007/7651_2024_591","url":null,"abstract":"<p><p>The discovery of leucine-rich-containing G-protein-coupled receptor 5 (Lgr5) as an intestinal adult stem cell marker had blazed a trail in stem cell biology and laid the foundations of modern organoid technology. Up to date, several well-established intestinal organoid protocols have been reported in the literature from different sources, including adult and induced pluripotent stem cells. Here, we demonstrate a BALB/c mouse-derived intestinal organoid culture protocol, passaging, and cryopreservation procedures.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study describes an intramolecular quenching assay to evaluate gamma-secretase (GS) enzyme activity in human dermal cells. The method utilizes a fluorogenic peptide substrate, mimicking a fragment of amyloid precursor protein (APP), in which a quencher suppresses the fluorescence of a fluorophore until enzymatic cleavage occurs, resulting in a measurable increase in fluorescence. This real-time, direct measurement of GS activity allows for precise kinetic analysis using Michaelis-Menten modeling to define Kd and Vmax. The assay is designed to quantify GS activity in human dermal fibroblasts and keratinocytes, enabling comparison between samples derived from hidradenitis suppurativa (HS) patients and healthy controls, as well as investigating the effects of subunit knockdown, such as nicastrin, on GS function. The method offers several advantages, including simplicity, cost-effectiveness, and adaptability for high-throughput screening for GS enzyme inhibitors.
{"title":"Use of an Intramolecular Quenched Fluorescence (IQF) Cleavage Assay for Assessing Enzyme Kinetics of Gamma-Secretase in Human Skin Fibroblasts and Keratinocytes.","authors":"Beita Badiei, Luis A Garza","doi":"10.1007/7651_2024_587","DOIUrl":"https://doi.org/10.1007/7651_2024_587","url":null,"abstract":"<p><p>This study describes an intramolecular quenching assay to evaluate gamma-secretase (GS) enzyme activity in human dermal cells. The method utilizes a fluorogenic peptide substrate, mimicking a fragment of amyloid precursor protein (APP), in which a quencher suppresses the fluorescence of a fluorophore until enzymatic cleavage occurs, resulting in a measurable increase in fluorescence. This real-time, direct measurement of GS activity allows for precise kinetic analysis using Michaelis-Menten modeling to define Kd and Vmax. The assay is designed to quantify GS activity in human dermal fibroblasts and keratinocytes, enabling comparison between samples derived from hidradenitis suppurativa (HS) patients and healthy controls, as well as investigating the effects of subunit knockdown, such as nicastrin, on GS function. The method offers several advantages, including simplicity, cost-effectiveness, and adaptability for high-throughput screening for GS enzyme inhibitors.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Negative magnetophoresis is employed to levitate cells in a paramagnetic medium without the need for magnetic labeling, preserving their natural state and minimizing toxicity. The single-ring magnet configuration that provides an open space in the levitation chamber enhances culture accessibility and scalability, enabling the formation of millimeter-sized 3D structures through cellular self-assembly. This system provides a versatile and cost-effective approach for diverse applications, including tissue engineering and biofabrication. This protocol outlines a method for biofabrication and maintenance of 3D cellular structures using magnetic levitation with a ring magnet-based setup.
{"title":"Ring Magnet-Guided Magnetic Manipulation for Biofabrication of 3D Cellular Structures.","authors":"Muge Anil-Inevi, Engin Ozcivici","doi":"10.1007/7651_2024_597","DOIUrl":"https://doi.org/10.1007/7651_2024_597","url":null,"abstract":"<p><p>Negative magnetophoresis is employed to levitate cells in a paramagnetic medium without the need for magnetic labeling, preserving their natural state and minimizing toxicity. The single-ring magnet configuration that provides an open space in the levitation chamber enhances culture accessibility and scalability, enabling the formation of millimeter-sized 3D structures through cellular self-assembly. This system provides a versatile and cost-effective approach for diverse applications, including tissue engineering and biofabrication. This protocol outlines a method for biofabrication and maintenance of 3D cellular structures using magnetic levitation with a ring magnet-based setup.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peyda Korhan, Ezgi Bağırsakçı, Yasemin Öztemur Islakoğlu, Neşe Atabey
In this chapter, we present a detailed protocol for establishing a three-dimensional (3D) multicellular tumor spheroids (MCTSs) model to simulate the tumor microenvironment (ME) associated with metabolic dysfunction-associated steatotic liver disease (MASLD) for the study of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) cell aggressiveness, growth, and metastasis potential. The MASLD microenvironment (MASLD-ME) is recreated by embedding hepatic stellate cells in a collagen I matrix within a Boyden chamber system. The metabolic medium mimics MASLD conditions, enriched with high glucose, fructose, insulin, and fatty acids, to simulate metabolic stresses associated with the disease.In the protocol, cancer cells are loaded in the upper compartment to analyze their migration toward the MASLD-ME, thereby facilitating studies on cancer cell invasiveness and metastatic capacity. This method offers an adaptable, reproducible model to research disease progression and investigate therapeutic interventions, contributing to preclinical research on MASLD-related liver cancer pathophysiology and potential drug responses.
{"title":"3D Cell Culture Models as a Platform for Studying Tumor Progression, Testing Treatment Responses, and Discovering Biomarkers.","authors":"Peyda Korhan, Ezgi Bağırsakçı, Yasemin Öztemur Islakoğlu, Neşe Atabey","doi":"10.1007/7651_2024_595","DOIUrl":"https://doi.org/10.1007/7651_2024_595","url":null,"abstract":"<p><p>In this chapter, we present a detailed protocol for establishing a three-dimensional (3D) multicellular tumor spheroids (MCTSs) model to simulate the tumor microenvironment (ME) associated with metabolic dysfunction-associated steatotic liver disease (MASLD) for the study of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) cell aggressiveness, growth, and metastasis potential. The MASLD microenvironment (MASLD-ME) is recreated by embedding hepatic stellate cells in a collagen I matrix within a Boyden chamber system. The metabolic medium mimics MASLD conditions, enriched with high glucose, fructose, insulin, and fatty acids, to simulate metabolic stresses associated with the disease.In the protocol, cancer cells are loaded in the upper compartment to analyze their migration toward the MASLD-ME, thereby facilitating studies on cancer cell invasiveness and metastatic capacity. This method offers an adaptable, reproducible model to research disease progression and investigate therapeutic interventions, contributing to preclinical research on MASLD-related liver cancer pathophysiology and potential drug responses.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1007/978-1-0716-4248-1_9
Kenneth R Lyon, Tatsuya Morisaki, Timothy J Stasevich
Recent advances in fluorescence microscopy have now made it possible to measure the translation dynamics of individual RNA in living cells and in multiple colors. Here we describe a protocol that exploits these recent advances to simultaneously image the translation of two open reading frames encoded on a single reporter RNA yet frameshifted with respect to each other. This enables precise measurements of frameshifting dynamics and efficiency from specific frameshift stimulatory sequences, all with single-RNA precision.
{"title":"Imaging and Quantifying Ribosomal Frameshifting Dynamics with Single-RNA Precision in Live Cells.","authors":"Kenneth R Lyon, Tatsuya Morisaki, Timothy J Stasevich","doi":"10.1007/978-1-0716-4248-1_9","DOIUrl":"10.1007/978-1-0716-4248-1_9","url":null,"abstract":"<p><p>Recent advances in fluorescence microscopy have now made it possible to measure the translation dynamics of individual RNA in living cells and in multiple colors. Here we describe a protocol that exploits these recent advances to simultaneously image the translation of two open reading frames encoded on a single reporter RNA yet frameshifted with respect to each other. This enables precise measurements of frameshifting dynamics and efficiency from specific frameshift stimulatory sequences, all with single-RNA precision.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2875 ","pages":"99-110"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1007/978-1-0716-4220-7_14
Niels N Oehlmann, Johannes G Rebelein
Protein engineering is an established method for tailoring enzymatic reactivity. A commonly used method is directed evolution, where the mutagenesis and natural selection process is mimicked and accelerated in the laboratory. Here, we describe a reliable method for generating saturation mutagenesis libraries by Golden Gate cloning in a broad host range plasmid containing the pBBR1 replicon. The applicability is demonstrated by generating a mutant library of the iron nitrogenase gene cluster (anfHDGK) of Rhodobacter capsulatus, which is subsequently screened for the improved formation of molecular hydrogen.
{"title":"Generating Site Saturation Mutagenesis Libraries and Transferring Them to Broad Host-Range Plasmids Using Golden Gate Cloning.","authors":"Niels N Oehlmann, Johannes G Rebelein","doi":"10.1007/978-1-0716-4220-7_14","DOIUrl":"10.1007/978-1-0716-4220-7_14","url":null,"abstract":"<p><p>Protein engineering is an established method for tailoring enzymatic reactivity. A commonly used method is directed evolution, where the mutagenesis and natural selection process is mimicked and accelerated in the laboratory. Here, we describe a reliable method for generating saturation mutagenesis libraries by Golden Gate cloning in a broad host range plasmid containing the pBBR1 replicon. The applicability is demonstrated by generating a mutant library of the iron nitrogenase gene cluster (anfHDGK) of Rhodobacter capsulatus, which is subsequently screened for the improved formation of molecular hydrogen.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2850 ","pages":"251-264"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1007/978-1-0716-4220-7_25
Peter Emelin, Sarah Abdul-Mawla, Felix Willmund
Modern synthetic biology requires fast and efficient cloning strategies for the assembly of new transcription units or entire pathways. Modular Cloning (MoClo) is a standardized synthetic biology workflow, which has tremendously simplified the assembly of genetic elements for transgene expression. MoClo is based on Golden Gate Assembly and allows to combine genetic elements of a library through a hierarchical syntax-driven pipeline. Here we describe the assembly of a genetic cassette for transgene expression in the single-celled model alga Chlamydomonas reinhardtii.
现代合成生物学需要快速高效的克隆策略来组装新的转录单元或整个通路。模块化克隆(MoClo)是一种标准化的合成生物学工作流程,极大地简化了转基因表达遗传元件的组装。MoClo 以 Golden Gate Assembly 为基础,允许通过分层语法驱动的管道组合基因库中的遗传元件。在这里,我们描述了在单细胞模式藻类衣藻中组装转基因表达基因盒的过程。
{"title":"Golden Gate Cloning for the Standardized Assembly of Gene Elements with Modular Cloning in Chlamydomonas.","authors":"Peter Emelin, Sarah Abdul-Mawla, Felix Willmund","doi":"10.1007/978-1-0716-4220-7_25","DOIUrl":"10.1007/978-1-0716-4220-7_25","url":null,"abstract":"<p><p>Modern synthetic biology requires fast and efficient cloning strategies for the assembly of new transcription units or entire pathways. Modular Cloning (MoClo) is a standardized synthetic biology workflow, which has tremendously simplified the assembly of genetic elements for transgene expression. MoClo is based on Golden Gate Assembly and allows to combine genetic elements of a library through a hierarchical syntax-driven pipeline. Here we describe the assembly of a genetic cassette for transgene expression in the single-celled model alga Chlamydomonas reinhardtii.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2850 ","pages":"451-465"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1007/978-1-0716-4220-7_16
Selina Rust, Lennart Randau
Prokaryotes use CRISPR-Cas systems to interfere with viruses and other mobile genetic elements. CRISPR arrays comprise repeated DNA elements and spacer sequences that can be engineered for custom target sites. These arrays are transcribed into precursor CRISPR RNAs (pre-crRNAs) that undergo maturation steps to form individual CRISPR RNAs (crRNAs). Each crRNA contains a single spacer that identifies the target cleavage site for a large variety of Cas protein effectors. Precise manipulation of spacer sequences within CRISPR arrays is crucial for advancing the functionality of CRISPR-based technologies. Here, we describe a protocol for the design and creation of a minimal, plasmid-based CRISPR array to enable the expression of specific, synthetic crRNAs. Plasmids contain entry spacer sequences with two type IIS restriction sites and Golden Gate cloning enables the efficient exchange of these spacer sequences. Factors that influence the compatibility of the CRISPR arrays with native or recombinant Cas proteins are discussed.
原核生物利用 CRISPR-Cas 系统干扰病毒和其他移动遗传因子。CRISPR 阵列由重复的 DNA 元件和间隔序列组成,可针对定制的目标位点进行设计。这些阵列转录为前体 CRISPR RNA(pre-crRNA),经过成熟步骤形成单个 CRISPR RNA(crRNA)。每个 crRNA 都包含一个单个间隔物,该间隔物确定了大量 Cas 蛋白效应物的目标裂解位点。精确操作 CRISPR 阵列中的间隔序列对于提高基于 CRISPR 技术的功能至关重要。在这里,我们介绍了一种设计和创建基于质粒的最小 CRISPR 阵列的方案,以实现特异性合成 crRNA 的表达。质粒含有带有两个 IIS 限制位点的入口间隔序列,而黄金门克隆能有效地交换这些间隔序列。本文讨论了影响 CRISPR 阵列与本地或重组 Cas 蛋白兼容性的因素。
{"title":"Golden Gate Cloning of Synthetic CRISPR RNA Spacer Sequences.","authors":"Selina Rust, Lennart Randau","doi":"10.1007/978-1-0716-4220-7_16","DOIUrl":"10.1007/978-1-0716-4220-7_16","url":null,"abstract":"<p><p>Prokaryotes use CRISPR-Cas systems to interfere with viruses and other mobile genetic elements. CRISPR arrays comprise repeated DNA elements and spacer sequences that can be engineered for custom target sites. These arrays are transcribed into precursor CRISPR RNAs (pre-crRNAs) that undergo maturation steps to form individual CRISPR RNAs (crRNAs). Each crRNA contains a single spacer that identifies the target cleavage site for a large variety of Cas protein effectors. Precise manipulation of spacer sequences within CRISPR arrays is crucial for advancing the functionality of CRISPR-based technologies. Here, we describe a protocol for the design and creation of a minimal, plasmid-based CRISPR array to enable the expression of specific, synthetic crRNAs. Plasmids contain entry spacer sequences with two type IIS restriction sites and Golden Gate cloning enables the efficient exchange of these spacer sequences. Factors that influence the compatibility of the CRISPR arrays with native or recombinant Cas proteins are discussed.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2850 ","pages":"297-306"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}