Pub Date : 2023-12-20Epub Date: 2023-11-10DOI: 10.1128/mmbr.00063-23
Sebastian Dan Burz, Senka Causevic, Alma Dal Co, Marija Dmitrijeva, Philipp Engel, Daniel Garrido-Sanz, Gilbert Greub, Siegfried Hapfelmeier, Wolf-Dietrich Hardt, Vassily Hatzimanikatis, Clara Margot Heiman, Mathias Klaus-Maria Herzog, Alyson Hockenberry, Christoph Keel, Andreas Keppler, Soon-Jae Lee, Julien Luneau, Lukas Malfertheiner, Sara Mitri, Bidong Ngyuen, Omid Oftadeh, Alan R Pacheco, François Peaudecerf, Grégory Resch, Hans-Joachim Ruscheweyh, Asli Sahin, Ian R Sanders, Emma Slack, Shinichi Sunagawa, Janko Tackmann, Robin Tecon, Giovanni Stefano Ugolini, Jordan Vacheron, Jan Roelof van der Meer, Evangelia Vayena, Pascale Vonaesch, Julia A Vorholt
SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.
{"title":"From microbiome composition to functional engineering, one step at a time.","authors":"Sebastian Dan Burz, Senka Causevic, Alma Dal Co, Marija Dmitrijeva, Philipp Engel, Daniel Garrido-Sanz, Gilbert Greub, Siegfried Hapfelmeier, Wolf-Dietrich Hardt, Vassily Hatzimanikatis, Clara Margot Heiman, Mathias Klaus-Maria Herzog, Alyson Hockenberry, Christoph Keel, Andreas Keppler, Soon-Jae Lee, Julien Luneau, Lukas Malfertheiner, Sara Mitri, Bidong Ngyuen, Omid Oftadeh, Alan R Pacheco, François Peaudecerf, Grégory Resch, Hans-Joachim Ruscheweyh, Asli Sahin, Ian R Sanders, Emma Slack, Shinichi Sunagawa, Janko Tackmann, Robin Tecon, Giovanni Stefano Ugolini, Jordan Vacheron, Jan Roelof van der Meer, Evangelia Vayena, Pascale Vonaesch, Julia A Vorholt","doi":"10.1128/mmbr.00063-23","DOIUrl":"10.1128/mmbr.00063-23","url":null,"abstract":"<p><p>SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N<i>+</i>1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0006323"},"PeriodicalIF":8.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72014697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto Docampo1Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA, Corrella S. Detweiler
Microbiology and Molecular Biology Reviews, Ahead of Print.
微生物学与分子生物学评论》,提前出版。
{"title":"Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes","authors":"Roberto Docampo1Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA, Corrella S. Detweiler","doi":"10.1128/mmbr.00042-23","DOIUrl":"https://doi.org/10.1128/mmbr.00042-23","url":null,"abstract":"Microbiology and Molecular Biology Reviews, Ahead of Print. <br/>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"73 1","pages":""},"PeriodicalIF":12.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138680034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Epub Date: 2023-06-26DOI: 10.1128/mmbr.00198-22
Nick D Pokorzynski, Eduardo A Groisman
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
{"title":"How Bacterial Pathogens Coordinate Appetite with Virulence.","authors":"Nick D Pokorzynski, Eduardo A Groisman","doi":"10.1128/mmbr.00198-22","DOIUrl":"10.1128/mmbr.00198-22","url":null,"abstract":"<p><p>Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on <i>Salmonella enterica</i> serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0019822"},"PeriodicalIF":8.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Epub Date: 2023-06-27DOI: 10.1128/mmbr.00212-22
Angela Sessitsch, Steve Wakelin, Michael Schloter, Emmanuelle Maguin, Tomislav Cernava, Marie-Christine Champomier-Verges, Trevor C Charles, Paul D Cotter, Ilario Ferrocino, Aicha Kriaa, Pedro Lebre, Don Cowan, Lene Lange, Seghal Kiran, Lidia Markiewicz, Annelein Meisner, Marta Olivares, Inga Sarand, Bettina Schelkle, Joseph Selvin, Hauke Smidt, Leo van Overbeek, Gabriele Berg, Luca Cocolin, Yolanda Sanz, Wilson Lemos Fernandes, S J Liu, Matthew Ryan, Brajesh Singh, Tanja Kostic
Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.
{"title":"Microbiome Interconnectedness throughout Environments with Major Consequences for Healthy People and a Healthy Planet.","authors":"Angela Sessitsch, Steve Wakelin, Michael Schloter, Emmanuelle Maguin, Tomislav Cernava, Marie-Christine Champomier-Verges, Trevor C Charles, Paul D Cotter, Ilario Ferrocino, Aicha Kriaa, Pedro Lebre, Don Cowan, Lene Lange, Seghal Kiran, Lidia Markiewicz, Annelein Meisner, Marta Olivares, Inga Sarand, Bettina Schelkle, Joseph Selvin, Hauke Smidt, Leo van Overbeek, Gabriele Berg, Luca Cocolin, Yolanda Sanz, Wilson Lemos Fernandes, S J Liu, Matthew Ryan, Brajesh Singh, Tanja Kostic","doi":"10.1128/mmbr.00212-22","DOIUrl":"10.1128/mmbr.00212-22","url":null,"abstract":"<p><p>Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0021222"},"PeriodicalIF":8.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9680783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Epub Date: 2023-06-26DOI: 10.1128/mmbr.00034-23
Elizabeth A Rucks
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
{"title":"Type III Secretion in <i>Chlamydia</i>.","authors":"Elizabeth A Rucks","doi":"10.1128/mmbr.00034-23","DOIUrl":"10.1128/mmbr.00034-23","url":null,"abstract":"<p><p>Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family <i>Chlamydiaceae</i> have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0003423"},"PeriodicalIF":8.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10225444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Epub Date: 2023-07-06DOI: 10.1128/mmbr.00022-21
Duur K Aanen, Anouk van 't Padje, Benjamin Auxier
This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.
{"title":"Longevity of Fungal Mycelia and Nuclear Quality Checks: a New Hypothesis for the Role of Clamp Connections in Dikaryons.","authors":"Duur K Aanen, Anouk van 't Padje, Benjamin Auxier","doi":"10.1128/mmbr.00022-21","DOIUrl":"10.1128/mmbr.00022-21","url":null,"abstract":"<p><p>This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0002221"},"PeriodicalIF":8.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Epub Date: 2023-06-24DOI: 10.1128/mmbr.00116-22
Ann M Arvin
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.
{"title":"Creating the \"Dew Drop on a Rose Petal\": the Molecular Pathogenesis of Varicella-Zoster Virus Skin Lesions.","authors":"Ann M Arvin","doi":"10.1128/mmbr.00116-22","DOIUrl":"10.1128/mmbr.00116-22","url":null,"abstract":"<p><p>Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0011622"},"PeriodicalIF":8.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9739486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26Epub Date: 2023-07-11DOI: 10.1128/mmbr.00045-22
Alan S Cross
Infections with antimicrobial-resistant (AMR) bacteria pose an increasing threat to the ability to perform surgical procedures, organ transplantation, and treat cancer among many other medical conditions. There are few new antimicrobials in the development pipeline. Vaccines against AMR Gram-negative bacteria may reduce the use of antimicrobials and prevent bacterial transmission. This review traces the origins of lipopolysaccharide (LPS)-based vaccines against Gram-negative bacteria, the role of O polysaccharides and LPS core regions as potential vaccine targets, the development of new vaccine technologies, and their application to vaccines in current development.
{"title":"Hit 'em Where It Hurts: Gram-Negative Bacterial Lipopolysaccharide as a Vaccine Target.","authors":"Alan S Cross","doi":"10.1128/mmbr.00045-22","DOIUrl":"10.1128/mmbr.00045-22","url":null,"abstract":"<p><p>Infections with antimicrobial-resistant (AMR) bacteria pose an increasing threat to the ability to perform surgical procedures, organ transplantation, and treat cancer among many other medical conditions. There are few new antimicrobials in the development pipeline. Vaccines against AMR Gram-negative bacteria may reduce the use of antimicrobials and prevent bacterial transmission. This review traces the origins of lipopolysaccharide (LPS)-based vaccines against Gram-negative bacteria, the role of O polysaccharides and LPS core regions as potential vaccine targets, the development of new vaccine technologies, and their application to vaccines in current development.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0004522"},"PeriodicalIF":8.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9768247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-28Epub Date: 2023-05-22DOI: 10.1128/mmbr.00078-22
Michael M Cox, Myron F Goodman, James L Keck, Antoine van Oijen, Susan T Lovett, Andrew Robinson
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
当复制叉遇到模板病变时,一种结果是病变跳过,即停滞的 DNA 聚合酶瞬时停滞、脱离,然后重新顺流启动,将病变留在复制后间隙中。自复制后缺口被发现以来的 60 年间,尽管人们对其给予了极大关注,但复制后缺口的产生和修复机制仍然非常神秘。这篇综述的重点是大肠杆菌中复制后间隙的产生和修复。文中介绍了有关间隙产生的频率和机制的新信息,以及解决这些问题的新机制。在少数情况下,复制后间隙的形成似乎是在特定的基因组位置编程形成的,它们是由新的基因组元素触发的。
{"title":"Generation and Repair of Postreplication Gaps in Escherichia coli.","authors":"Michael M Cox, Myron F Goodman, James L Keck, Antoine van Oijen, Susan T Lovett, Andrew Robinson","doi":"10.1128/mmbr.00078-22","DOIUrl":"10.1128/mmbr.00078-22","url":null,"abstract":"<p><p>When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"87 2","pages":"e0007822"},"PeriodicalIF":12.9,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9709933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-28Epub Date: 2023-03-30DOI: 10.1128/mmbr.00124-22
Stephen E Noell, Ferdi L Hellweger, Ben Temperton, Stephen J Giovannoni
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
{"title":"A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments.","authors":"Stephen E Noell, Ferdi L Hellweger, Ben Temperton, Stephen J Giovannoni","doi":"10.1128/mmbr.00124-22","DOIUrl":"10.1128/mmbr.00124-22","url":null,"abstract":"<p><p>In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"87 2","pages":"e0012422"},"PeriodicalIF":12.9,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9708853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}