Pub Date : 2024-08-29DOI: 10.1088/2053-1591/ad71a2
R Ashok Raj, C Chanakyan, D Antony Prabu, S Prabagaran
The effect of different process parameters on Tungsten Inert Gas (TIG) welded dissimilar aluminium magnesium alloy AA5083-H111 and AA5052-H32 by using ER5356 filler rod and scandium added ER5356 composites is investigated in this research. Extremely required in the automobile and aerospace industries, some defects like micro pores and weaken the fusion zone on the joint are identified with ER5356 filler rod. To resolve these defects, scandium added ER5356 composite filler rod is used to compose the TIG welded joints with free defects. There are three different TIG welding process parameters like Current (A), gas flow rate (L/min) and (0, 0.25 and 0.5 wt% of Scandium with ER5356 filler rod are used by Taguchi L9 method. The macrostructure, microstructure and mechanical properties of TIG welded joints are investigated on all the welded samples. To optimize the process parameter is more significant, therefore grey relational analysis used to optimize the parameters with identified mechanical properties tensile strength and micro hardness, respectively. Out of different process parameters, joint made with process parameter current at 190 A, gas flow rate 10 l min−1 and 0.50% scandium added ER5356 enhances the mechanical properties (264 MPa and 119 Hv) which is maximum than other scandium free ER5356 and 0.255 scandium filler rod and enhanced strength welded sample exhibited fine grain refinement on the weld seam. Due to added scandium on the welded zones, secondary phase particles are generated during SEM examination and the optimized samples were utilized for fractography test to exhibit the ductile nature in fractured area. The EDS mapping also shows the elemental distribution on the welded zones, the scandium plays the major role as a better reinforcement to improve intermetallic strength. Finally, the grey with ANOVA also proves that the scandium added joints achieves influencing process parameters.
{"title":"Surface enhancement on TIG welded dissimilar Al-Mg alloy with ER5356 and scandium composites filler rod","authors":"R Ashok Raj, C Chanakyan, D Antony Prabu, S Prabagaran","doi":"10.1088/2053-1591/ad71a2","DOIUrl":"https://doi.org/10.1088/2053-1591/ad71a2","url":null,"abstract":"The effect of different process parameters on Tungsten Inert Gas (TIG) welded dissimilar aluminium magnesium alloy AA5083-H111 and AA5052-H32 by using ER5356 filler rod and scandium added ER5356 composites is investigated in this research. Extremely required in the automobile and aerospace industries, some defects like micro pores and weaken the fusion zone on the joint are identified with ER5356 filler rod. To resolve these defects, scandium added ER5356 composite filler rod is used to compose the TIG welded joints with free defects. There are three different TIG welding process parameters like Current (A), gas flow rate (L/min) and (0, 0.25 and 0.5 wt% of Scandium with ER5356 filler rod are used by Taguchi L9 method. The macrostructure, microstructure and mechanical properties of TIG welded joints are investigated on all the welded samples. To optimize the process parameter is more significant, therefore grey relational analysis used to optimize the parameters with identified mechanical properties tensile strength and micro hardness, respectively. Out of different process parameters, joint made with process parameter current at 190 A, gas flow rate 10 l min<sup>−1</sup> and 0.50% scandium added ER5356 enhances the mechanical properties (264 MPa and 119 Hv) which is maximum than other scandium free ER5356 and 0.255 scandium filler rod and enhanced strength welded sample exhibited fine grain refinement on the weld seam. Due to added scandium on the welded zones, secondary phase particles are generated during SEM examination and the optimized samples were utilized for fractography test to exhibit the ductile nature in fractured area. The EDS mapping also shows the elemental distribution on the welded zones, the scandium plays the major role as a better reinforcement to improve intermetallic strength. Finally, the grey with ANOVA also proves that the scandium added joints achieves influencing process parameters.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"12 12 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1088/2053-1591/ad6959
Wangxing Zhan, Xiaohua Li, Zhi Zeng, Hao Yang, Zhao Feng, Fan Huang, Liubin Su
With increasing concerns for energy conservation and environmental protection, research on glazed hollow bead thermal insulation mortar is of utmost importance. This type of mortar offers superior thermal insulation, leading to reduced energy consumption and emissions, in line with the current green building trends. This article aims to investigate the impact of varying component proportions on the parameters of thermal insulation mortar through an orthogonal experiment with four factors and three levels: glazed hollow bead, sepiolite, air-entraining agent, and cellulose ether. Additionally, a single-factor experiment is conducted to analyze the influence degree of water-solid ratio and these four factors. The experimental results are then verified through SEM (Scanning Electron Microscope) observation. The research findings indicate that glazed hollow beads have the most significant impact on thermal conductivity and compressive strength, while the air-entraining agent exerts the greatest influence on flexural strength. Specifically, when the content of glazed hollow bead is 2%, sepiolite 1%, air-entraining agent 0.6%, and cellulose ether 0.6%, the thermal conductivity can reach a minimum value of 0.0533W/(m·K). On the other hand, when the content of glazed hollow bead is 1%, sepiolite 2%, air-entraining agent 0.4%, and cellulose ether 0.6%, the compressive strength can achieve a maximum value of 2.4 MPa. These findings provide a solid foundation for further exploration into improving the performance of thermal insulation mortar.
{"title":"Study on the properties and mechanisms of the glazed hollow bead thermal insulation mortar","authors":"Wangxing Zhan, Xiaohua Li, Zhi Zeng, Hao Yang, Zhao Feng, Fan Huang, Liubin Su","doi":"10.1088/2053-1591/ad6959","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6959","url":null,"abstract":"With increasing concerns for energy conservation and environmental protection, research on glazed hollow bead thermal insulation mortar is of utmost importance. This type of mortar offers superior thermal insulation, leading to reduced energy consumption and emissions, in line with the current green building trends. This article aims to investigate the impact of varying component proportions on the parameters of thermal insulation mortar through an orthogonal experiment with four factors and three levels: glazed hollow bead, sepiolite, air-entraining agent, and cellulose ether. Additionally, a single-factor experiment is conducted to analyze the influence degree of water-solid ratio and these four factors. The experimental results are then verified through SEM (Scanning Electron Microscope) observation. The research findings indicate that glazed hollow beads have the most significant impact on thermal conductivity and compressive strength, while the air-entraining agent exerts the greatest influence on flexural strength. Specifically, when the content of glazed hollow bead is 2%, sepiolite 1%, air-entraining agent 0.6%, and cellulose ether 0.6%, the thermal conductivity can reach a minimum value of 0.0533W/(m·K). On the other hand, when the content of glazed hollow bead is 1%, sepiolite 2%, air-entraining agent 0.4%, and cellulose ether 0.6%, the compressive strength can achieve a maximum value of 2.4 MPa. These findings provide a solid foundation for further exploration into improving the performance of thermal insulation mortar.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"48 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1088/2053-1591/ad6f71
D G Merkel, M A Gracheva, G Z Radnóczi, G Hegedűs, D L Nagy, Z E Horváth, A Lengyel
The Fe-Rh system offers a diverse range of magnetic phases, making it promising for energy-efficient magnetic devices. A periodic, chemically homogeneous, isotope-periodic nFeRh/57FeRh multilayer system was deposited on a MgO(100) substrate via molecular beam epitaxy, and annealed at various temperatures and durations. To gain deeper insights into the A1 to B2 structural and magnetic transitions, non-destructive techniques such as x-ray diffraction, conversion electron Mössbauer spectroscopy, and neutron reflectometry were employed. The qualitative and quantitative analysis revealed insights into the underlying mechanisms of the transformation from the A1 phase to the B2 phase were described, including the variation of the lattice parameters, grain sizes and hyperfine parameters. Neutron reflectometry revealed no significant long-range diffusion during the phase transition, suggesting a local interchange of neighbouring atoms.
{"title":"Temperature induced A1 to B2 structural and magnetic transition in FeRh thin film","authors":"D G Merkel, M A Gracheva, G Z Radnóczi, G Hegedűs, D L Nagy, Z E Horváth, A Lengyel","doi":"10.1088/2053-1591/ad6f71","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6f71","url":null,"abstract":"The Fe-Rh system offers a diverse range of magnetic phases, making it promising for energy-efficient magnetic devices. A periodic, chemically homogeneous, isotope-periodic <sup>n</sup>FeRh/<sup>57</sup>FeRh multilayer system was deposited on a MgO(100) substrate via molecular beam epitaxy, and annealed at various temperatures and durations. To gain deeper insights into the A1 to B2 structural and magnetic transitions, non-destructive techniques such as x-ray diffraction, conversion electron Mössbauer spectroscopy, and neutron reflectometry were employed. The qualitative and quantitative analysis revealed insights into the underlying mechanisms of the transformation from the A1 phase to the B2 phase were described, including the variation of the lattice parameters, grain sizes and hyperfine parameters. Neutron reflectometry revealed no significant long-range diffusion during the phase transition, suggesting a local interchange of neighbouring atoms.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"10 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1088/2053-1591/ad6ff4
Yonglin Li, Bo Lv, Yuefeng Wang, Zhihui Zhao, Meitong Lin
The corrosion behavior of three novel high manganese steel frogs with different Cr contents in a simulated industrial corrosive atmospheric environment is studied through the corrosion weight gain, x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and electrochemical testing. The results indicate that the content of Cr in the steel affects the phase composition, density, and electrochemical stability of the rust layer. For instance, as the Cr content increases, the content of the amorphous phase in the rust layer continuously increases while that of γ-FeOOH decreases, leading to enhanced density and electrochemical stability of the rust layer. The study reveals that Cr exists in the rust layer in the form of Cr2O3 and Cr(OH)3, providing nucleation cores to nanoscale colloidal rust particles. Consequently, a higher Cr content leads to more nucleation cores, which improves the density of the rust layer and enhances the corrosion resistance of the novel high manganese steel frogs in industrial corrosive atmospheric environments.
{"title":"The effect of chromium on the corrosive performance of novel high manganese steel frogs in a simulated industrial atmosphere","authors":"Yonglin Li, Bo Lv, Yuefeng Wang, Zhihui Zhao, Meitong Lin","doi":"10.1088/2053-1591/ad6ff4","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6ff4","url":null,"abstract":"The corrosion behavior of three novel high manganese steel frogs with different Cr contents in a simulated industrial corrosive atmospheric environment is studied through the corrosion weight gain, x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and electrochemical testing. The results indicate that the content of Cr in the steel affects the phase composition, density, and electrochemical stability of the rust layer. For instance, as the Cr content increases, the content of the amorphous phase in the rust layer continuously increases while that of <italic toggle=\"yes\">γ</italic>-FeOOH decreases, leading to enhanced density and electrochemical stability of the rust layer. The study reveals that Cr exists in the rust layer in the form of Cr<sub>2</sub>O<sub>3</sub> and Cr(OH)<sub>3</sub>, providing nucleation cores to nanoscale colloidal rust particles. Consequently, a higher Cr content leads to more nucleation cores, which improves the density of the rust layer and enhances the corrosion resistance of the novel high manganese steel frogs in industrial corrosive atmospheric environments.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"22 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1088/2053-1591/ad6f70
Aditi Chopra, Girish C Mohanta, Sudipta S Pal
One of the fundamental challenges of working with surface plasmon resonance (SPR) biosensors is their inherent lack of specificity. Being very sensitive to minute refractive index (RI) changes in their surrounding medium, SPR biosensors are highly susceptible to variations in pH, temperature, and buffer composition. Therefore, it is often necessary to include an additional validation step downstream to SPR biosensing, particularly for clinical analysis. In this proof-of-study work, we have tried to evaluate the utility of surface-enhanced Raman scattering (SERS) tags as secondary labels for validating SPR biosensor response. Accordingly, a Fibre-optic SPR (FO-SPR) biosensor set-up was fabricated by immobilizing anti-BSA antibodies on the sensor platform for capturing and sensing biotinylated-BSA as a model analyte. Subsequently, the bound analyte and the concomitant shift in SPR response were validated by employing streptavidin-functionalized SERS tags. Intriguingly, apart from validation of the SPR response, the SERS tags also significantly improved the sensitivity of the SPR response and provided semi-quantitative information on the bound analyte. Although utilizing SERS tags undermines the label-free tag of SPR biosensors, the huge improvement in sensitivity and specificity of the sensor makes it suitable for clinical analysis. Furthermore, SERS measurements with a portable Raman spectrometer utilized in this study further highlight the potential of this approach for achieving point-of-care (POC) sensing.
{"title":"A combinatorial approach to validate the surface plasmon resonance (SPR) biosensor response","authors":"Aditi Chopra, Girish C Mohanta, Sudipta S Pal","doi":"10.1088/2053-1591/ad6f70","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6f70","url":null,"abstract":"One of the fundamental challenges of working with surface plasmon resonance (SPR) biosensors is their inherent lack of specificity. Being very sensitive to minute refractive index (RI) changes in their surrounding medium, SPR biosensors are highly susceptible to variations in pH, temperature, and buffer composition. Therefore, it is often necessary to include an additional validation step downstream to SPR biosensing, particularly for clinical analysis. In this proof-of-study work, we have tried to evaluate the utility of surface-enhanced Raman scattering (SERS) tags as secondary labels for validating SPR biosensor response. Accordingly, a Fibre-optic SPR (FO-SPR) biosensor set-up was fabricated by immobilizing anti-BSA antibodies on the sensor platform for capturing and sensing biotinylated-BSA as a model analyte. Subsequently, the bound analyte and the concomitant shift in SPR response were validated by employing streptavidin-functionalized SERS tags. Intriguingly, apart from validation of the SPR response, the SERS tags also significantly improved the sensitivity of the SPR response and provided semi-quantitative information on the bound analyte. Although utilizing SERS tags undermines the label-free tag of SPR biosensors, the huge improvement in sensitivity and specificity of the sensor makes it suitable for clinical analysis. Furthermore, SERS measurements with a portable Raman spectrometer utilized in this study further highlight the potential of this approach for achieving point-of-care (POC) sensing.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"11 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper utilizes both the ionic soil stabilizer (ISS) and sand to strengthen bentonite, as ISS effectively reduces its expansive properties and sand rapidly improves its strength to reduce cracks. Various experiments are conducted to analyze the changes in physical and mechanical properties of the bentonite strengthened by ISS-sand (ISB). The results show that not only do the sand particles enhance the strength of bentonite, but also the ISS significantly reduces its expansibility. Furthermore, the mass ratio of sand to bentonite has different effects on the unconfined compressive strength (UCS) and the freeze-tolerance of sand-reinforced bentonite (SB) and ISB. These findings suggest that a comprehensive consideration of the sand mixing rate is necessary when implementing ISS reinforcement on natural expansive soil.
本文利用离子土壤稳定剂(ISS)和砂子来加固膨润土,因为 ISS 能有效降低膨润土的膨胀性,而砂子能迅速提高膨润土的强度以减少裂缝。研究人员通过各种实验分析了经 ISS-砂(ISB)加固的膨润土的物理和机械性能变化。结果表明,砂粒不仅能增强膨润土的强度,而且 ISS 还能显著降低其膨胀性。此外,砂与膨润土的质量比对砂加固膨润土(SB)和 ISB 的无侧限抗压强度(UCS)和抗冻性也有不同的影响。这些研究结果表明,在天然膨胀土上实施 ISS 加固时,有必要全面考虑砂的混合率。
{"title":"Experimental study on the effects of composite reinforcement of ionic soil stabilizer and sand on bentonite","authors":"Fenghua Wang, Yuefeng Yuan, Meiying Hou, Ailin Wang, Yani Yang, Qian Xiong","doi":"10.1088/2053-1591/ad6ff3","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6ff3","url":null,"abstract":"This paper utilizes both the ionic soil stabilizer (ISS) and sand to strengthen bentonite, as ISS effectively reduces its expansive properties and sand rapidly improves its strength to reduce cracks. Various experiments are conducted to analyze the changes in physical and mechanical properties of the bentonite strengthened by ISS-sand (ISB). The results show that not only do the sand particles enhance the strength of bentonite, but also the ISS significantly reduces its expansibility. Furthermore, the mass ratio of sand to bentonite has different effects on the unconfined compressive strength (UCS) and the freeze-tolerance of sand-reinforced bentonite (SB) and ISB. These findings suggest that a comprehensive consideration of the sand mixing rate is necessary when implementing ISS reinforcement on natural expansive soil.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"9 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1088/2053-1591/ad6ef1
Zhang Chao, Huang Huan, Xiao Li, Yang Fan, Zhang Yuqi, Liu Jie
As a carbon-free hydrogen-rich energy carrier, ammonia has gained increasing attention and application in the context of carbon peaking and carbon neutrality. This study evaluated the stress corrosion cracking (SCC) sensitivity of four target materials, A516-70, 16MnDR, 15MnNiDR, and Q370DR, in a liquid ammonia environment at 25 °C and 1.03 MPa by slow stress rate tests to determine their SCC sensitivity index. The microstructure, grain size, misorientation, hardness, strength, and micro-fracture morphology of these materials were compared to analyze the SCC mechanism. The results showed that 15MnNiDR exhibited significant SCC sensitivity while both 16MnDR and A516-70 demonstrated certain levels of SCC sensitivity in liquid ammonia. However, Q370DR showed no SCC sensitivity under these conditions. The misorientations observed align with the strains experienced by each respective carbon steel in liquid ammonia. An unstable passivation film formed on the surface of 15MnNiDR steel when exposed to liquid ammonia whereas Q370DR developed a stable oxide film which contributed to its weak SCC sensitivity.
{"title":"Stress corrosion cracking behaviors of carbon steel in liquid ammonia","authors":"Zhang Chao, Huang Huan, Xiao Li, Yang Fan, Zhang Yuqi, Liu Jie","doi":"10.1088/2053-1591/ad6ef1","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6ef1","url":null,"abstract":"As a carbon-free hydrogen-rich energy carrier, ammonia has gained increasing attention and application in the context of carbon peaking and carbon neutrality. This study evaluated the stress corrosion cracking (SCC) sensitivity of four target materials, A516-70, 16MnDR, 15MnNiDR, and Q370DR, in a liquid ammonia environment at 25 °C and 1.03 MPa by slow stress rate tests to determine their SCC sensitivity index. The microstructure, grain size, misorientation, hardness, strength, and micro-fracture morphology of these materials were compared to analyze the SCC mechanism. The results showed that 15MnNiDR exhibited significant SCC sensitivity while both 16MnDR and A516-70 demonstrated certain levels of SCC sensitivity in liquid ammonia. However, Q370DR showed no SCC sensitivity under these conditions. The misorientations observed align with the strains experienced by each respective carbon steel in liquid ammonia. An unstable passivation film formed on the surface of 15MnNiDR steel when exposed to liquid ammonia whereas Q370DR developed a stable oxide film which contributed to its weak SCC sensitivity.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"60 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1088/2053-1591/ad6b78
Mahmoud Abbas, Essam Ahmed, Mohammad Hassan, Hamed Ahmed Abdel-Aleem
In this research, the electro-gas welding process was compared with a shielded metal arc welding process for welding steel A573 from a mechanical properties point of view. Visual and radiographic inspections confirmed the soundness of weldments produced by electro-gas welding and shielded metal arc welding techniques. Various assessments were performed, including hardness, tensile strength, V-notch impact toughness, macrostructure, microstructure, and electrochemical tests. The mechanical properties of the two welding processes were closely matched, with an average tensile strength of 590 MPa for electro-gas welding and 585 MPa for shielded metal arc welding. Furthermore, the influence of welding variables, such as groove design and heat input, on the welded joints’ quality, mechanical properties, and electrochemical behavior was thoroughly examined. Dilution estimates, particularly for the electro-gas welding process, were around 35%, and a significant similarity was observed between the chemical composition determined through dilution calculations and that obtained from chemical analysis using an arc spark emission spectrometer. Notably, the electro-gas welding process demonstrated exceptional productivity, surpassing the shielded metal arc welding process by more than elevenfold. The optimum welding parameters for the electro-gas welding process were identified to achieve superior mechanical properties, low corrosion rates, and reduced consumption of the welding electrodes. This included adopting a single V type and groove angle of 30° instead of 60°, resulting in a 23% reduction in economic costs. Selecting an appropriate heat input within the range of 12 to 14 kJ/mm further contributed to enhancing overall welding efficiency.
{"title":"Comparative study of electrogas and shielded metal arc welding processes on steel A537 welded joints","authors":"Mahmoud Abbas, Essam Ahmed, Mohammad Hassan, Hamed Ahmed Abdel-Aleem","doi":"10.1088/2053-1591/ad6b78","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6b78","url":null,"abstract":"In this research, the electro-gas welding process was compared with a shielded metal arc welding process for welding steel A573 from a mechanical properties point of view. Visual and radiographic inspections confirmed the soundness of weldments produced by electro-gas welding and shielded metal arc welding techniques. Various assessments were performed, including hardness, tensile strength, V-notch impact toughness, macrostructure, microstructure, and electrochemical tests. The mechanical properties of the two welding processes were closely matched, with an average tensile strength of 590 MPa for electro-gas welding and 585 MPa for shielded metal arc welding. Furthermore, the influence of welding variables, such as groove design and heat input, on the welded joints’ quality, mechanical properties, and electrochemical behavior was thoroughly examined. Dilution estimates, particularly for the electro-gas welding process, were around 35%, and a significant similarity was observed between the chemical composition determined through dilution calculations and that obtained from chemical analysis using an arc spark emission spectrometer. Notably, the electro-gas welding process demonstrated exceptional productivity, surpassing the shielded metal arc welding process by more than elevenfold. The optimum welding parameters for the electro-gas welding process were identified to achieve superior mechanical properties, low corrosion rates, and reduced consumption of the welding electrodes. This included adopting a single V type and groove angle of 30° instead of 60°, resulting in a 23% reduction in economic costs. Selecting an appropriate heat input within the range of 12 to 14 kJ/mm further contributed to enhancing overall welding efficiency.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"49 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1088/2053-1591/ad6eef
Saravanakumar K, S Saravanan, N Muthuram
Electronic packages are employed in diverse industries, including automotive, aerospace, and defense. However, their susceptibility to failure arises from exposure to uncontrolled operating conditions, particularly vibrations.Therefore, an investigation has been conducted to explore the effect of vibration in fatigue life of SAC305 lead free solder material employed in Printed Circuit Board (PCB) assembly with ball grid array (BGA) 144 electronic package. Finite Element Analysis (FEA) of a printed circuit board with BGA 144 electronic package was conducted to find their dynamic characterisics like natural frequencies and their mode shapes. Experiments were conducted to validate the numerically developed model, where first, second and third modes shapes from FEA and experimental results were compared. In addition, random vibration analysis was performed using numerical simulation where individual solder balls were analysed for stress distribution and experimentswere conducted on specially fabricated PCBs using electro dynamic shaker for validation. Analysis shows that the failure was prominent at the solder balls located at the corner of the package. Further, Minor’s rule was used to estimate the fatigue life of the Pb free solder material in BGA 144 package.
{"title":"Investigation of dynamic characteristics and fatigue life prediction of Pb free solder material under random vibration","authors":"Saravanakumar K, S Saravanan, N Muthuram","doi":"10.1088/2053-1591/ad6eef","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6eef","url":null,"abstract":"Electronic packages are employed in diverse industries, including automotive, aerospace, and defense. However, their susceptibility to failure arises from exposure to uncontrolled operating conditions, particularly vibrations.Therefore, an investigation has been conducted to explore the effect of vibration in fatigue life of SAC305 lead free solder material employed in Printed Circuit Board (PCB) assembly with ball grid array (BGA) 144 electronic package. Finite Element Analysis (FEA) of a printed circuit board with BGA 144 electronic package was conducted to find their dynamic characterisics like natural frequencies and their mode shapes. Experiments were conducted to validate the numerically developed model, where first, second and third modes shapes from FEA and experimental results were compared. In addition, random vibration analysis was performed using numerical simulation where individual solder balls were analysed for stress distribution and experimentswere conducted on specially fabricated PCBs using electro dynamic shaker for validation. Analysis shows that the failure was prominent at the solder balls located at the corner of the package. Further, Minor’s rule was used to estimate the fatigue life of the Pb free solder material in BGA 144 package.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"26 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1088/2053-1591/ad6ef2
Gopal Bharamappa Bekkeri, Kiran K Shetty, Gopinatha Nayak
The study investigates the use of artificial aggregates (AAs), specifically manufactured from ground granulated blast furnace slag (GGBFS) and ordinary Portland cement (OPC), to mitigate environmental harm caused by illegal quarrying due to the scarcity of natural aggregates (NAs). A cold-bonded pelletization technique was employed to produce five types of AAs with varying proportions of GGBFS & OPC as 82.5:17.5, 85:15, 87.5:12.5, 90:10, 95:5. The AAs with maximum OPC content exhibited a density of 1298 kg m−3, water absorption of 4.8%, and crushing and impact values of 28.6% and 26.3%, respectively. The impact of these AAs on concrete properties was assessed, revealing that AAs facilitated the production of workable concrete with low-density ranges between 1700–2337 kg m−3. Despite a decrease in concrete strength with higher AAs content, structural requirements were met, demonstrating AAs’ potential to effectively substitute natural coarse aggregates (NCAs). The concrete microstructure confirmed the formation of a strong interfacial transition zone (ITZ) and strength-developing cement-hydrated products. This research underscores the scientific contribution of AAs to address aggregate scarcity sustainably and recommends its application in structural elements by experimental validation.
本研究调查了人工集料(AAs)的使用情况,特别是由磨细高炉矿渣(GGBFS)和普通硅酸盐水泥(OPC)制成的人工集料,以减轻因天然集料(NAs)稀缺而非法采石造成的环境危害。采用冷粘结造粒技术生产了五种 AA,其中 GGBFS 和 OPC 的比例各不相同,分别为 82.5:17.5、85:15、87.5:12.5、90:10 和 95:5。OPC 含量最高的 AA 密度为 1298 kg m-3,吸水率为 4.8%,压碎值和冲击值分别为 28.6% 和 26.3%。评估了这些 AA 对混凝土性能的影响,结果表明,AA 有利于生产工作性混凝土,其低密度范围在 1700-2337 kg m-3 之间。尽管 AAs 含量越高,混凝土强度越低,但仍能满足结构要求,这表明 AAs 具有有效替代天然粗集料(NCAs)的潜力。混凝土的微观结构证实形成了强大的界面过渡区(ITZ)和强度发展水泥水化产物。这项研究强调了 AAs 在可持续解决骨料稀缺问题方面的科学贡献,并建议通过实验验证将其应用于结构元件中。
{"title":"Effects of cold-bonded artificial aggregate properties on the behaviour of concrete","authors":"Gopal Bharamappa Bekkeri, Kiran K Shetty, Gopinatha Nayak","doi":"10.1088/2053-1591/ad6ef2","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6ef2","url":null,"abstract":"The study investigates the use of artificial aggregates (AAs), specifically manufactured from ground granulated blast furnace slag (GGBFS) and ordinary Portland cement (OPC), to mitigate environmental harm caused by illegal quarrying due to the scarcity of natural aggregates (NAs). A cold-bonded pelletization technique was employed to produce five types of AAs with varying proportions of GGBFS & OPC as 82.5:17.5, 85:15, 87.5:12.5, 90:10, 95:5. The AAs with maximum OPC content exhibited a density of 1298 kg m<sup>−3</sup>, water absorption of 4.8%, and crushing and impact values of 28.6% and 26.3%, respectively. The impact of these AAs on concrete properties was assessed, revealing that AAs facilitated the production of workable concrete with low-density ranges between 1700–2337 kg m<sup>−3</sup>. Despite a decrease in concrete strength with higher AAs content, structural requirements were met, demonstrating AAs’ potential to effectively substitute natural coarse aggregates (NCAs). The concrete microstructure confirmed the formation of a strong interfacial transition zone (ITZ) and strength-developing cement-hydrated products. This research underscores the scientific contribution of AAs to address aggregate scarcity sustainably and recommends its application in structural elements by experimental validation.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"10 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}