首页 > 最新文献

Microbiology and Molecular Biology Reviews最新文献

英文 中文
Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. 纤毛运输复合蛋白核功能的进化轨迹。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-07-12 DOI: 10.1128/mmbr.00006-24
Alexander Ewerling, Helen Louise May-Simera

SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.

摘要纤毛和细胞核是真核生物最后一个共同祖先的两个决定性特征。在真核生物进化的早期,这些结构是通过一个共同的膜衣祖先--原衣壳蛋白--的多样化进化而来的。在纤毛中,这种蛋白质复合体的后代进化成了纤毛内运输复合体和 BBSome 的一部分,而在细胞核中,则是通过在核膜上招募类似原衣壳的蛋白质来形成选择性核孔复合体,从而获得了选择性。最近的研究表明,越来越多的蛋白质在各自细胞器的蛋白质组之间共享,目前还不清楚纤毛转运蛋白如何获得核功能,反之亦然。纤毛蛋白的核功能在今天仍然可以观察到,并且仍然与了解纤毛疾病背后的疾病机制相关。在这项工作中,我们回顾了纤毛和细胞核及其各自定义蛋白的进化史,并将当前的知识整合到早期真核生物进化的理论中。我们假设了这两个区室共同进化的情景,它符合当前的真核生物进化模型,解释了纤毛蛋白和核蛋白如何获得其双重功能。
{"title":"Evolutionary trajectory for nuclear functions of ciliary transport complex proteins.","authors":"Alexander Ewerling, Helen Louise May-Simera","doi":"10.1128/mmbr.00006-24","DOIUrl":"10.1128/mmbr.00006-24","url":null,"abstract":"<p><p>SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and <i>vice versa</i>. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0000624"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane and organelle rearrangement during ascospore formation in budding yeast. 芽殖酵母形成腹孢子过程中的细胞膜和细胞器重排。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-06-20 DOI: 10.1128/mmbr.00013-24
Aaron M Neiman

SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.

摘要在子囊真菌中,有性孢子(称为子囊孢子)是在减数分裂后形成的。子囊孢子的形成是一种不寻常的细胞分裂,在这种分裂过程中,子细胞在母细胞的细胞质中重新生成,这些膜包裹着减数分裂产生的单倍体染色体组。本综述介绍了这些膜在出芽酵母(Saccharomyces cerevisiae)中产生、扩展和闭合的分子过程。文中详细介绍了在这一过程中,我们对基因表达调控和不同膜结合细胞器动态行为理解的最新进展。虽然我们对其他系统中的子囊孢子形成了解较少,但与远亲裂殖酵母的比较表明,整个子囊菌中的分子事件大致相似。
{"title":"Membrane and organelle rearrangement during ascospore formation in budding yeast.","authors":"Aaron M Neiman","doi":"10.1128/mmbr.00013-24","DOIUrl":"10.1128/mmbr.00013-24","url":null,"abstract":"<p><p>SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by <i>de novo</i> generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, <i>Saccharomyces cerevisiae</i>. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001324"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy. 波林顿类超级病毒群:进化、分子生物学和分类学。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-07-18 DOI: 10.1128/mmbr.00086-23
Eugene V Koonin, Matthias G Fischer, Jens H Kuhn, Mart Krupovic

SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom Bamfordvirae. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class Polintoviricetes) in the phylum Preplasmiviricota. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (Maveriviricetes), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class Tectiliviricetes) to the phylum Nucleocytoviricota that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within Polintoviricetes. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups Polintoviricetes, PLVs (new class 'Aquintoviricetes'), and virophages (renamed class 'Virophaviricetes') together with Adenoviridae (new class 'Pharingeaviricetes') in a preplasmiviricot subphylum 'Polisuviricotina' sister to a subphylum including Tectiliviricetes ('Prepoliviricotina').

摘要多核转座子是一种 15-20 kb 长的自合成转座子,广泛存在于真核生物,特别是原生生物的基因组中。除了一个转座酶和一个蛋白先导 DNA 聚合酶之外,多核苷酸还编码主要和次要果冻状卷曲荚膜蛋白、DNA 包装 ATP 酶的同源物,以及参与 Bamfordvirae 王国中多种真核病毒荚膜成熟的蛋白酶。鉴于这些结构蛋白和形态发生蛋白在多核病毒中的保守性,预测这些元素会在转座子和病毒生活方式之间交替出现,尽管迄今为止尚未检测到病毒,但这些元素被归类为前浆细胞病毒门中的病毒(Polintoviricetes 类)。与脊髓灰质炎病毒有关的还有脊椎动物腺病毒;在各种环境中发现的或整合到各种原生动物基因组中的未分类的类脊髓灰质炎病毒(Polinton-like viruses,PLVs);病毒噬菌体(Maveriviricetes),它们是包括原生动物宿主和巨型病毒在内的三方超寄生系统的一部分;以及无囊衍生物,如真菌的细胞质线性 DNA 质粒和跨病毒子。系统发生组学分析表明,波林顿类超群病毒将细菌ectivirids(前浆液病毒纲Tectiliviricetes)与包括大型和巨型真核DNA病毒在内的核细胞病毒科连接起来。通过对类脊髓灰质炎病毒编码的蛋白质进行结构比较分析,发现了以前未曾发现的功能域,如末端蛋白和与 DNA 聚合酶处理过程有关的独特蛋白酶,并澄清了脊髓灰质炎病毒门内的进化关系。在这里,我们利用这些对类似于 Polinton-like 超群的进化的洞察力,发展出一种修正的巨分类法,将 Polintoviricetes、PLVs(新类 "Aquintoviricetes")、virophages(重命名为 "Aquintoviricetes")和virophages(重命名为 "Aquintoviricetes")进行分类、Polintoviricetes)、PLVs(新类 "Aquintoviricetes")、virophages(更名为 "Virophaviricetes "类)以及腺病毒科(新类 "Pharingeaviricetes")归入前浆膜病毒亚门 "Polisuviricotina",与包括Tectiliviricetes在内的亚门("Prepoliviricotina")为姐妹亚门。
{"title":"The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy.","authors":"Eugene V Koonin, Matthias G Fischer, Jens H Kuhn, Mart Krupovic","doi":"10.1128/mmbr.00086-23","DOIUrl":"10.1128/mmbr.00086-23","url":null,"abstract":"<p><p>SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom <i>Bamfordvirae</i>. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class <i>Polintoviricetes</i>) in the phylum <i>Preplasmiviricota</i>. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (<i>Maveriviricetes</i>), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class <i>Tectiliviricetes</i>) to the phylum <i>Nucleocytoviricota</i> that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within <i>Polintoviricetes</i>. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups <i>Polintoviricetes</i>, PLVs (new class '<i>Aquintoviricetes</i>'), and virophages (renamed class '<i>Virophaviricetes</i>') together with <i>Adenoviridae</i> (new class '<i>Pharingeaviricetes</i>') in a preplasmiviricot subphylum '<i>Polisuviricotina</i>' sister to a subphylum including <i>Tectiliviricetes</i> ('<i>Prepoliviricotina</i>').</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0008623"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. 军团菌的小分子通讯:自身诱导剂和一氧化氮信号的来龙去脉。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-08-20 DOI: 10.1128/mmbr.00097-23
Sarah Michaelis, Laura Gomez-Valero, Tong Chen, Camille Schmid, Carmen Buchrieser, Hubert Hilbi

SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.

摘要 嗜肺军团菌是一种革兰氏阴性环境细菌,它以浮游形式存活,在生物膜上定植,并感染原生动物。吸入受军团菌污染的气溶胶后,这种机会性病原体会在肺泡巨噬细胞内复制并破坏巨噬细胞,从而引起严重的肺炎,即军团菌病。革兰氏阴性细菌利用低分子量有机化合物和无机气体一氧化氮(NO)进行细胞间通讯。嗜肺军团菌能产生、分泌和检测α-羟酮化合物军团菌自动诱导剂-1(LAI-1,3-羟基十五烷-4-酮)。LAI-1 由嗜肺军团菌在外膜囊泡中分泌,不仅能促进细菌之间的交流,还能引发真核细胞的反应。嗜肺菌通过三种不同的受体检测 NO,并通过挥发性分子将信号转导为细胞内第二信使环二鸟苷酸单磷酸的波动。LAI-1 和 NO 信号通路通过多效应转录因子 LvbR 相连。在这篇综述中,我们总结了目前有关军团菌通过 LAI-1 和 NO 进行细菌间和王国间信号传递的知识。
{"title":"Small molecule communication of <i>Legionella</i>: the ins and outs of autoinducer and nitric oxide signaling.","authors":"Sarah Michaelis, Laura Gomez-Valero, Tong Chen, Camille Schmid, Carmen Buchrieser, Hubert Hilbi","doi":"10.1128/mmbr.00097-23","DOIUrl":"10.1128/mmbr.00097-23","url":null,"abstract":"<p><p>SUMMARY<i>Legionella pneumophila</i> is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of <i>Legionella</i>-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. <i>L. pneumophila</i> produces, secretes, and detects the α-hydroxyketone compound <i>Legionella</i> autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by <i>L. pneumophila</i> in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. <i>L. pneumophila</i> detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked <i>via</i> the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by <i>Legionella</i> species.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0009723"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of action of microbicides commonly used in infection prevention and control. 预防和控制感染常用杀微生物剂的作用机制。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-07-03 DOI: 10.1128/mmbr.00205-22
Charles P Gerba, Stephanie Boone, Raymond W Nims, Jean-Yves Maillard, Syed A Sattar, Joseph R Rubino, Julie McKinney, M Khalid Ijaz

SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.

摘要 了解常用化学杀微生物剂如何影响病原微生物对于杀微生物剂的配制非常重要。本综述重点介绍常用于预防和控制感染的化学杀微生物剂的作用机制。与抗生素典型的特定部位作用模式不同,杀微生物剂通常通过多个靶点发挥作用,对微生物造成快速和不可逆的破坏。就病毒而言,包膜或蛋白囊通常是主要的结构目标,导致包膜完整性丧失或蛋白囊中的蛋白质变性,使宿主细胞受体的受体结合域丧失,和/或其他病毒蛋白或核酸分解。不过,对于某些杀病毒剂来说,核酸可能是一个重要的作用部位。对蛋白质或核酸造成主要破坏的区域是特定部位,可能因病毒类型而异。由于细菌和真菌的复杂性和新陈代谢更强,因此它们的目标更多。脂质成分的溶解和参与养分运输的酶的变性可能会对微生物造成快速和不可逆的破坏。配制可攻击微生物多个部位的杀微生物活性物质,或控制 pH 值、添加防腐剂或增效剂等,可增加对病原体的作用范围,并减少对目标病原体产生杀微生物活性所需的浓度和时间。
{"title":"Mechanisms of action of microbicides commonly used in infection prevention and control.","authors":"Charles P Gerba, Stephanie Boone, Raymond W Nims, Jean-Yves Maillard, Syed A Sattar, Joseph R Rubino, Julie McKinney, M Khalid Ijaz","doi":"10.1128/mmbr.00205-22","DOIUrl":"10.1128/mmbr.00205-22","url":null,"abstract":"<p><p>SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0020522"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms. 深入探讨单细胞病原微生物中 EV 的多方面作用。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-06-13 DOI: 10.1128/mmbr.00037-24
Anna Sophia Feix, Emily Z Tabaie, Aarshi N Singh, Nathan J Wittenberg, Emma H Wilson, Anja Joachim

SUMMARYExtracellular vesicles (EVs) have been recognized throughout scientific communities as potential vehicles of intercellular communication in both eukaryotes and prokaryotes, thereby influencing various physiological and pathological functions of both parent and recipient cells. This review provides an in-depth exploration of the multifaceted roles of EVs in the context of bacteria and protozoan parasite EVs, shedding light on their contributions to physiological processes and disease pathogenesis. These studies highlight EVs as a conserved mechanism of cellular communication, which may lead us to important breakthroughs in our understanding of infection, mechanisms of pathogenesis, and as indicators of disease. Furthermore, EVs are involved in host-microbe interactions, offering insights into the strategies employed by bacteria and protozoan parasites to modulate host responses, evade the immune system, and establish infections.

摘要细胞外囊泡(EVs)已被科学界公认为真核生物和原核生物细胞间通信的潜在载体,从而影响母细胞和受体细胞的各种生理和病理功能。本综述以细菌和原生动物寄生虫 EVs 为背景,深入探讨了 EVs 的多方面作用,揭示了 EVs 对生理过程和疾病发病机制的贡献。这些研究强调,EVs 是一种保守的细胞通讯机制,可能会引导我们在理解感染、致病机制和疾病指标方面取得重要突破。此外,EVs 还参与了宿主与微生物之间的相互作用,让我们了解了细菌和原生动物寄生虫为调节宿主反应、逃避免疫系统和建立感染所采用的策略。
{"title":"An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms.","authors":"Anna Sophia Feix, Emily Z Tabaie, Aarshi N Singh, Nathan J Wittenberg, Emma H Wilson, Anja Joachim","doi":"10.1128/mmbr.00037-24","DOIUrl":"10.1128/mmbr.00037-24","url":null,"abstract":"<p><p>SUMMARYExtracellular vesicles (EVs) have been recognized throughout scientific communities as potential vehicles of intercellular communication in both eukaryotes and prokaryotes, thereby influencing various physiological and pathological functions of both parent and recipient cells. This review provides an in-depth exploration of the multifaceted roles of EVs in the context of bacteria and protozoan parasite EVs, shedding light on their contributions to physiological processes and disease pathogenesis. These studies highlight EVs as a conserved mechanism of cellular communication, which may lead us to important breakthroughs in our understanding of infection, mechanisms of pathogenesis, and as indicators of disease. Furthermore, EVs are involved in host-microbe interactions, offering insights into the strategies employed by bacteria and protozoan parasites to modulate host responses, evade the immune system, and establish infections.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0003724"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. 载人航天微生物学:微生物对影响健康和栖息地可持续性的机械力的反应。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-08-19 DOI: 10.1128/mmbr.00144-23
Cheryl A Nickerson, Robert J C McLean, Jennifer Barrila, Jiseon Yang, Starla G Thornhill, Laura L Banken, D Marshall Porterfield, George Poste, Neal R Pellis, C Mark Ott

SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.

摘要 通过研究微生物对极端环境的反应,加深了对微生物动态适应可塑性的了解。太空飞行研究平台为研究微生物在新的极端适应模式下的特征提供了一个独特的机会,包括持续暴露在重力减弱和相关的低流体剪切力条件下。在这些条件下,会出现意想不到的微生物反应,包括毒力、抗生素和抗应激性、生物膜形成、新陈代谢、运动和基因表达等方面的改变,而这些改变是传统实验方法无法观察到的。在此,我们从微生物和宿主-微生物的角度回顾了调节微生物对太空飞行和太空飞行模拟环境的反应的生物和物理机制,这些机制与人类健康和栖息地的可持续发展息息相关。我们重点介绍了用于太空飞行微生物学实验的仪器和技术、其局限性以及开展下一代研究所需的进步。由于太空飞行实验相对罕见,我们讨论了模拟微生物对太空飞行中重力降低的反应的地面模拟物,包括减少流体在细胞表面流动的机械力的模拟物,这些模拟物也模拟了微生物在陆地生命周期中遇到的条件。随着传统宇航员执行航天飞行任务时间的延长,以及商业航天计划派遣有潜在健康问题的民用机组人员,微生物将继续在健康和栖息地可持续性方面发挥越来越关键的作用,从而定义了职业健康的一个新维度。微生物在航天环境中的适应、生存和进化能力对未来的人类航天事业非常重要,并为创新性的生物和技术进步提供了机会,从而造福于地球上的生命。
{"title":"Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.","authors":"Cheryl A Nickerson, Robert J C McLean, Jennifer Barrila, Jiseon Yang, Starla G Thornhill, Laura L Banken, D Marshall Porterfield, George Poste, Neal R Pellis, C Mark Ott","doi":"10.1128/mmbr.00144-23","DOIUrl":"10.1128/mmbr.00144-23","url":null,"abstract":"<p><p>SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0014423"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems. 从病原体、免疫细胞和全身系统的角度看真菌感染中的代谢平衡。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-09-04 DOI: 10.1128/mmbr.00171-22
Harshini Weerasinghe, Helen Stölting, Adam J Rose, Ana Traven

SUMMARYThe ability to overcome metabolic stress is a major determinant of outcomes during infections. Pathogens face nutrient and oxygen deprivation in host niches and during their encounter with immune cells. Immune cells require metabolic adaptations for producing antimicrobial compounds and mounting antifungal inflammation. Infection also triggers systemic changes in organ metabolism and energy expenditure that range from an enhanced metabolism to produce energy for a robust immune response to reduced metabolism as infection progresses, which coincides with immune and organ dysfunction. Competition for energy and nutrients between hosts and pathogens means that successful survival and recovery from an infection require a balance between elimination of the pathogen by the immune systems (resistance), and doing so with minimal damage to host tissues and organs (tolerance). Here, we discuss our current knowledge of pathogen, immune cell and systemic metabolism in fungal infections, and the impact of metabolic disorders, such as obesity and diabetes. We put forward the idea that, while our knowledge of the use of metabolic regulation for fungal proliferation and antifungal immune responses (i.e., resistance) has been growing over the years, we also need to study the metabolic mechanisms that control tolerance of fungal pathogens. A comprehensive understanding of how to balance resistance and tolerance by metabolic interventions may provide insights into therapeutic strategies that could be used adjunctly with antifungal drugs to improve patient outcomes.

摘要克服代谢压力的能力是决定感染结果的主要因素。病原体在宿主龛位中以及在与免疫细胞接触时会面临营养和氧气匮乏。免疫细胞需要适应新陈代谢,以产生抗菌化合物并引发抗真菌炎症。感染也会引发器官新陈代谢和能量消耗的系统性变化,从新陈代谢增强以产生能量用于强有力的免疫反应,到随着感染的进展新陈代谢降低,这与免疫和器官功能障碍同时发生。宿主与病原体之间对能量和营养物质的竞争意味着,要想从感染中成功存活和康复,就必须在免疫系统消灭病原体(抵抗力)与尽量减少对宿主组织和器官的损害(耐受力)之间取得平衡。在此,我们将讨论我们目前对真菌感染中病原体、免疫细胞和系统代谢的认识,以及代谢紊乱(如肥胖和糖尿病)的影响。我们提出的观点是,多年来,我们对利用代谢调节真菌增殖和抗真菌免疫反应(即抗性)的认识不断加深,但我们还需要研究控制真菌病原体耐受性的代谢机制。全面了解如何通过代谢干预来平衡抗药性和耐受性,可为治疗策略提供见解,从而与抗真菌药物辅助使用,改善患者预后。
{"title":"Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems.","authors":"Harshini Weerasinghe, Helen Stölting, Adam J Rose, Ana Traven","doi":"10.1128/mmbr.00171-22","DOIUrl":"10.1128/mmbr.00171-22","url":null,"abstract":"<p><p>SUMMARYThe ability to overcome metabolic stress is a major determinant of outcomes during infections. Pathogens face nutrient and oxygen deprivation in host niches and during their encounter with immune cells. Immune cells require metabolic adaptations for producing antimicrobial compounds and mounting antifungal inflammation. Infection also triggers systemic changes in organ metabolism and energy expenditure that range from an enhanced metabolism to produce energy for a robust immune response to reduced metabolism as infection progresses, which coincides with immune and organ dysfunction. Competition for energy and nutrients between hosts and pathogens means that successful survival and recovery from an infection require a balance between elimination of the pathogen by the immune systems (resistance), and doing so with minimal damage to host tissues and organs (tolerance). Here, we discuss our current knowledge of pathogen, immune cell and systemic metabolism in fungal infections, and the impact of metabolic disorders, such as obesity and diabetes. We put forward the idea that, while our knowledge of the use of metabolic regulation for fungal proliferation and antifungal immune responses (i.e., resistance) has been growing over the years, we also need to study the metabolic mechanisms that control tolerance of fungal pathogens. A comprehensive understanding of how to balance resistance and tolerance by metabolic interventions may provide insights into therapeutic strategies that could be used adjunctly with antifungal drugs to improve patient outcomes.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0017122"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. 耐药性结节分化(RND)外排泵转运体的结构和功能多样性及其对抗菌药耐药性的影响。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-09-05 DOI: 10.1128/mmbr.00089-23
Logan G Kavanaugh, Debayan Dey, William M Shafer, Graeme L Conn

SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.

摘要 细菌外排泵的发现极大地推动了我们对细菌如何抵抗其所遇到的细胞毒性化合物的认识。在结构和功能各异的外排泵家族中,抗性-结节-分裂(RND)超家族的外排泵因能降低结构各异的抗菌素的细胞内浓度而引人注目。许多革兰氏阴性细菌都拥有 RND 系统,其中包括那些导致严重人类疾病的细菌,并且经常导致对多种抗生素产生耐药性。在此,我们回顾了目前有关临床上重要病原体的三方 RND 外排泵代表性转运蛋白的结构-功能关系的文献。我们强调了它们对细菌耐受临床使用的抗生素、宿主防御抗菌素和其他杀菌剂的贡献,并着重介绍了帮助细菌在抗菌素面前生存的外排转运体之间的结构异同。此外,我们还讨论了促进和推动外排泵研究的技术进步,并提出了将推动抗菌药开发工作的未来研究领域。
{"title":"Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance.","authors":"Logan G Kavanaugh, Debayan Dey, William M Shafer, Graeme L Conn","doi":"10.1128/mmbr.00089-23","DOIUrl":"10.1128/mmbr.00089-23","url":null,"abstract":"<p><p>SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0008923"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enterococcus faecalis: an overlooked cell invader. 粪肠球菌:被忽视的细胞入侵者
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-09-26 Epub Date: 2024-09-06 DOI: 10.1128/mmbr.00069-24
Cristel Archambaud, Natalia Nunez, Ronni A G da Silva, Kimberly A Kline, Pascale Serror

SUMMARYEnterococcus faecalis and Enterococcus faecium are human pathobionts that exhibit a dual lifestyle as commensal and pathogenic bacteria. The pathogenic lifestyle is associated with specific conditions involving host susceptibility and intestinal overgrowth or the use of a medical device. Although the virulence of E. faecium appears to benefit from its antimicrobial resistance, E. faecalis is recognized for its higher pathogenic potential. E. faecalis has long been considered a predominantly extracellular pathogen; it adheres to and is taken up by a wide range of mammalian cells, albeit with less efficiency than classical intracellular enteropathogens. Carbohydrate structures, rather than proteinaceous moieties, are likely to be primarily involved in the adhesion of E. faecalis to epithelial cells. Consistently, few adhesins have been implicated in the adhesion of E. faecalis to epithelial cells. On the host side, very little is known about cognate receptors, except for the role of glycosaminoglycans during macrophage infection. Several lines of evidence indicate that E. faecalis internalization may involve a zipper-like mechanism as well as a macropinocytosis pathway. Conversely, E. faecalis can use several strategies to prevent engulfment in phagocytes. However, the bacterial and host mechanisms underlying cell infection by E. faecalis are still in their infancy. The most recent striking finding is the existence of an intracellular lifestyle where E. faecalis can replicate within a variety of host cells. In this review, we summarize and discuss the current knowledge of E. faecalis-host cell interactions and argue on the need for further mechanistic studies to prevent or reduce infections.

摘要粪肠球菌和粪肠球菌是人类致病菌,表现出共生菌和致病菌的双重生活方式。致病生活方式与宿主易感性、肠道过度生长或使用医疗设备等特定条件有关。虽然粪肠球菌的致病力似乎得益于其对抗菌素的耐药性,但粪肠球菌因其较高的致病潜力而得到公认。长期以来,粪肠球菌一直被认为是一种以细胞外为主的病原体;它能粘附并被多种哺乳动物细胞吸收,尽管其效率低于传统的细胞内肠道致病菌。粪肠球菌粘附上皮细胞的主要作用可能是碳水化合物结构,而不是蛋白质分子。粪肠埃希氏菌与上皮细胞的粘附过程中很少涉及粘附素。在宿主方面,除了糖胺聚糖在巨噬细胞感染过程中的作用外,人们对同源受体知之甚少。一些证据表明,粪肠球菌的内化可能涉及一种类似拉链的机制以及一种巨细胞吞噬途径。相反,粪肠球菌也可以使用多种策略来阻止吞噬细胞的吞噬。然而,粪肠球菌感染细胞的细菌和宿主机制仍处于起步阶段。最新的惊人发现是存在一种细胞内生活方式,粪肠球菌可在各种宿主细胞内复制。在这篇综述中,我们总结并讨论了目前有关粪肠球菌与宿主细胞相互作用的知识,并认为有必要开展进一步的机制研究,以预防或减少感染。
{"title":"<i>Enterococcus faecalis</i>: an overlooked cell invader.","authors":"Cristel Archambaud, Natalia Nunez, Ronni A G da Silva, Kimberly A Kline, Pascale Serror","doi":"10.1128/mmbr.00069-24","DOIUrl":"10.1128/mmbr.00069-24","url":null,"abstract":"<p><p>SUMMARY<i>Enterococcus faecalis</i> and <i>Enterococcus faecium</i> are human pathobionts that exhibit a dual lifestyle as commensal and pathogenic bacteria. The pathogenic lifestyle is associated with specific conditions involving host susceptibility and intestinal overgrowth or the use of a medical device. Although the virulence of <i>E. faecium</i> appears to benefit from its antimicrobial resistance, <i>E. faecalis</i> is recognized for its higher pathogenic potential. <i>E. faecalis</i> has long been considered a predominantly extracellular pathogen; it adheres to and is taken up by a wide range of mammalian cells, albeit with less efficiency than classical intracellular enteropathogens. Carbohydrate structures, rather than proteinaceous moieties, are likely to be primarily involved in the adhesion of <i>E. faecalis</i> to epithelial cells. Consistently, few adhesins have been implicated in the adhesion of <i>E. faecalis</i> to epithelial cells. On the host side, very little is known about cognate receptors, except for the role of glycosaminoglycans during macrophage infection. Several lines of evidence indicate that <i>E. faecalis</i> internalization may involve a zipper-like mechanism as well as a macropinocytosis pathway. Conversely, <i>E. faecalis</i> can use several strategies to prevent engulfment in phagocytes. However, the bacterial and host mechanisms underlying cell infection by <i>E. faecalis</i> are still in their infancy. The most recent striking finding is the existence of an intracellular lifestyle where <i>E. faecalis</i> can replicate within a variety of host cells. In this review, we summarize and discuss the current knowledge of <i>E. faecalis</i>-host cell interactions and argue on the need for further mechanistic studies to prevent or reduce infections.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0006924"},"PeriodicalIF":8.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiology and Molecular Biology Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1